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Abstract. The pathophysiology of Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and many others
converge at alpha-synuclein (a-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act
as triggers, cumulative evidence points towards a crucial role for protein quality control (PQC) systems in modulating o-Syn
aggregation and toxicity. These encompass distinct cellular strategies that tightly balance protein production, stability, and
degradation, ultimately regulating a-Syn levels. Here, we review the main aspects of a-Syn biology, focusing on the cellular
PQC components that are at the heart of recognizing and disposing toxic, aggregate-prone a-Syn assemblies: molecular
chaperones and the ubiquitin-proteasome system and autophagy-lysosome pathway, respectively. A deeper understanding of
these basic protein homeostasis mechanisms might contribute to the development of new therapeutic strategies envisioning
the prevention and/or enhanced degradation of a-Syn aggregates.
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INTRODUCTION

Alpha-synuclein (a-Syn) was first identified in
human brain extracts more than 25 years ago [1, 2],
and since then many physiological roles have been
ascribed to this small protein. Although a-Syn has no
defined tridimensional structure in aqueous solution
[3] and is soluble under most physiological condi-
tions [4], it can adopt beta-strand rich conformations
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favoring the formation of amyloid fibrils in several
neurodegenerative diseases, collectively known as
synucleinopathies [5—7]. For instance, a-Syn aggre-
gates are found in distinctive neuronal structures
known as Lewy bodies (LBs) and Lewy neurites
(LNs) in idiopathic and familial forms of Parkinson’s
disease (PD) and dementia with Lewy bodies [8],
and in glial cytoplasmatic inclusions in multiple sys-
tem atrophy [9-12]. However, instead of being able
to adopt only one type of structure, recent studies
revealed that aggregated a-Syn possess distinct con-
formations (polymorphs) with unique cytotoxicity
profiles [13—17]. This suggests that different synu-
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cleinopathies arise from distinct a-Syn polymorphs,
as indeed proposed by experiments in animal models
[18, 19].

Although the initial events leading to a-Syn aggre-
gation and toxicity in vivo are still poorly understood,
several lines of evidence suggest that cellular pro-
tein quality control (PQC) pathways play a central
role in these processes. Among these are the molecu-
lar chaperones and the two main protein degradation
pathways, namely the ubiquitin-proteasome system
(UPS) and autophagy-lysosome pathway (ALP) [20].
Here, we review basic molecular and cellular princi-
ples of a-Syn aggregation and their connection with
PQC components, with a special emphasis on the
suppression of a-Syn aggregation and/or toxicity by
molecular chaperones.

ALPHA-SYNUCLEIN STRUCTURE AND
FUNCTION

The N-terminal domain of a-Syn contains sev-
eral motifs with amphipathic properties allowing
for interactions with membranes (binding to lipid
vesicles) and that can serve in protein-protein inter-
actions [21] (Fig. 1). The central portion (residues
61 to 95) contains the non-amyloid-beta compo-
nent of Alzheimer’s disease amyloid (NAC) motif
[1], which is both sufficient and required for amy-
loid formation [6, 22-24]. The C-terminal region
has an important role in shielding the NAC motif
from aggregation [6, 24]. Deletion of only the last
10 amino acids is already sufficient to accelerate a-
Syn aggregation in vitro, and this effect is stronger
upon larger C-terminal truncations up to amino
acids 102-120 [24-26]. o-Syn is subject to several
post-translational modifications (PTMs), including
N-terminal acetylation, ubiquitylation, SUMOyla-
tion, nitration, and phosphorylation [27-32], with
diverse consequences for its function and propen-
sity to aggregate (detailed below). Several roles

Membrane-interacting domains

have been ascribed to a-Syn, including facilitating
the assembly of N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE)-complexes at
presynaptic neuron terminals that mediate release of
neurotransmitters [33, 34], and induction of mem-
brane curvatures [35], among many others [36].

