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Abstract. Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by the
degeneration of nigral dopaminergic (DA) neurons. While over 90% of cases are idiopathic, without a clear etiology, mutations
in many genes have been linked to rare, familial forms of PD. It has been quite challenging to develop effective animal models
of PD that capture salient features of PD. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to generate
patient-specific DA neurons to study PD. Here, we review the methods for the generation of iPSCs and discuss previous
studies using iPSC-derived neurons from monogenic forms of PD. These investigations have revealed several converging
pathways that intersect with the unique vulnerabilities of human nigral DA neurons. With the rapid development in stem cell
biology, it is possible to generate patient-specific neurons that will be increasingly similar to those in the brain of the patient.
Combined with the ability to edit the genome to generate isogenic iPSCs, the generation and analysis of patient-specific
midbrain DA neurons will transform PD research by providing a valuable tool for mechanistic study and drug discovery.
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INTRODUCTION

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder after Alzheimer’s
disease. PD incidence increases with age; its inci-
dence is 1.5% among population over the age of
55, 1.8% among people over the age of 65 and
2.5% among population over the age of 70 [1]. With
increasing longevity worldwide, the societal impact
of PD will become more severe. PD patients typically
suffer from debilitating motor deficits such as tremor,
limb rigidity and slowness of movements (bradykine-
sia) [2]. They often also have non-motor symptoms

*Correspondence to: Jian Feng, PhD, Department of Physiol-
ogy and Biophysics, State University of New York at Buffalo,
Buffalo, NY 14214, USA. E-mail: jianfeng @buffalo.edu.

such as dementia, depression, sleep disorders, con-
stipation, loss of smell, etc. [3]. Neuropathologically,
PD is defined by the progressive loss of dopaminer-
gic (DA) neurons in substantia nigra pars compacta.
Approximately 90% of PD cases are idiopathic, with-
out a clear family history. By studying patients with
rare, familial forms of PD, mutations in a num-
ber of genes have been linked to PD [4]. Among
these genes, mutations of leucine-rich repeat kinase
2 (LRRK2), SNCA (encoding a-synuclein), Vacuo-
lar Protein Sorting 35 (VPS35) have been linked
to autosomal dominant PD, whereas mutations of
PARK? (encoding Parkin), PTEN-induced putative
kinase (PINKI) and PARK7 (encoding DJ-1) cause
autosomal recessive PD [5]. Despite the identifi-
cation of these genetic mutations, the lack of a
clear understanding on how these mutations cause
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PD hampers the development of disease-modifying
therapies.

One major barrier to PD research is the lack of live
brain tissue for invasive studies, such as experiments
that require the destruction of live cells to analyze cel-
lular components. As a substitute, the field has been
relying on animal models of PD. Pharmacological
ablation of nigral DA neurons in animal models of
PD has been very useful in studying the degenera-
tion of nigral DA neurons, but they do not reproduce
the complex phenotypes seen in PD [6, 7]. Genetic
mouse models of PD have significant challenges in
recapitulating the selective degeneration of nigral DA
neurons in PD patients [8]. Patient-specific induced
pluripotent stem cells (iPSCs) represent a very use-
ful and complementary approach to studying PD [9].
Neurons derived from iPSCs of patients with mono-
genic forms of PD can be used to study how mutations
of a single gene generate PD-relevant phenotypes.
Such information, taken together with those gener-
ated from other approaches, such as animal models
and immortalized cell lines, has revealed important
insights on mechanisms of PD pathogenesis. Based
on mechanistic understanding of PD, a drug discov-
ery program can be implemented on patient-specific
neurons to identify agents that are protective against
PD phenotypes. The discussions below explore some
of these possibilities that are now available to PD
research and drug discovery.

Generation of iPSCs

The discovery of induced pluripotency is a land-
mark breakthrough [10] that enables the conversion
of easily accessible types of human somatic cells,
such as skin or blood cells, into iPSCs. Shinya
Yamanaka and colleagues make the initial discov-
ery in 2006 by using retroviral transduction of Oct4,
Sox2, KIf4 and c-myc (known as Yamanaka factors)
into mouse embryonic fibroblasts or tail fibroblasts.
Overexpression of Yamanaka factors reprograms the
epigenome of the cells from that of a fibroblast
to a pluripotent state and generates iPSCs [11].
Subsequently, adult human dermal fibroblasts are
reprogrammed to iPSCs with the same method
in 2007 [12]. These experiments have galvanized
stem cell research by making it possible to use
patient-specific iPSC-derived cells to study human
diseases. Gene expression studies and functional
studies show that variations between different lines
of human embryonic stem cells (hESCs) and varia-
tions between different lines of iPSCs have significant

overlap. For virtually all practical purposes, iPSCs
and hESCs are essentially equivalent [13]. Two main
advantages of iPSCs are that they avoid the destruc-
tion of human embryos and can be generated from
readily available cells from any donors.

