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Abstract. Parkinson’s disease (PD) is an adult onset neurodegenerative disease that is characterized by selective degeneration
of neurons primarily in the substantia nigra. At present, the pathogenesis of PD is incompletely understood and there are no
neuroprotective treatments available. Accurate animal models of PD provide the opportunity to elucidate disease mechanisms
and identify therapeutic targets. This review focuses on C. elegans models of PD, including both genetic and toxicant models.
This microscopic worm offers several advantages for the study of PD including ease of genetic manipulation, ability to
complete experiments rapidly, low cost, and ability to perform large scale screens for disease modifiers. A number of C.
elegans models of PD have been generated including transgenic worms that express �-synuclein or LRRK2, and worms
with deletions in PRKN/pdr-1, PINK1/pink-1, DJ-1/djr-1.1/djr-1.2 and ATP13A2/catp-6. These worms have been shown to
exhibit multiple phenotypic deficits including the loss of dopamine neurons, disruption of dopamine-dependent behaviors,
increased sensitivity to stress, age-dependent aggregation, and deficits in movement. As a result, these phenotypes can be
used as outcome measures to gain insight into disease pathogenesis and to identify disease modifiers. In this way, C. elegans
can be used as an experimental tool to elucidate mechanisms involved in PD and to find novel therapeutic targets that can
subsequently be validated in other models.

Keywords: Parkinson’s disease, C. elegans, animal model, genetics, neurodegeneration, �-synuclein, parkin, PINK1, DJ-1,
ATP13A2

INTRODUCTION

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder affecting more than
10 million patients worldwide [1]. PD is a neuro-
logical movement disorder that is characterized by
impaired balance, bradykinesia, rigidity, and the pres-
ence of resting tremors. In addition to deficits in
movement, PD patients can also exhibit non-motor
symptoms including depression, apathy, anxiety,
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dementia, constipation, disrupted sleep, and oth-
ers. While rare cases of early onset PD have been
described, PD is a disease of advanced age. The preva-
lence of PD is 0.3% among all ages, but increases to
more than 3% in individuals over 80 years of age [2].

In the brain, PD patients exhibit progressive degen-
eration of dopaminergic neurons in the substantia
nigra, although many other regions of the brain are
also affected. Neuronal loss within the substantia
nigra decreases dopamine signaling to the striatum
thereby contributing to the motor symptoms of PD.
At the cellular level, the disease is characterized
by intracellular aggregation of a protein called �-
synuclein into Lewy bodies, which are observed
in the brains of patients with PD [3]. There are
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currently no neuroprotective treatments available for
PD and the pathogenesis of the disease is incom-
pletely understood.

While PD was traditionally thought of as an
entirely idiopathic disorder, work in the past two
decades has demonstrated that genetics make a sig-
nificant contribution to the disease. Currently, it is
estimated that 15% of all PD cases are familial.
The first gene that was shown to cause monogenic
PD is SNCA/PARK1, which encodes �-synuclein [4].
There are now 23 chromosomal regions that are
defined as PARK to signify their connection to PD.
These regions are numbered chronologically by the
order of their discovery, either by linkage analysis
of families or by genome wide association studies
in large populations. Of the genes definitively linked
to heritable PD, mutations in SNCA/PARK1/PARK4
and LRRK2/PARK8 [5, 6] are known to be the
cause of autosomal-dominant PD, while mutations in
PRKN/PARK2 [7], PINK1/PARK6 [8], DJ-1/PARK7
[9], and ATP13A2/PARK9 [10] are responsible for
autosomal-recessive forms of disease. While mono-
genic forms of PD are relatively rare, the etiology of
disease for the most common forms of genetic PD
share many similarities with sporadic cases, suggest-
ing that similar cellular pathways are involved in both
cases. Thus, with each new gene that is implicated in
PD comes the opportunity to learn more about the
cellular pathways involved in disease pathogenesis.