SNCA MUTATIONS REVEAL UNIQUE
FEATURES OF a-SYN TOXICITY AND
AGGREGATION

Two types of mutations in the SNCA gene have
been linked to autosomal dominant forms of PD,
highlighting distinct mechanisms by which a-Syn
aggregation can be triggered: (i) increased gene
dosage and (ii) point mutations enhancing a-Syn
aggregation propensity. The latter, including A30P
[37], E46K [38], H50Q [39, 40], G51D [41], and
AS53T [42], AS3V [43], and AS53E [44] (see Fig. 1),
have been discovered by genetic screens in fami-
lies with hereditary PD and directly influence a-Syn
aggregation to different extents and via discrete
pathways [45]. Mutants such as a-Syn*33T largely
enhance a-Syn aggregation into fibrils [45, 46], most
likely by changing the conformational landscape
that a-Syn populates towards aggregation-prone con-
formers, without disrupting vesicular interactions
[21]. In contrast, the A30P mutation does not
markedly modulate a-Syn aggregation compared
to overexpression of a-Syn™! in cellular models
[46—48]. Instead, it abolishes a-Syn interaction with
lipid vesicles both in vitro [21, 49] and in vivo [50],
which may lead to a buildup of cytosolic a-Syn lev-
els, and eventually contributes to a-Syn aggregation.
This implies that a-Syn aggregation is also extremely
dependent on its concentration and can even be trig-
gered by the wild type protein [50, 51]. In fact,
familial PD cases caused by duplications or triplica-
tions of the SNCA locus have been identified [52-56],
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Fig. 1. Domain structure of the human alpha-synuclein (a-Syn) protein. a-Syn comprises three basic domains: an N-terminal amphipathic
region, a central non-f3-amyloid component (NAC) domain, and a C-terminal acidic domain. Seven membrane-interacting amino acid motifs
are also present in the first half of the protein. The region preceding the NAC domain concentrates all pathogenic a-Syn mutations identified
so far. Numbers on the upper part of the structure refer to amino acid positions.
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with increased gene dosage correlating with earlier
age at onset of disease [57].

MODELLING a-SYN AGGREGATION:
SEEDED VERSUS NON-SEEDED
CONDITIONS

As for any aggregation-prone protein, a-Syn
molecules adopt conformations that allow the
establishment of non-native interactions between
molecules and their coalescence into thermody-
namically unstable assemblies [58]. It is upon
conformational transition to more regular and com-
plementary interfaces [59] that stable seeds are
generated, capable of acting as conformational tem-
plate of the amyloid state [58]. In contrast, the highly
stable preformed o-Syn aggregates commonly used
in studies grow by incorporation of a-Syn molecules
to their ends, as the binding of additional molecules
to fibrillar ends generates an incorporation site for
another molecule [58]. The spontaneous aggregation
of a-Syn into amyloid fibrils thus is a multi-step
process during which various intermediates are gen-
erated that provide copious opportunities for PQC
interference.

The exogenous provision of preformed fibrils
(seeded aggregation) bypasses the initial requirement
for seed formation and allows the rapid incorporation
of a-Syn monomers to their ends [58], presenting
a more limited number of conformational states at
which PQC components can interfere. The molecu-
lar mechanisms of chaperone modulation of a-Syn
aggregation in spontaneous versus seeded aggrega-
tion are thus likely to differ significantly. Indeed,
some chaperones interfere with unseeded aggrega-
tion (e.g., DNAJB6 [60]), whilst others selectively act
on the elongation of preformed seeds (e.g., HSPBS
[61]).

The distinction between unseeded and seeded
a-Syn aggregation is thus extremely important to
our understanding of the a-Syn aggregation process
and PQC effects thereon. Cellular studies aimed at
investigating PQC components in a-Syn aggregation
are most often unable to clearly determine whether
unseeded, seeded or both processes are targeted and
to what extent.

Non-seeded o-Syn aggregation

It has been surprisingly difficult to consistently
model spontaneous, non-seeded a-Syn aggregation
in cellular and organismal models. In fact, recent
nuclear magnetic resonance data showed that a-Syn

at physiological concentrations remains largely in a
monomeric, highly dynamic state in cells [4]. Since
the crowded cellular environment is expected to facil-
itate a-Syn aggregation, these data strongly suggest
the existence of agents (such as molecular chaperones
and protein degradation machineries) that efficiently
counteract o-Syn aggregation under normal circum-
stances.