Generation of footprint-free iPSCs

Reprogramming methods that utilize retrovirus,
lentivirus, or transposon introduce transgenes into the
genome of the cells being reprogrammed. It carries
the risk of insertional mutations and oncogenic trans-
formation, as both c-Myc and Klf4 are oncogenes.
Several methods have been developed to reprogram
somatic cells to iPSCs without genomic integration,
generating footprint-free iPSCs that have the same
genome as the original source cells. Using non-
integrating episomal plasmids that support prolonged
expression of foreign genes, Yamanaka’s group has
developed a simple and robust method to repro-
gram human somatic cells (e.g., human fibroblasts) to
iPSCs [14]. Similarly, a plasmid of “minicircle” DNA
that contains a single cassette of four reprogram-
ming factors (Oct4, Sox2, Lin28, Nanog) plus a green
fluorescent protein (GFP) reporter gene is used to
reprogram human somatic cells to iPSCs [15]. Modi-
fied RNAs encoding the four Yamanaka factors have
been used to reprogram multiple human cell types to
pluripotency [16]. Another strategy is to use recombi-
nant proteins. For example, iPSCs are generated from
human fibroblasts by directly delivering four repro-
gramming proteins (Oct4, Sox2, Klf4, and c-Myc)
fused with a cell penetrating peptide [17]. Simi-
larly, purified recombinant Oct4 and Sox2 fused with
the cell-penetrant TAT peptide are used to generate
iPSCs for clinical applications [18, 19], as the repro-
gramming factors do not include any oncogenes and
only transiently modify the epigenome of the source
cells. Some integration-free viruses, such as adeno-
associated viruses (AAV) [20] and Sendai Virus
(SeV) [21], are used in iPSC derivation. Both these
viruses will be gradually diluted and degraded with
each cell division. These footprint-free reprogram-
ming methods provide many options for a variety of
applications, depending on the circumstances.

Xeno-free iPSCs

Human iPSCs and hESCs are routinely cultured on
mouse embryonic fibroblast feeders. The presence
of animal-derived components, which may contain
pathogens found in animals, pose unacceptable risks
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for clinical applications such as transplantation of
iPSC-derived cells. Much effort has been directed at
establishing xeno-free conditions for the derivation
and culture of human iPSCs [22, 23]. Cell culture
plates can be coated with a xeno-free medium con-
taining high concentrations of basic fibroblast growth
factor and fibronectin [24]. Xeno-free synthetic cul-
ture plates are used in the production of clinical grade
iPSCs and their subsequent differentiation to retina
cells [25]. Combined with vitronectin as an extracel-
lular matrix, a formulated medium with inhibitors of
protein kinase C and histone deacetylases maintains
long-term culture of xeno-free iPSCs [26]. Okano’s
group establishes a procedure to obtain xeno-free and
self-renewing neuroepithelial-like stem cells from
feeder-free human iPSCs using a xeno-free medium.
The neuroepithelial-like stem cells are cultured for
long periods in the medium and can be cryopre-
served using a defined serum-free freezing reagent
for massive cell banking [27]. The dual use of E8
medium and vitronectin-coated culture surfaces can
also be employed to derive and culture xeno-free
human iPSCs [28]. A detailed protocol has been pub-
lished on how to produce a consistent E§ medium
for the derivation, maintenance, expansion and
cryopreservation of iPSCs [29].

MODELING PD USING IPSCS

The past 20 years witness remarkable discoveries
of the genetic influences on PD. Inherited mutations
that cause familial PD have been identified in over 18
genes, collectively accounting for about 10% of all
PD patients [30, 31]. The rest of PD cases are idio-
pathic, with unclear etiology. Somatic cells (usually
skin fibroblasts) from PD patients are reprogrammed
to iPSCs, which are differentiated to midbrain DA
neurons. Using iPSC-derived DA neurons from PD
patients with mutations in a certain gene, many inves-
tigators are uncovering mechanistic insights on how
mutations of these genes are linked to PD. Here, we
review the generation and analysis of patient-specific
midbrain DA neurons as models of PD (see Table 1
for summary), with a brief discussion on the use of
patient-specific glial cells.

a-synuclein

a-synuclein, encoded by SNCA gene, is a synaptic
vesicle protein that has been shown to negatively reg-
ulate dopamine and norepinephrine release. Neurons
from mice lacking a-synuclein are able to recover

quicker (i.e., release more catecholamines) from
repetitive stimulation compared to wild-type neu-
rons [32-34]. This could be related to a-synuclein’s
role as a potent inhibitor of phospholipase D2,
which converts phosphatidylcholine to phosphatidic
acid and diacyglycerol, both of which positively
regulate neurotransmitter release [32, 35]. While a-
synuclein has been shown to be a chaperone in
vitro [36]; paradoxically, it is a main component of
Lewy bodies—intracellular protein aggregates found
in brains of patients with PD and other neurodegen-
erative disorders [37]. More in-depth discussions of
the function of a-synuclein can be found in many
excellent reviews [38, 39].