C. ELEGANS AS AN ANIMAL MODEL OF
PARKINSON’S DISEASE

The discovery of genes that cause monogenic
forms of PD allowed for the generation of genetic
models of PD in many different species, includ-
ing C. elegans. Studying the biology of a particular
gene implicated in PD in animal models can provide
insight into the molecular pathways involved in the
human disease. Animal models can also be used to
identify biomarkers of disease and to test potential
treatments. While models of PD have been generated
in multiple species from single cellular yeast to mon-
keys, this review will focus on C. elegans models
of PD.

The nematode C. elegans is a microscopic round-
worm that grows to be 1-2 mm in length as adults.
After hatching, these animals develop to adult-
hood in just 2 days under laboratory conditions at
20◦C. Once these worms reach adulthood, their aver-
age lifespan is 2-3 weeks, making them useful for

studies of aging. C. elegans exist primarily as a
self-fertilizing hermaphrodite, in which all of the
progeny are genetically identical. Males exist as a
small fraction of the population (<0.1%) but their
numbers can be greatly increased in the laboratory
to facilitate genetic crosses. This animal is geneti-
cally tractable with robust tools for spatiotemporal
control of gene expression and a highly annotated
genome. Because C. elegans are transparent, fluores-
cent proteins can be readily visualized in a live worm
to measure levels and location of gene products of
interest. These animals have been utilized to address
a variety of cellular and genetic questions [11] and
specifically to gain insight into neurodegenerative
disease [12].

C. elegans have a well-defined, invariant ner-
vous system with exactly 302 neurons in each
hermaphrodite out of a total of 959 cells in the
organism. Unlike any other organism, all of the
connections of all 302 neurons in C. elegans have
been mapped using electron micrographs thereby
providing the most complete nervous system con-
nectome of any organism [13]. Importantly, these
neurons encode complex behaviors, which, in sev-
eral cases, have been described at the level of
a single neuron [14–17]. Such behaviors include
chemotaxis, thermotaxis, touch response, mating rit-
uals, social and individual feeding, and scavenging
as well as associative and non-associative learning
[18–22].

EXPERIMENTAL TOOLS FOR C.
ELEGANS

Genetics

One of the greatest advantages of C. elegans as
a model organism is the ease of genetic manipula-
tion and the wide array of genetic tools available.
Transgenic animals can be easily generated in less
than a month through microinjection or microparticle
bombardment. Deletion and point mutants are readily
available from the Caenorhabditis Genetics Center,
which is a central repository for C. elegans mutant
strains that currently has over 20,000 strains available.
Importantly, generating double mutants to examine
the effect of one gene on another is greatly facili-
tated by the fact that the worms are hermaphrodites
because only one cross is required to combine two
mutations in one worm, which can then be selfed
to generate worms homozygous for both muta-
tions. Once a homozygous double mutant animal is
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produced, each hermaphrodite will produce up to 300
offspring.

C. elegans have 6 chromosomes and approximately
20,000 genes. The C. elegans genome was the first
genome of a multi-cellular organism to be com-
pletely sequenced. About 40–50% of protein coding
genes have orthologs in humans and it is estimated
that 60–80% of human disease causing genes have
orthologs in C. elegans [23–25]. Importantly for the
study of PD, C. elegans has orthologs to many of
the genes implicated in PD including LRRK2/lrk-1,
PINK1/pink-1, PRKN/pdr-1, DJ-1/djr-1.1/djr-1.2,
and ATP13A2/catp-6.

RNA interference

The precision and adaptability of RNAi in C. ele-
gans makes it a particularly powerful tool. Unlike
most animals, in C. elegans RNAi can be adminis-
tered by simply feeding worms bacteria engineered
to express a double stranded RNA targeting a gene of
interest. Remarkably, in these animals, RNAi is her-
itable for up to three or more generations [26, 27]. In
C. elegans, there are several methods that can be uti-
lized in order to silence gene expression using RNAi:
the dsRNA can be delivered via injection into any tis-
sue [28]; by feeding bacteria expressing the dsRNA
[29]; by soaking animals in a solution containing
dsRNA [30]; or by production of dsRNA via a trans-
gene for in vivo knock down that can be conditionally
controlled [31].