To date, most studies investigating de novo,
non-seeded, a-Syn aggregation have relied on over-
expression of either wild-type (WT) or mutant
variants of a-Syn. In one of the earliest models,
a-Syn inclusion formation was detected in human
neuroglioma H4 cells and mouse primary corti-
cal neurons only upon overexpression of «a-Syn
constructs (a-Syn™ T, a-Syn”3% or a-Syn”>3T) har-
boring distinct C-terminal tags of variable sizes,
which affected proteasomal clearance [47]. Since
untagged a-Syn variants remained soluble, the tag
potentiated aggregation probably through the expo-
sure of the NAC region. Others have employed the
co-expression of a-Syn with distinct aggregation-
prone proteins that co-localize with a-Syn in LBs to
trigger inclusion formation, such as synphilin-1 [45,
62-65] and tubulin polymerization-promoting pro-
tein (TPPP/p25a) [66], but it is not entirely clear
whether these are indeed active drivers of a-Syn
aggregation. Some studies have also used bimolecu-
lar fluorescence complementation assays to assess de
novo a-Syn aggregation [45, 67, 68]. In these cases,
fluorescence is reconstituted and detected upon co-
expression of two a-Syn constructs fused to either
the N- or C-terminus halves of a fluorescent pro-
tein (for example, the split Venus-system). However,
it is still neither clear whether such assemblies are
of fibrillar nature, as the interaction of little as two
o-Syn molecules is already sufficient to reconstitute
fluorescence, nor to what extent the reconstitution
of the functional fluorescent protein drives assem-
bly. Nevertheless, some degree of a-Syn fibrillation
was detected upon overexpression of distinct split
Venus-a-Syn in flies [68]. In any case, true detergent-
insoluble a-Syn aggregates are either usually not
observed in unseeded a-Syn models, or they com-
prise only a small fraction of the total a-Syn pool,
highlighting the urgent need for better models to doc-
ument a-Syn aggregation.

Seeded a-Syn aggregation

Seeded aggregation experiments have been instru-
mental in uncovering many of the basic principles
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of a-Syn pathology (see for instance [26, 69-71]).
Indeed, most of the a-Syn literature relies on exper-
iments in which an exogenous source of a-Syn
amyloid fibrils is administered to cells or animals
in order to trigger aggregation of the endogenous o-
Syn (i.e., the a-Syn pool generated by cells de novo,
even if it consists of an artificial transgene). In these
cases, exogenous a-Syn fibrils come from either in
vitro reactions using recombinant a-Syn [69] or from
fibrils isolated from animal models or human post-
mortem tissue [19, 26, 72]. As stated above, structural
differences of o-Syn fibrils may lead to different
synucleinopathies [15, 73]. However, it should be
noted that there is currently no evidence demonstrat-
ing that human pathology starts upon exposure to
exogenous a-Syn seeds [36], suggesting that factors
such as cellular stress may trigger the formation of
the first a-Syn seeds.

a-SYN AGGREGATION AND TOXICITY
IN THE CONTEXT OF PQC SYSTEMS

Molecular chaperones

Suppression of a-Syn aggregation by Hsp70
machines

Molecular chaperones are at the heart of several
PQC pathways and have been extensively impli-
cated as protective agents against protein aggregation
and neurodegeneration [74]. Here, we will primar-
ily focus on the action of Hsp70 machines on a-Syn
aggregation and toxicity. The human genome encodes
for multiple Hsp70 isoforms and these Hsp70s act
with the help of many co-factors a system that we
refer to as the Hsp70 machines.

Purified Hsp70s (e.g., HSPA1A or HSPAS) alone
can almost completely block «-Syn fibrillation at
substoichiometric ratios, generating small aggregates
composed of both proteins [25, 75-77]. Interestingly,
addition of recombinant Hsp70-interacting protein
(Hip) to reactions containing Hsp70 and monomeric
a-Syn completely blocked Hsp70 co-aggregation
and led to sustained inhibition of a-Syn aggrega-
tion in an ATP-dependent manner [78], highlighting
the importance of additional co-factors for maxi-
mal suppression of a-Syn aggregation by Hsp70
machines (see below). Purified Hsp70s (HSPA1A
or HSPAS) have been shown to bind a range of
o-Syn assemblies, including monomers [77], pre-
fibrillar [76, 78], and fibrillar species [75, 79,
80]. a-Syn amino acid stretches that are bound
by Hsp70s span residues 1045 and 97-102 [77].