Missense mutations (A30P [40-42], A53E [43,
44], AS3T [45], A53V [44], E46K [46], G51D
[47-49], H50Q [50]) and copy number variations
(duplication or triplication) of SNCA have been
reported in PD patients [51, 52]. Genome-wide
association studies identify SNCA as one of the
genes associated with idiopathic PD, suggesting that
changes in the expression level of SNCA may con-
tribute to idiopathic PD [53]. Missense mutations
of a-synuclein or its overexpression by copy num-
ber variations cause misfolding of the protein and its
aggregation in Lewy bodies [37].

In DA neurons differentiated from iPSCs of PD
patients with SNCA triplication mutation, the level of
a-synuclein protein is twice the amount as that in neu-
rons derived from normal iPSCs [54]. Anindependent
study using iPSCs with SNCA triplication confirms
the increased expression level of a-synuclein and
demonstrates increased oxidative stress in these DA
neurons [55]. Neurons with SNCA triplication dis-
play normal cellular and mitochondrial morphology
but substantial changes in growth, viability, cellular
energy metabolism and stress resistance, especially
when challenged with starvation or toxins [56].
Another study finds that SNCA triplication in iPSC-
derived neural precursor cells leads to a reduced
capacity to differentiate into DA neurons, decreased
neurite outgrowth and lower neuronal activity com-
pared to normal neurons. The delayed maturation
phenotype is accompanied by a significant reduction
in the mRNA level of nuclear receptor related 1 pro-
tein (NURRI1), G-protein-regulated inward-rectifier
potassium channel 2 (GIRK-2) and tyrosine hydrox-
ylase (TH) [57].

To remove potentially confounding influence of
different genetic backgrounds when comparing PD
patients and normal subjects, isogenic pairs of
iPSCs with or without the AS3T point mutation of
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Phenotypes in iPSCs-derived neurons from monogenic forms of PD

Protein/Gene Mutation Phenotype
a-synuclein/ SNCA triplication [54, 55] e Elevated a-synuclein levels
SNCA SNCA triplication [56] o Elevated a-synuclein levels
e Decreased neuronal activity
e Decreased mRNA expression of NURR1, GIRK-2, TH
e Reduced neurite outgrowth
o Increased autophagic flux when stressed with chloroquine
AS53T [59] o Nitrosative stress and endoplasmic reticulum stress
AS53T [60] e Aggregation of a-synuclein

o Increased basal levels of reactive oxygen and nitrogen species
o Increased S-nitrosylation of MEF2C (anti-apoptotic transcription factor) upon toxin

exposure

LRRK2/LRRK2  G2019S [73]

e Elevated a-synuclein levels

o Increased susceptibility to stress agents: H,O,, 6-OHDA, and MG-132

G2019S [74]

o Increased phosphorylation and activation of ERK1/2

G2019S [75, 76]

o Reduced amount of neurites and neurite aborization

G2019S [77, 78]

o Increased mitochondrial DNA damage and delayed initiation of mitophagy

Parkin/PARK?2 Deletions of exon 3 and/or e Increased expression of MAOA and MAOB
exon 5 [91, 94, 96] e Increased spontaneous dopamine release and decreased dopamine reuptake
o Increased bursting of spontaneous excitatory postsynaptic currents
e Reduced neurite length and complexity
Deletion of exons 2—4 or o Elevated a-synuclein levels
exons 6-7 [92] e Abnormal mitochondrial morphology and/or function
V324A [93]
Deletion of exon 3 or exons
3-4[99]
R275W or R42P [99, 121]
PINKI1/PINKI  Q456Stop [93] e Aggregation of a-synuclein
e Abnormal mitochondrial morphology
e Elevated cytosolic dopamine levels
V170G [106, 108] e Impaired stress-induced recruitment of parkin to mitochondria
Q456Stop [108]
Q456Stop [109] e Decreased mitochondrial membrane potential and ATP content
DJ-1/PARK7 E64D [114] o Elevated a-synuclein levels

o Increased dopamine oxidation and neuromelanin-like pigmented aggregates
e Decreased activity of glucocerebrosidase

Common phenotypes caused by mutations in different genes are grouped in colors with the same color scheme in Fig. 1. References are

cited in square brackets.

a-synuclein are generated using zinc-finger nuclease-
mediated genomic editing to introduce the mutation
to normal iPSCs or to correct the mutation in patient
iPSCs [58]. The correction of AS3T mutation reverses
nitrosative stress and endoplasmic reticulum stress
in iPSC-derived neurons [59]. In the presence of
AS53T mutation, increased S-nitrosylation of the tran-
scription factor MEF2C affects the transcriptional
regulation of mitochondrial functions by PGCla, a
master regulator of mitochondrial biogenesis. Acti-
vation of this pathway by A53T mutation increases
apoptotic cell death in iPSC-derived midbrain DA
neurons [60]. Blocking the pathway by isoxazole,
a small-molecule compound identified in a high-
throughput screen using these isogenic iPSC-derived

neurons, protects against the toxicity of environmen-
tal PD toxins that target mitochondria [60].