While these methods are sufficient to mediate gene
silencing in most tissues, it has been shown that
specific tissues, such as neurons, can be less sen-
sitive to RNAi, depending on the method of RNAi
delivery [32–34]. Nonetheless, strains with enhanced
sensitivity to RNAi, such as rrf-3 or eri-1, have
been identified to circumvent this limitation [35, 36].
Alternatively, it has been shown that the transgenic
expression of the dsRNA transporter SID-1 in a tis-
sue of interest can sensitize that tissue to RNAi [37].
Tissue-specific knockdown of a gene of interest can
be accomplished by expressing a necessary compo-
nent of the endogenous RNAi machinery in a mutant
that is deficient in that component (e.g., the Arg-
onaute protein RDE-1 can be expressed just in the
intestine using an intestine specific ges-1 promoter
in rde-1 mutant animals to achieve intestine-specific
knockdown of a gene of interest when worms are
exposed to an RNAi targeting that gene). Using this
approach, strains have been constructed in which a
gene of interest can be knocked down specifically

in GABAergic neurons [38], serotonergic neu-
rons [39], dopaminergic neurons [40], cholinergic
neurons [40], glutamatergic neurons [40] or pan-
neuronally [37].

Screening for disease modifiers

One of the biggest advantages of using a simple
genetic model organism for the study of Parkinson’s
disease is the ability to perform large-scale screens.
These screens are enabled by the small size, ease of
maintenance, affordability, and the large brood size
of C. elegans. Screening for disease modifiers can be
done using a chemical/compound screen, a classical
forward genetic screen [41], or an RNAi interfer-
ence screen [42]. In fact, RNAi libraries covering
nearly the entire genome are available commercially,
including the Ahringer library which contains bac-
terial clones with 17,575 genes [43] and the Vidal
RNAi library that includes open reading frame target-
ing clones of 11,800 genes [44]. A number of groups
have performed screens for disease modifiers in
C. elegans models of PD using various outcome mea-
sures including aggregation and neurodegeneration
(Table 1).

OUTCOME MEASURES USED TO
IDENTIFY DISEASE MODIFIERS

In order to screen for disease modifiers it is nec-
essary to have quantifiable phenotypic deficits that
can be used as outcome measures. Although C. ele-
gans is a simple organism, there are a number of
assays available to assess the toxicity of PD-related
defects including very specific dopamine-dependent
behaviors.

Survival of dopamine neurons

Because loss of dopamine neurons is a hallmark
of human PD, the primary outcome measure in many
C. elegans studies is the survival of dopamine neu-
rons (Fig. 1). While staining for neurons is possible
in fixed tissues, due to C. elegan’s transparent cuti-
cle, neuronal survival is normally assessed in live
animals by expressing a fluorescent protein specif-
ically in dopamine neurons using the promoter from
the dat-1 dopamine transporter gene. In C. elegans
hermaphrodites there are 8 dopamine neurons (out
of 302 total neurons) including 6 anterior (four
CEP neurons, two ADE neurons) and 2 posterior
(PDE neurons). Male C. elegans possess 6 additional
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Table 1
Summary of screens performed in C. elegans models of Parkinson’s disease

Type of Model Outcome Comments Reference
Screen measure

Compound MPP+ Mobility Proof-of-principle that MPP+ model could be used to
screen for modifiers of mobility

Braungart et al.,
2004 [100]

Compound 6-OHDA Neuron loss D2 receptor agonists bromocriptine and quinpirole are
neuroprotective

Marvanova et al.,
2007 [101]

Compound Pdat-1:�-syn Neuron loss Combined screening with yeast and worms, genes
responsible for intracellular trafficking and
mitochondrial function were found to be
neuroprotective

Su et al., 2010
[140]

Genetic 6-OHDA Neuron loss Mutations in dat-1 dopamine transporter gene are
neuroprotective

Nass et al., 2005
[141]