Besides the suppression of a-Syn nucleation, Hsp70s
also bind to a-Syn seeds [75] and prevent fibril
elongation [79, 80]. These latter findings are con-
sistent with a holdase function of Hsp70s against
o-Syn fibril elongation, possibly shielding fibrillar
ends from further incorporation of a-Syn molecules
[79, 80].

In cells, co-expression of Hsp70 decreased the
amount of high molecular weight a-Syn species [64,
65], probably by stabilization of a-Syn in assembly-
incompetent states [81]. This could account for
decreased cytotoxicity of a-Syn upon overexpression
of Hsp70 [65, 82]. Indeed, Hsp70 overexpression in
primary neurons markedly decreased the size, but not
the amount, of secreted a-Syn species [82]. Since
Hsp70 was also detected in the culture medium, it
was proposed to bind monomeric or low molecu-
lar weight pre-fibrillar a-Syn assemblies and prevent
further aggregation into mature fibrils [82].

At the organismal level, mice overexpressing both
o-Syn and the rat HspAl showed a 2-fold reduc-
tion in 1% Triton-X100-insoluble a-Syn-containing
aggregates, compared to animals expressing a-Syn
only [65]. In the fruit fly Drosophila melanogaster,
selective expression of a-SynVT, a-Syn*3% or a-
Syn*33T in dopaminergic neurons for 20 days led to
a 50% cell loss, but this could be fully rescued by
targeted co-expression of the human Hsp70 isoform
HSPAI1L [83]. Interestingly, despite its cytoprotective
effects, HSPA1L did not inhibit a-Syn inclusion for-
mation, but rather co-localized with a-Syn in LB-like
structures, suggesting that Hsp70 binding reduced
toxic interactions of a-Syn with other biomolecules.
Such phenomenon is conserved from flies to humans,
with evidence for the accumulation of not only
Hsp70, but also its cochaperones Hsp40/DNAJs and
Hsp110/NEFs, into LBs and LNs from patients with
PD, dementia with Lewy bodies, and other synucle-
inopathies [63, 83]. Indeed, the titration of Hsp70s
out of solution by misfolded a-Syn has been hypoth-
esized to contribute to disease onset due to lowering
of the functional pool of Hsp70 available for protein
quality control pathways [78, 84].

In vitro, the suppression of a-Syn aggregation by
either Hsp70 (HSPA1A) or Hsc70 (HSPAS) does not
require ATP/ADP cycling [25, 75, 78, 80], nor co-
chaperones, such as DNAJBI1 [78]. In fact, DNAJBI,
which stimulates Hsp70 cycling, even counteracts
such sequestering activity [76]. However, these fac-
tors are essential for the proper function of Hsp70
in quality control pathways in vivo [85]. Indeed,
overexpression of other members from the family of
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Hsp70 co-chaperones also successfully prevents o-
Syn aggregation and/or toxicity in cell and mouse
models of PD. Of special relevance in this context
is the large family of Hsp40/DNAJ proteins, which
are regarded as the main determinants of specificity
of Hsp70 machines, since different DNAJs bind to
distinct client proteins and deliver those to Hsp70
[85, 86]. Thus, DNAJs could be exploited to maxi-
mize the activity of Hsp70 machines towards specific
substrates. For example, besides inhibiting a-Syn
aggregation in vitro [76], DNAJB 1 almost completely
abolished a-Syn inclusion formation in cells overex-
pressing a-Syn [63]. This has also been shown for
DNAJB6 and its close homologue DNAJBS [51],
both of which also strongly suppress the aggrega-
tion of other amyloidogenic polypeptides, including
expanded polyglutamine-containing proteins [60, 87]
and the amyloid-beta protein [88]. Interestingly, a-
Syn aggregation was not suppressed by a DNAJB6
mutant that does not interact with Hsp70 [51],
strengthening the notion that cooperation between
distinct components of Hsp70 machines is essential
for optimal function. Despite these examples, little is
still known on the contribution of different DNAIJs
and/or NEFs to the Hsp70-dependent suppression of
a-Syn aggregation in vivo. Similar to recently devel-
oped in vitro screens for inhibiting tau aggregation
[89], or enhancing a-Syn disaggregation (see below)
[90], further comparative studies using distinct com-
positions of Hsp70 machines are urgently required to
better understand and manipulate Hsp70 machines in
synucleinopathies.