In addition to mutations of SNCA, isogenic iPSCs
have been generated to study the impact of vari-
ous single nucleotide polymorphisms identified in
genome-wide association studies of idiopathic PD
patients. Using CRISPR/Cas9-mediated genomic
editing, isogenic pairs of iPSCs with different SNPs
are generated. This strategy enables the identification
of a distal enhancer in intron 4 of the human SNCA
gene. A G allele in an SNP in this enhancer decreases
the recruitment of brain-specific transcription factors
EMX2 and NKX6-1. This increases the interaction
of the enhancer with the promoter of SNCA and thus
elevates the expression level of SNCA [61].
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Fig. 1. Five PD-linked genes converge on three pathways to pro-
tect against vulnerabilities of nigral DA neurons. Proteins encoded
by five PD-linked genes (a-synuclein, LRRK?2, parkin, PINK1 and
DJ-1) limit oxidative stress stemming from dopamine metabolism
and mitochondrial dysfunction (Pathway 1). a-synuclein, LRRK2
and parkin maintain the length and complexity of neuronal pro-
cesses, e.g., through microtubule stabilization (Pathway 2). DJ-1,
PINK1, a-synuclein, LRRK2 and parkin normally function to
prevent the accumulation of a-synuclein (Pathway 3). DOPAL,
3,4-Dihydroxyphenylacetaldehyde; H,O,, hydrogen peroxide.

Leucine-rich repeat kinase 2 (LRRK2)

The LRRK2 gene encodes a protein with the
same name that possesses both kinase and GTPase
activities surrounded by protein-interacting domains.
Being a multi-domain protein, it is perhaps unsurpris-
ing for LRRK?2 to have pleiotropic roles in nature.
For instance, LRRK?2 has been identified to influ-
ence outgrowth of neurons [62] possibly through
its phosphorylation of ERM proteins [63] and tubu-
lin [64]. Neurite growth may be associated with the
role of LRRK2 in macroautophagy [65]. Further-
more, through its interaction with Rab5b and Rab7,
LRRK?2 has been shown to modulate synaptic vesi-
cle endocytosis and endocytic membrane trafficking,
respectively [66, 67]. The functions of LRRK2 are
covered in many excellent reviews [68, 69].

Missense mutations in the LRRK2 gene are the
most common genetic cause of PD. The LRRK2
G2019S mutation (¢.G6055>A) is found in 4% of
familial cases and 1% of sporadic cases worldwide.
Penetrance of LRRK2 mutations is age-dependent
and estimated to be 24-26% in two large scale
studies [70, 71]. The most frequent LRRK2 muta-
tion G2019S has a very strong founder effect [72].
In iPSC-derived DA neurons from PD patients with
LRRK?2 G2019S mutation, there is increased expres-
sion of key oxidative stress response genes and

a-synuclein. Consequently, DA neurons are more
sensitive to caspase-3 activation [73]. The pheno-
type on increased oxidative stress is confirmed in
an independent study [74]. G2019S mutation signifi-
cantly increases the phosphorylation and activation of
extracellular signal regulated kinase 1/2 (ERK1/2) in
iPSC-derived DA neurons. Application of the MEK
inhibitor PD0325901, which blocks ERK activation,
rescues iPSC-derived neurons from degeneration and
reduces cell death under oxidative stress [74]. The
phenotype on increased expression of a-synuclein
[73]1is also confirmed in an independent study, which
shows that knockdown of a-synuclein reduces the
toxicity of LRRK2 G2019S mutation in iPSC-derived
DA neurons [75]. Two studies independently show
that LRRK2 G2019S mutation significantly reduces
the numbers of neurites and neurite arborization [76],
as well as progressive degeneration of neurites when
iPSC-derived neurons mature [75]. LRRK2 G2019S
mutation increases mitochondrial DNA damage [77]
and delays the initiation of mitophagy by affecting the
pausing of damaged mitochondria being transported
on microtubules [78].