RNAi Punc-51:�-syn Uncoordinated
movement,
growth
retardation

Knockdown of genes in endocytic pathway exacerbate
�-syn toxicity

Kuwahara et al.,
2008 [70]

RNAi Punc-54:�-syn:YFP �-synuclein
aggregation

Identified genes that increase or decrease aggregation
when knocked down

Van Ham et al.,
2008 [58]

RNAi Punc-54:�-syn:GFP,
Punc-54::tor-2

�-synuclein
aggregation

Homologs of PD-causing genes increase aggregation Hamamichi et al.,
2008 [73]

RNAi Punc-54:�-syn:YFP Uncoordinated
movement

Kynurenine pathway and serotonin production play an
important role in regulating protein homeostasis

Van der Goot
et al., 2012 [74]

RNAi Punc-54:�-syn:GFP �-synuclein
aggregation

Targeting upregulated genes in Insulin/IGF mutants that
reduce �-syn aggregation

Knight et al., 2014
[138]

RNAi Punc-54:�-syn:YFP �-synuclein
aggregation

Knockdown of neuroprotective genes also increased
�-syn aggregation as well as causing changed
motility, mitochondrial content, and ROS production

Jadiya et al., 2015
[142]

MPP+, 1-methyl-4-phenylpyridinium; 6-OHDA, 6-hydroxydopamine; RNAi, RNA interference.

dopaminergic neurons in the tail ray. In addition
to the loss of neuron cell bodies, quantification of
more subtle phenotypes is possible. This includes the
disappearance of axons, broken neurites, retreat of
dendritic terminals, and axonal and dendritic bleb-
bing [45–49].

Dopamine-dependent behaviors

Basal slowing
The dopaminergic circuit has been found to

directly affect several behaviors in C. elegans. Basal
slowing is a feeding behavior in which the rate of
locomotion changes depending upon whether the ani-
mal is in the presence or absence of the bacterial
lawn that serves as its food source in the laboratory
due to a mechanosensory response. Normally animals
crawl more slowly in the presence of bacterial food
than when there is no food present, but the disruption
of dopamine signaling prevents the animal’s ability
to slow in the presence of food, rendering a higher
crawling speed [22]. The basal slowing ratio can
be calculated by determining the difference between
crawling speed on and off food, then determining the
ratio by dividing by speed off food:

basal slowing = ([rate of movement absence of
food – rate of movement presence of food]) / rate
of movement presence of food

Ethanol preference
C. elegans can sense environmental chemical cues

that cause attractive or repulsive chemotaxis [50].
Chemotaxis assays are assessed by dividing an agar
plate into quadrants and seeding two quadrants with
the compound in question. Worms are then trans-
ferred to the test plate and allowed to freely explore.
To assess the effect of the compound, the animals in
the seeded and control quadrants are quantified and a
preference index (PI) is calculated:

(PI) = ([number of animals compound quadrants]

–[number of animals control quadrants])

/total number of animals tested

Under laboratory conditions C. elegans avoid
ethanol [51, 52] and this is dependent on a functional
dopamine signaling system [53]. A similar effect is
observedusing thecompoundnonanol,which induces
a strong negative chemotaxis response that is depen-
dent on functional dopaminergic circuity [54, 55].
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Fig. 1. Loss of dopamine neurons. C. elegans hermaphrodites have
eight dopamine neurons that can be visualized in live worms by
expressing a fluorescent protein such as GFP with a dopamine
neuron specific promoter such as dat-1. There are six dopamine
neurons in the head and two posterior, as indicated by the blue
arrows (top). The progressive loss of dopamine neurons can be
monitored throughout the lifespan of the worm. Expression of
human mutant LRRK2 with G2019S mutation causes an accel-
erated loss of dopamine neurons (bottom). Bottom panels show
only the head region of the worm with the tip of the nose facing
the top of the page.