Disaggregation of a-Syn fibrils by Hsp70
machines

The diversity and complexity of Hsp70 machines
is also highlighted by studies investigating the poten-
tial of these systems to disaggregate pre-existing
o-Syn amyloids. For instance, although Hsp70 alone
does not modify or disaggregate mature a-Syn fibrils
at relevant time-scales in vitro [75, 91], a specific
Hsp70/HSPA-Hsp40/DNAJ-Hsp110/NEF combina-
tion showed powerful, ATP-dependent disaggregase
activity against a-Syn amyloids [90]. Indeed, optimal
fragmentation and depolymerization of a-Syn fibrils
was detected upon combining Hsc70/HSPA8 with
Hdj1/DNAJB1 and the NEF Apg2/HSPA4, but not
upon addition of other Hsp70 machine members, such
as Hsp70/HSPA1A, DNAJA1, DNAJA2, or BAGI.
Moreover, a precise stoichiometry between these
components was crucial for productive disaggrega-
tion [90, 91], further illustrating the tight balance

between specificity and levels of chaperones/co-
chaperones for the activity of Hsp70 machines. It is
still not known whether Hsp70-mediated disaggrega-
tion of a-Syn also occurs in vivo, but it is tempting
to speculate that the breakup of fibrils into smaller,
more soluble assemblies facilitates their process-
ing by downstream PQC components, as discussed
below. However, it is equally possible that disaggre-
gation could be detrimental and facilitate a-Syn seed
propagation. Further studies are necessary to clarify
these issues.

Clearance of a-Syn assemblies via protein
degradation machineries

The two major cellular protein degradation
machineries comprise the UPS and ALP, with the
latter encompassing both autophagosome-dependent
and independent pathways [92]. There is an intricate
and tightly regulated crosstalk between proteasomal
and lysosomal pathways engaged in the processing
of a-Syn, as several studies reported preferential
degradation of a-Syn via the UPS or ALP [31,
93-98]. Moreover, a-Syn (WT or distinct mutants)
overexpression can impair the activity of both the
UPS [99, 100] and distinct components of the ALP
[66, 101-104], which would act in a progressive
pathogenic feedback loop to accelerate aggregation
and toxicity. Whether UPS or ALP lead to the degra-
dation of a-Syn assemblies is still actively debated.
Recent findings suggest, however, that the UPS has
a more prominent role in degrading smaller a-Syn
assemblies at least when protein quality systems are
highly active, as is generally the case in young,
healthy organisms [99]. Autophagic activity seems
to be more required for larger a-Syn assemblies and
upon increased a-Syn burden, due to either muta-
tions that lead to a-Syn accumulation or decreased
activity of other PQC components, as observed with
aging [99]. a-Syn has also been shown to be recog-
nized and degraded by other cellular (extracellular)
proteases not directly linked to the UPS and ALP
pathways [105, 106]. However, the extent to which
such enzymes are required for proper a-Syn turnover
and/or inhibition of propagation is still poorly under-
stood.