PARK2

The PARK?2 gene encodes parkin [79], an E3 lig-
ase [80] that ubiquitinates a variety of substrates [81].
Mutations of parkin are the most frequent cause of
recessively inherited PD [82]. PD patients with parkin
mutations have early onset of PD symptoms; they
account for almost 50% of all cases before the age of
45 [83]. In contrast to the situation in PD patients with
parkin mutations, parkin knockout mice [84, 85] or
rats [86] do not exhibit any significant degeneration of
nigral DA neurons or PD-like locomotor symptoms.
Our earlier studies in cell lines and neuronal cul-
tures show that parkin suppresses dopamine-induced
oxidative stress [87] by limiting the transcription of
monoamine oxidases (MAO) A and B [88] because
parkin ubiquitinates and degrades estrogen-related
receptors [89], a family of nuclear receptors that
regulate the transcription of many nuclear-encoded
mitochondrial proteins such as MAOs [90]. In iPSC-
derived midbrain DA neurons that we generate
from PD patients with parkin mutations, there is
a marked increase of dopamine-induced oxidative
stress, as the expression of MAOA and MAOB is
significantly elevated [91]. Independent studies have
confirmed increased oxidative stress in iPSC-derived
neurons with parkin mutations [92, 93]. We also
find that the precision of dopaminergic transmission
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is significantly disrupted by increased spontaneous
DA release and decreased DA reuptake [91]. Con-
sistent with this change in neural transmission,
dopamine induces oscillatory neuronal activities in
iPSC-derived neurons from PD patients with parkin
mutations but not from normal subjects [94]. This
phenotype mirrors widespread rhythmic bursting of
neuronal activities in the basal ganglia of PD patients
but not of normal subjects or of PD patients on
dopaminergic drugs [95]. In iPSC-derived neurons,
parkin mutations reduce the length and complexity
of neuronal processes, particularly those of midbrain
DA neurons [96]. It is caused by a marked decrease
of microtubule stability in neurons with parkin muta-
tions, as the phenotype can be rescued by taxol or
overexpression of parkin and can be mimicked in
normal neurons treated with colchicine [96]. An inde-
pendent study confirms that parkin mutations reduce
microtubule stability in iPSC-derived neurons [97].

With rare exceptions, most PD patients with parkin
mutations do not have Lewy bodies [98]. In iPSC-
derived neurons from two parkin patients, increased
accumulation of a-synuclein is seen in one patient
with Lewy bodies, but not in the other patient without
Lewy bodies [92]. In our study, there is no significant
difference in a-synuclein protein levels in iPSC-
derived midbrain DA neurons from two PD patients
with parkin mutations and two normal subjects [91].
Increased levels of a-synuclein protein are observed
in two other studies using iPSC-derived neurons from
PD patients with parkin mutations [93, 99].

Many studies using transfected parkin in cell lines
have shown that parkin is recruited to mitochondria to
ubiquitinate a variety of substrates for the induction
of mitophagy [100, 101]. The recruitment of endoge-
nous parkin to mitochondria is not robustly seen in
cell lines [102, 103], mice [104, 105] or iPSC-derived
human neurons [91, 106]. Although these issues have
been extensively reviewed [101-103], the large body
of literature on the role of parkin in mitophagy and
the significant interest in the field have led to several
independent studies of this issue in iPSC-derived neu-
rons with parkin mutations. Significantly increased
percentages of iPSC-derived neurons with abnor-
mal mitochondria (usually with elongated shape and
larger volume) are observed in three separate studies
[92, 93, 99]. However, two different studies using
gPCR show that there is no significant change in
mitochondria DNA copy number [91, 92]. It seems
that parkin mutations in iPSC-derived neurons may
alter mitochondrial morphology in a portion of the
cells, particularly TH™ neurons [99], but the modest

changes may be balanced by robust biogenesis of
mitochondria.

PINK1

Phosphatase and tensin homolog (PTEN)-induced
Putative Kinase 1 (PINK1) is a mitochondria-targeted
Ser/Thr protein kinase. Under normal condition,
PINK1 is quickly cleaved by proteases on mitochon-
drial outer membrane and is thus released to cytosol
for degradation, which limits the steady state level of
PINK1 [107]. Insults that depolarize mitochondrial
inner membrane arrest the mitochondrial transport of
PINK1, which triggers the phosphorylation of parkin
on the ubiquitin-like domain and activates the E3
ligase activity of parkin. Mitochondrially recruited
parkin ubiquitinates many mitochondrial outer mem-
brane proteins and induces autophagic clearance of
depolarized mitochondria [101].