Area-restricted searching (ARS)
ARS is a foraging strategy in which C. elegans

prioritize unexplored areas over those that have run
out of food. When a worm is searching for food on
an empty plate, they will turn frequently at sharp
angles, containing their search to a confined area.
As this behavior becomes unsuccessful at finding
food, the search area is expanded, the number of
turns decreases, and the scavenging behavior then
consists of wide arcs that increase the efficiency
of foraging. Dopamine signaling is involved in the
successful switching of strategies [21]. ARS is eval-
uated by transferring animals to an agar plate without
food. Video recordings are then taken 5 minutes after

transfer and again after 30 minutes without food.
Analysis of the videos then allow for the frequency
of turns greater than 90◦ at each time point.

Swimming induced paralysis (SWIP)
While healthy, well fed animals initially thrash vig-

orously in liquid, after thrashing for about 6 minutes,
C. elegans become paralyzed exhibiting a phenotype
called SWIP. Animals with impaired dopaminergic
function, such as tyrosine hydroxylase mutants, do
not exhibit this behavior [56]. This suggests that
endogenous dopamine is responsible for inactiva-
tion of the motor circuitry necessary for thrashing
behavior. However, while SWIP is readily observed
in animals at the L4 stage of development, it becomes
less prominent with age.

Accumulation of α-synuclein

As the aggregation of �-synuclein is a key feature
of PD, C. elegans models have been developed in
which human SNCA is expressed in order to study
�-synuclein accumulation. To visualize �-synuclein
aggregation in live worms, �-synuclein has been
linked to a fluorescent protein (e.g., GFP or YFP)
and typically expressed in body wall muscle to facil-
itate visualization [57, 58] (Fig. 2). While neuronal
�-synuclein aggregates can be visualized, due to the
small size of nematode neurons, quantifiable intracel-
lular inclusions can only be resolved in fixed tissue
[59], which is not suitable large scale or screening
analysis.

Movement: Thrashing and crawling

Because motor deficits are a major component of
Parkinson’s disease, multiple assays are utilized to
measure movement [49, 60]. The rate of movement
in liquid, also known as the thrashing rate, is counted
as the number of body bends per unit time and can
be assessed manually on individual worms or using
video-tracking on entire populations [61]. Crawling
speed on solid plates is measured as distance travelled
in a given amount on time.

Mitochondrial morphology and function

As deficits in mitochondrial function have been
implicated in the pathogenesis of PD, another
important outcome measure that is examined in
C. elegans models is mitochondrial morphology
and function, especially since multiple genes that
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Fig. 2. Aggregation of �-synuclein. Although worms do not possess an ortholog of �-synuclein it is possible to study �-synuclein by
expressing �-synuclein linked to a fluorescent proteion, such as YFP, with a body wall muscle specific promoter such as unc-54. While
expression of YFP alone results in diffuse expression throughout the body wall muscle, the presence of �-synuclein results in the formation
of aggregates.

cause PD are directly involved in mitochondrial
function (PRKN/pdr-1, PINK1/pink-1, DJ-1/djr-1.1).
Mitochondrial morphology can be visualized in live
worms by utilizing transgenic animals that express
a fusion protein of a mitochondrially-targeted pro-
tein (e.g., TOMM-20) and a fluorescent protein (e.g.,
GFP or YFP) [62–64] (Fig. 3). Using this technique,
disruptions in mitochondrial morphology have been
discovered in pdr-1, pink-1 and djr-1.1 mutants [53].
A basic assessment of mitochondrial function can be
achieved through measurements of oxygen consump-
tion and ATP levels. Oxygen consumption can be
measured in individual or small numbers of samples
using a Clark electrode or in multiple samples using a
Seahorse Extracellular Flux Analyzer, while ATP can
be measured from lysed worms using commercially
available lucigenin based quantification kits.

Resistance to stress

Multiple studies have examined resistance to stress
in C. elegans models of PD and observed that the
genetic defects that cause PD increase susceptibility
to various stresses [53, 60, 65]. Interestingly, heat
stress, oxidative stress and osmotic stress all act
to increase protein aggregation (Cooper and Van
Raamsdonk, unpublished data). The connection
between increased sensitivity to stress, decreased
proteostasis and the aggregation of �-synuclein has
yet to be explored.