PTMs also play a role in a-Syn processing and
act as important sorting hubs to distinct protein
degradation machineries. For instance, the covalent
binding of ubiquitin to «-Syn, via either mono-
(monoUb) or polyubiquitylation (polyUb) in dis-
tinct linkage types, has opposing consequences to the
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Fig. 2. Targeting and processing of alpha-synuclein (a-Syn) by protein quality control (PQC) pathways. Left: in normal conditions, in
which the cellular PQC capacity is in balance with the a-Syn burden, soluble as wells as pre-fibrillar a-Syn assemblies (after disassembly)
have been shown to be targeted to and degraded by several PQC components. The initial survey of a-Syn species might be performed by
molecular chaperones (/), which can facilitate the sorting of a-Syn to distinct degradative routes, such as the ubiquitin-proteasome system
(UPS; 2), a ubiquitin-independent proteasomal degradation pathway (3), chaperone-mediated autophagy (CMA; 4), macroautophagy (5),
secretion via endosomes (6) [162], and proteolytic digestion by intracellular (7) or extracellular proteases. Right: in aged organisms or
pathological conditions, the a-Syn burden surpasses the cellular PQC capacity, leading to a-Syn accumulation and subsequent aggregation.
Fibrillar a-Syn assemblies can trap several biomolecules, including molecular chaperones (8), which contributes to chaperone depletion and
decreases PQC capacity. Similarly, a-Syn aggregation has been linked to impairment of different steps of macroautophagy (9), CMA (10), and
proteasomal degradation (/7). In some experimental setups, increased o-Syn levels can also lead to increased autophagic flux and destruction
of organelles, such as mitochondria (/2). a-Syn species can also be secreted to the extracellular space and taken up by neighboring cells (13),
where they seed the aggregation of soluble a-Syn species (/4). a-Syn aggregation additionally impairs the intracellular trafficking of other
proteins, such as the lysosomal enzyme glucocerebrosidase (GCase; 15). Decreased lysosomal GCase activity, due to either mislocalization
of wildtype (wt) GCase or mutant GCase variants (/6), leads to accumulation of GCase substrates (such as glycosylceramide; /7), which
might potentiate a-Syn aggregation. See main text for further mechanistic details and references. ER: endoplasmic reticulum; Hsc70: heat
shock cognate 71 kDa protein; LAMP2a: lysosome-associated membrane protein 2 isoform a; poly-Ub: poly-ubiquitin.

fate of a-Syn. For instance, the co-chaperone CHIP
(carboxyl terminus of Hsp70-interacting protein),
a ubiquitous E3 Ub-ligase and crucial downstream
effector of Hsp70 machineries [85], was shown to
promote a-Syn degradation via both the UPS and
ALP [107]. Also, while monoubiquitylation by the
E3 ubiquitin-ligase STAH targeted a-Syn to the UPS,
removal of the ubiquitin moiety by the deubiquitylase
USP9X favored o-Syn degradation via macroau-
tophagy [108]. Yet another ubiquitin-ligase (Nedd4)
facilitated the binding of K63-linked polyUb chains
to a-Syn and promoted its lysosomal degradation
via the ESCRT pathway [109]. Depending on its
assembly state, other PTMs such as SUMOylation,
phosphorylation, nitration, O-GlcNAcylation, oxida-
tion, and dopamine-modification can also modulate

a-Syn processing via downstream degradation path-
ways [30, 31, 110-114]. In this context, the main
findings associated to the partition of a-Syn between
the UPS and ALP are discussed below and illustrated
in Fig. 2.

Ubiquitin-proteasome system

In mammalian cells, the central player of the UPS
is the 268 proteasome, a large, ATP-dependent multi-
protein complex devoted to the selective destruction
of target proteins [115]. Evidence for the degrada-
tion of a-Syn via proteasomes comes from both
in vitro [116] and cellular studies [117-119], with
not only monomeric, but maybe also pre-fibrillar o-
Syn species (after dissociation) being targeted to this
pathway [30, 100]. Several Ub-ligases interact with
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o-Syn and catalyze the addition of either mono- or
polyUb chains with either cytoprotective or toxic con-
sequences depending on the specific experimental
setup, presumably due to differential impact on cellu-
lar a-Syn half-life [109, 117, 120, 121]. Unmodified
a-Syn can also be degraded by proteasomes via an
Ub-independent pathway [118], particularly relevant
for phosphorylated a-Syn at serine 129 (a-SynPS12%)
[119]. A mutant mimicking a-SynP$12? (a-SynS!2%F)
was shown to be a poor autophagic substrate [111],
re-emphasizing the complementary importance of the
different degradation pathways. Several lines of evi-
dence also suggest that an increased a-Syn burden
inhibits proteasomal activity, which in turn might
lead to a further increase in a-Syn levels, thus estab-
lishing a pathogenic feedback loop favoring a-Syn
aggregation [100, 104, 122, 123].