In two separate studies using the same line
of iPSC-derived neurons from PD patients with
PINK1 mutations, valinomycin-induced mitochon-
drial recruitment of exogenously expressed parkin
is abrogated by PINK1 mutations [106, 108]. Loss
of PINKI1 abolishes the degradation of mitochon-
drial proteins only in fibroblasts, but not in isogenic
iPSC-derived neurons, which do not exhibit signif-
icant mitophagy even with parkin overexpression
and valinomycin treatment for 16 hours [106]. Mid-
brain DA neurons derived from iPSCs of PD patients
with PINK1 mutations exhibit a-synuclein accu-
mulation, abnormal mitochondrial morphology and
increased cytosolic dopamine levels [93]. In iPSC-
derived neurons, PINK1 mutations reduce complex I
activity, which leads to a reduction in mitochondrial
membrane potential. Phosphorylation of Ser250 in
NdufA10 regulates the activity of ubiquinone reduc-
tase in mitochondrial complex I. A phosphomimetic
mutant of NdufA10 reverses the deficiencies in com-
plex I activity and ATP synthesis in iPSC-derived
neurons with PINK1 mutations [109]. Consistent
with this, coenzyme Q10 rescues the cellular vul-
nerability associated with mitochondrial dysfunction
in iPSC-derived neurons from PD patients with
PINK1 mutations [110]. In a separate study, increased
expression of LRRK2 is observed in iPSC-derived
neurons with PINK1 mutations [111].

DJ-1

Mutations of DJ-1 cause early-onset recessive PD
[112]. Human DJ-1 is a small protein with 189
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amino acid residues, three of which are cysteines.
It normally forms a homodimer that exhibits anti-
oxidant activities [113]. In iPSC-derived midbrain
DA neurons from PD patients with homozygous DJ-
1 mutations, there are increased dopamine oxidation
and neuromelanin-like pigmented aggregates [114].
Increased oxidative stress stemming from dopamine
metabolism triggers mitochondrial oxidative stress,
both of which are significantly attenuated by blocking
dopamine synthesis [114]. Dopamine-induced oxida-
tive stress inactivates glucocerebrosidase, which
inhibits lysosomal functions and leads to increased
expression of a-synuclein [114]. The phenotypes are
confirmed in an isogenic pair of iPSC-derived mid-
brain DA neurons with or without DJ-1 mutations.
More interestingly, iPSC-derived normal human mid-
brain DA neurons have significantly higher level of
dopamine than iPSC-derived wild-type mouse mid-
brain DA neurons. Increasing dopamine level by
L-DOPA treatment dramatically elevates dopamine
oxidation in iPSC-derived midbrain DA neurons from
DJ-1 knockout mice but not neurons derived from
wild-type mice [114]. Thus, DJ-1 mutations reveal
the vulnerability of midbrain DA neurons in handling
dopamine-induced oxidative stress, which is more
severe in human than in mouse.

Risk alleles

The majority of PD cases do not have any family
history and are likely influenced by both environ-
mental and genetic susceptibility factors. With an
odds ratio around 5, mutations in the gene encoding
glucocerebrosidase (GBA) are currently recognized
to be the greatest risk factor for PD [2, 115].
GBA mutations decrease the enzymatic activity of
glucocerebrosidase, leading to the accumulation of
glucosylceramide and glucosylsphingosine in lyso-
somes and the potential development of symptoms
for Gaucher’s disease and PD [115]. In iPSC-derived
DA neurons from PD patients carrying mutated
GBA, protein levels and enzymatic activity of glu-
cocerebrosidase are significantly lower, concomitant
with higher levels of a-synuclein and glucosylce-
ramide compared to isogenic controls [116]. These
GBA mutant neurons also display abnormalities
towards the autophagic/lysosomal pathway and cal-
cium homeostasis [116]. The association between
elevated a-synuclein and diminished glucocerebrosi-
dase activity with GBA mutations has also been
reported in a twin study through analyzing their
iPSC-derived DA neurons [117]. The monozygotic

twins are discordant for PD but both heterozygous
for a mutated GBA. Intriguingly, neurons derived
from the affected twin display lower dopamine level
and upregulated MAOB expression, compared to the
unaffected twin. The study highlights the interplay
between genetic and environmental factors in shaping
phenotypes.

With the rise of genome-wide association stud-
ies, variants in loci including SNCA and LRKK?2
have been confirmed, while others—MAPT, VPS13C,
BSTI1, DDGRKI and many more—have been identi-
fied as novel risk factors for PD development [2].
To date, iPSC technology has been applied to only
a few of these new targets. For example, iPSC-
derived neurons from patients with MAPT mutations
show irregularities in the expression of tau proteins,
tau hyperphosphorylation and mitochondrial axonal
transport compared to controls [118]. Axonal degen-
eration has also been found in iPSC-derived neurons
carrying mutated MAPT. Isogenic repair of the muta-
tion restores axonal morphology [119].

Utilizing iPSC-derived glial cells in modeling PD

Whether glial cells instigate or react to neuronal
death remains to be settled. However, many lines of
evidence have implicated the involvement of glia in
PD. Neuroinflammation observed in PD patients has
been mainly associated with activation of microglial
cells, which releases inflammatory cytokines, such as
IL-183, IL-6 and TNF-a (tumor necrosis factor-a). In
particular, TNF-a is known to trigger neuronal death
[120]. Elevated levels of TNF-a have been found
in the brain and cerebrospinal fluid of PD patients
[121]. Activated microglial cells may also inflict
neuronal damage by producing reactive oxygen and
nitrogen species [122]. Paradoxically, astrocytes and
microglial cells secrete growth factors, such as BDNF
(brain-derived neurotrophic factor) and GDNF (glial
cell line-derived neurotrophic factor), that are criti-
cal for neuronal survival [122, 123]. Supplementing
GDNF to MPTP-treated primate models of PD signif-
icantly increases levels of DA neurons and improves
PD motor symptoms [124, 125]; however, the thera-
peutic effect of BDNF for PD patients remains to be
established [126].

As the complex relationship between glia and neu-
rons is disrupted in PD, co-culturing glial cells and
neurons both derived from iPSCs of PD patients
should therefore be another platform to advance
insights into the multifactorial pathogenesis of PD.
For example, a-synuclein has been shown to not only
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impact neurons but also directly activate and induce
TNF-a release from primary microglial cultures
[127]. In transgenic mice overexpressing wild-type
a-synuclein, significantly more activated microglial
are observed in the substantia nigra compared to
age-matched control mice [127]. Moreover, LRKK?2
is known to be expressed in microglial. Activat-
ing microglial from transgenic mice overexpressing
PD-linked LRRK2-R1441G mutation leads to more
secretion of inflammatory cytokines compared to
those from activated wild-type microglial [128].

Protocols to differentiate hPSCs (human pluripo-
tent stem cells) to astrocytes have been published
since the first neural differentiation method in 2001
using FGF-2 (fibroblast growth factor 2) [129]. For
the majority, embryoid bodies are utilized as start-
ing point. Through various growth factor cocktails,
embryoid bodies are differentiated to neuroectoder-
mal derivatives, neural progenitor cells, and finally
astrocytes [130]. Since microglial are of mesodermal
lineage and distinct from astrocytes, IL-34 and CSF1
(colony-stimulating factor 1) have been used to dif-
ferentiate embryoid bodies into cell lawns resembling
endothelial cells (i.e., cystic embryoid bodies) to later
become mature microglia-like cells [131]. Applica-
tions of glial cell differentiation protocols have shed
light into the pathogenesis of Alzheimer’s disease
[132] and Huntington’s disease [133]. Similar studies
on PD will undoubtedly improve our understanding
of the complex interactions between glia and neurons
in PD pathogenesis.

CONCLUSIONS

The discovery of induced pluripotent stem cells
has transformed biomedical research by enabling
researchers to use the human model system to study
diseases. It has been particularly fruitful for PD,
as genetic animal models of PD have significant
challenges in recapitulating the critical features of
PD—loss of nigral DA neurons and the ensuing loco-
motor phenotypes [8]. Rapid development in stem
cell technology will make the system more useful.
One current issue in using iPSC-derived neurons is
its immaturity [134, 135], which may not adequately
reflect age-related disorders such as PD. The use of
progerin [136] and astrocytes [137] allows improved
modeling of age-related changes in iPSC-derived
neurons. Another approach is to transplant human
iPSC-derived neurons in rat brains [138] or even
brains of non-human primates [139], which would

enable more effective modeling of age-dependent
pathologies. The long-term engraftment of hPSC-
derived brain organoids in mouse brains [140] offers
another novel solution that provides physiological
environment in vivo to promote the maturation and
function of transplanted human neurons.

From analyzing phenotypes found in iPSC-derived
neurons from monogenic forms of PD, several
converging pathways appear to intersect with the
unique vulnerabilities of human nigral DA neurons
(Fig. 1). First, increased oxidative stress is found in
iPSC-derived DA neurons from PD patients with a-
synuclein [55, 59], LRRK?2 [73, 74], parkin [91-93],
PINK1 [93] or DJ-1 mutations [114]. Mitochon-
dria are the most significant source of oxidative
stress, as they handle the catabolic breakdown of
dopamine. Monoamine oxidases, which are anchored
on mitochondrial outer membrane [141], catalyze
the oxidative deamination of cytosolic dopamine,
a reaction that produces H,O, and its derivative
free radicals. Dopamine-induced oxidative stress is
increased by elevated expression of monoamine
oxidases when parkin is mutated [91]. Mutations
of DJ-1 in human midbrain DA neurons increase
dopamine-induced oxidative stress, which triggers
mitochondrial dysfunction downstream [114]. Depo-
larization of mitochondrial inner membrane potential
increases oxidative stress as electrons normally flow-
ing through the mitochondrial respiratory chain
are shunted to O, in the cell. Ca’*-dependent
autonomous pacemaking [142] and lack of Ca’*t
buffer proteins [143] exacerbate the stress on mito-
chondria because they serve as a major store of
intracellular Ca?t [144]. A significant decrease of
mitochondrial inner membrane potential triggers the
stabilization of PINK1, which phosphorylates parkin
to activate and recruit it to mitochondria, where
parkin ubiquitinates many mitochondrial proteins to
trigger autophagy [101]. Relatively modest morpho-
logical or functional changes in mitochondria have
been observed in iPSC-derived neurons with parkin
mutations [92, 93, 99] or PINK1 mutations [109].
Several studies show that parkin mutations [91, 92]
or PINK1 mutations [106, 108] do not grossly affect
mitochondria copy number, or even mitophagy [106].
The different results between iPSC-derived human
midbrain DA neurons and immortalized cell lines
are not easy to reconcile. One possibility could be
that human nigral DA neurons normally increase
mitochondrial DNA (mtDNA) copy numbers with
age to maintain the amount of wild-type mtDNA
despite age-dependent increase of deletion mutations
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in mtDNA [145]. Thus, strong mitochondrial bio-
genesis in human DA neurons may balance out the
modest defects in mitophagy. Further studies are
needed to address the role of mitochondria in the
selective vulnerability of nigral DA neurons, which
paradoxically have significantly lower mitochondrial
mass than VTA DA neurons and other non-DA neu-
rons [146] and are quite resistant to mutations of
mtDNA [147].