Autophagy-lysosome pathway

The numerous reports on a-Syn degradation via
the ALP highlight the importance of lysosomal-
dependent regulation of a-Syn levels [124]. Not
surprisingly, a plethora of therapeutic strategies
targeting the ALP have been explored to tackle a-
Syn aggregation and toxicity (reviewed in [125]).
The ALP comprises catabolic processes that con-
verge at the lysosome, being usually divided
in three distinct types: macroautophagy, microau-
tophagy, and chaperone-mediated autophagy (CMA)
[126]. Macroautophagy relies on the engulfment
of substrates within autophagosomes, which are
double-layered membrane vesicles that sequester
intracellular components and target them to lyso-
somes for degradation [127]. Most long-lived
proteins, protein aggregates and even whole damaged
organelles are degraded via macroautophagy [92,
128]. The importance of macroautophagy for nor-
mal cellular function is exemplified by experiments
in which loss of macroautophagy in neurons led to
accumulation of ubiquitylated proteins and inclu-
sion bodies, and neurodegeneration [129]. Moreover,
mutations in different autophagy-related genes, such
as ATGS, lead to genetic diseases with neurologic
phenotypes in humans [130].

Data supporting a role for macroautophagy in
the degradation of monomeric and pre-fibrillar «-
Syn assemblies come mainly from studies detecting
o-Syn buildup upon exposure of cell lines over-
expressing either WT or mutant o-Syn variants
to the inhibitor of autophagosome formation 3-
methyladenine [93, 95, 97, 131]. In vivo, overexpres-
sion of beclin-1, which is involved in autophagosome

formation via the phosphatidylinositol 3-phosphate
kinase complex, rescued neurological deficits of a-
Syn transgenic mice [131]. Yet, beclin-1 is involved
in other endosomal pathways, not directly linked to
macroautophagy [132], which may contribute to the
reduction of a-Syn levels and improved performance
of animals overexpressing a-Syn [131]. Impairment
of lysosomes, toward which all ALP components
converge, with bafilomycin A1 also resulted in a-Syn
buildup, further supporting a role for the ALP in a-
Syn degradation [96, 125, 133, 134]. Nonetheless,
whether macroautophagy is capable of degrading
aggregated, insoluble o-Syn assemblies, such as
those present in LBs, is still debated. For instance, in
a cell model of endogenous a-Syn aggregation upon
exposure to exogenous a-Syn pre-formed fibrils, a-
Syn inclusion resisted lysosomal degradation [134].
In addition, increasing macroautophagy flux upon
a-Syn overexpression was also shown to have detri-
mental effects, ranging from increased degradation of
mitochondria (mitophagy) in both cellular [135], and
animal models of PD [136] to enhanced secretion of
a-Syn assemblies to the extracellular space [66], that
may contribute to the spreading of pathogenic a-Syn
aggregates. On the other hand, Gao and colleagues
(2019) have recently demonstrated enhanced degra-
dation of internalized exogenous a-Syn pre-formed
fibrils in neuronal cell lines upon treatment with dif-
ferent autophagy inducers, suggesting that lysosomes
might be capable of clearing seeded fibrillar a-Syn
[137].