Second, reduced neurite length and complexity are
found in iPSC-derived neurons from PD patients with
mutations in a-synuclein [57], LRRK2 [75, 76], or
parkin [96, 97]. This phenotype critically reflects a
key vulnerability of nigral DA neurons, which have
massive axon arbors. The total length of axon arbors
of asingle rat nigral DA neuron averages 45 cm [148].
It is estimated that a single human nigral DA neu-
ron may have axon arbors with a total length of
4.6m [149], which may make these neurons much
more vulnerable than other types of neurons to micro-
tubule disruption [150], particularly in human [151].
Microtubules not only maintain the morphology and
structural integrity of neuronal processes but also
serve an obligatory function in the transportation
of vesicles, including mitochondria. Abnormal mito-
chondrial transport has been reported in iPSC-derived
neurons from PD patients with LRRK2 G2019S
mutation [78].

Third, increased expression of a-synuclein has
been observed in iPSC-derived neurons from PD
patients with mutations in «-synuclein [54, 55],
LRRK?2 [73, 75], parkin [93, 99], PINK1 [93] or
DJ-1 [114]. The significant role of a-synuclein in
PD has been well documented [152]. Debates on
whether a-synuclein is transmitted between neurons
and whether such transmission causes the selec-
tive degeneration of nigral DA neurons in PD [153,
154] make it very important to generate patient-
specific midbrain DA neurons to address these issues.
It remains unclear how a-synuclein accumulation
causes the selective loss of nigral DA neurons.
One possibility is that a-synuclein increases cytoso-
lic dopamine concentration more significantly in
nigral DA neurons than in VTA DA neurons [155].
Dopamine-induced oxidative stress, in conjunction
with mitochondrial oxidative stress downstream
of a-synuclein overexpression, may impact nigral
DA neurons much more than other types of
cells [156].

These three pathways intersect with the unique
vulnerabilities of human nigral DA neurons, which
produce a large amount of dopamine for controlled

release in their massive axon arbors. The need for
nigral DA neurons to release an oxidation-prone
neurotransmitter in a continuous, autonomous pace-
making manner underlies the vulnerabilities that
are revealed by mutations of PD-linked genes.
Mechanism-based drug development programs can
be implemented to mimic the normal functions of
these genes in suppressing oxidative stress, maintain-
ing neuronal morphology and limiting a-synuclein
expression. Patient-specific iPSC-derived neurons
would provide an excellent platform for screen-
ing compounds that block the deleterious effects of
these mutations. The observation that five different
monogenic causes of PD converge on three common
pathways suggests that it is possible to use iPSC-
derived neurons with different monogenic etiologies
to cross-validate hits identified from screens. Isogenic
pairs of iPSC-derived neurons can be generated by
introducing PD-linked mutations to normal iPSCs or
by repairing mutations in patient iPSCs. Such iso-
genic pairs of iPSC-derived midbrain DA neurons
would be an even better platform for screening com-
pounds, as they remove the potentially confounding
influence of different genetic backgrounds between
normal subjects and PD patients. Furthermore, iPSC-
derived midbrain DA neurons from idiopathic PD
patients can be used to validate the hits and generate
valuable information on how well the findings can be
extrapolated to idiopathic PD. This is highly useful
and unique to the human model system, where effi-
cacy can be established in patient-specific neurons in
a dish to estimate their chance of success in patients.
In addition, safety studies can be done on other types
of cells (e.g., liver cells or kidney cells) differentiated
from the same set of iPSCs. There is an increas-
ing trend for pharmaceutical companies to transition
their drug discovery programs to the human model
system as embodied in iPSCs. The stage is set for
more mechanistic study and drug discovery research
on PD based on patient-specific iPSC-derived cells.
The future is indeed much brighter with the advent
of this transformative technology.
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