Different from macroautophagy, CMA encom-
passes the selective targeting of substrates to lyso-
somes via Hsc70 (HSPAS) and its co-chaperones, to
specifically recognize cargo proteins with a KFERQ-
like pentapetide motif, and lysosomal-associated
membrane protein 2a (LAMP2a)-mediated substrate
translocation across lysosomal membranes [138,
139]. Several lines of evidence support the involve-
ment of CMA in the processing of a-Syn [125].
In an in vitro lysosomal reconstitution assay, o-
Syn™T was selectively targeted to lysosomes by
LAMP2a, and mutations within a KFERQ-like motif
in a-Syn C-terminus abolished this activity [94].
In cultured cells overexpressing «-Syn, macroau-
tophagy inhibition led to higher a-Syn clearance
via CMA [95, 140], while a-Syn protein levels
were increased upon specific knockdown of LAMP2a
[141], or HSPAS [141, 142]. Compared to healthy
controls, lower LAMP2a protein levels were detected
in brains from early-stage PD patients, accompanied
by a buildup of a-Syn and other known CMA sub-
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strates, such as myocyte-specific enhancer factor 2D
(MEF2D) and nuclear factor of kappa light polypep-
tide gene enhancer in B-cells inhibitor alpha (IxBa)
[143]. The importance of CMA in processing a-Syn
monomers and dimers, but not pre-fibrillar assem-
blies [111], is somewhat diminished by the finding
that o-Syn steady-state levels were unchanged in
Lamp?2 knockout mice [144]. This however may be
due to developmental adaptations in other PQC com-
ponents, such as the UPS, as outlined above, thus
masking the influence of CMA. Indeed, in vivo down-
regulation of Lamp2a in rats resulted in accumulation
of ubiquitin-positive a-Syn inclusions in the substan-
tia nigra followed by loss of dopaminergic neurons
[145]. Additional evidence for CMA involvement
in a-Syn degradation comes from observations that
distinct PTMs, including oxidation, nitration, and
modification by oxidized dopamine, impair a-Syn
degradation via CMA, resulting in its buildup [111].
Importantly, similar to the rare a-Syn®3%" and a-
Syn®33T mutations [94], dopamine-modified a-Syn
(present in sporadic PD cases) also interferes with
the processing of other CMA substrates [111],
further contributing to the imbalance of protein
homeostasis.

Upon convergence of distinct ALP routes at lyso-
somes, soluble a-Syn assemblies can be degraded
by acidic proteases, such as cathepsin D [146-148].
Another lysosomal enzyme that has attracted much
attention in synucleinopathies is glucocerebrosi-
dase (GCase). While homozygous mutations in the
GCase-encoding gene GBA I cause Gaucher’s disease
[149], heterozygous mutations are a well-established
risk factor for developing PD [150]. Indeed, a-Syn
buildup is observed in several models of GCase defi-
ciency. This occurs upon pharmacological inhibition
of GCase activity in cultured cells [151, 152] and
also in GBAI mutant backgrounds, both in mouse
models overexpressing o-Syn [153-155] and in
PD patient iPS-derived dopaminergic neurons [156,
157]. a-Syn buildup impairs GCase trafficking and
targeting to lysosomes [158, 159]. Conversely, rescue
of GCase activity in mice overexpressing a-Syn®>3T
reduced a-Syn levels and toxicity [155], establish-
ing a pathogenic feedback loop that promotes loss
of GCase function, and a-Syn accumulation, aggre-
gation and, potentially, cell-to-cell transmission of
a-Syn seeds [160, 161]. Altogether, these results
suggest that the upregulation of autophagy without
a simultaneous improvement of lysosomal capacity
might not be a true therapeutic strategy in synucle-
inopathies.

CONCLUDING REMARKS

The topics discussed here paint a complex picture
of cellular strategies engaged in the tight regulation
of a-Syn protein levels, which ultimately determine
its aggregation propensity and associated toxicity.
Even though there are still some fundamental gaps
in our understanding of a-Syn biology, it has become
increasingly clear that the activity of dedicated PQC
components, such as molecular chaperones, the UPS,
and ALP is a crucial line of defense against a-
Syn-mediated pathology. Failure of these systems
(e.g., due to cellular stress, genetic predisposition,
or aging) will influence a-Syn levels and solubility,
eventually leading to disease. However, it is tempt-
ing to envision that novel therapeutic strategies to
prevent, slow down and/or halt progression of synu-
cleinopathies will emerge based on our understanding
of protein homeostasis in general and in particular in
components that prevent initiation of a-Syn protein
aggregation or help clearing them before they affect
neuronal health and synaptic integrity.
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