Overall, there are a number of different outcome
measures that can be used to quantify phenotypic
deficits in worm models of PD. Of all these mea-
sures, we think that loss of dopamine neurons is the

Fig. 3. Mitochondrial morphology. The morphology of the mito-
chondria can be monitored in live worms by expressing a
mitochondrially-targeted fluorescent protein, such as GFP, under
tissue-specific promoters, such as myo-3 for body wall muscle. In
wild-type worms, mitochondria in the body wall muscle exist as
parallel tracks of elongated mitochondria. pdr-1 mutants exhibit
increased accumulation of mitochondria, while djr-1.1 mutants
exhibit mitochondrial fragmentation.

most reliable and disease-relevant assay, and this is
also the most frequently reported outcome in the lit-
erature. Note that it is important to combine this
assay with tests of neuronal function to ensure that
any increases in neuronal number that are associated
with a therapeutic intervention also preserve neuronal
function. For this purpose, we have found the basal
slowing assay to be the most robust, and this is also
the most commonly used assay in published studies.
Finally, it should be noted that most of the tests of
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dopamine-dependent behavior rely on crawling. As a
result, it is important to test movement as deficits in
movementcanbeaconfoundingfactor in theseassays.

C. ELEGANS MODELS OF PARKINSON’S
DISEASE

SNCA

SNCA/PARK1/PARK4, the first gene to be defini-
tively linked to familial PD [4], encodes �-synuclein,
a protein involved in synaptic vesicle formation.
Mutations in SNCA and duplications or triplications
of the gene have been shown to cause autosomal dom-
inant forms of PD [66, 67]. While C. elegans does
not have a homolog to SNCA, a number of worm
models have been generated by expressing human
wild-type or mutant �-synuclein either ubiquitously
or in specific tissues (Table 2). Expression of �-
synuclein in all neurons or specific populations of
neurons causes loss of dopamine neurons, deficits
in dopamine dependent behavior, and decreased lev-
els of dopamine [49, 59, 60, 68–72]. In order to
study aggregation, �-synuclein has been linked to
YFP or GFP and expressed in body wall muscle
cells for ease of visualization [58, 73, 74]. In addi-
tion to aggregation, these worms show deficits in
movement and increased sensitivity to stress (Cooper
and Van Raamsdonk, unpublished data). Since worms
do not normally express �-synuclein, worm models
have also been generated that ubiquitously express
wild-type �-synuclein from a single copy transgene
(Cooper and Van Raamsdonk, unpublished data).

LRRK2/LRK-1

Mutations in the leucine rich repeat kinase 2 gene
LRRK2 have also been shown to cause autosomal
dominant PD [6]. lrk-1, the C. elegans homolog of
LRRK2, is expressed broadly in these animals, includ-
ing neurons, in which it associates with the Golgi
apparatus [65]. Expression of WT or mutant LRRK2
either pan-neuronally using the synaptobrevin pro-
moter [75] or specifically in dopamine neurons
using the dopamine transporter promoter [60, 76,
77] decreases dopamine levels, induces deficits in
dopamine-dependent behaviors and causes a pro-
gressive loss of dopamine neurons (Table 2). Extra-
chromosomal arrays expressing LRRK2 in dopamine
neurons have also shown that kinase activity of
LRRK2(G2019S) is important for the development
of age-dependent neurodegeneration [78].

PRKN/PDR-1

Mutations in PRKN/PARK2 cause an autosomal
recessive form of PD with an early age of onset [7,
79]. Parkin, which is encoded by pdr-1 in C. elegans,
encodes an E3 ubiquitin ligase involved in pro-
tein degradation and mitophagy [80]. pdr-1 mutants
exhibit a loss of dopamine neurons [81], and deficits
in the dopamine-dependent behaviors (Table 3) [53,
82]. In addition, pdr-1 mutants have been shown to
have increased sensitivity to various stresses [53, 64,
83]. At a cellular level, an in frame deletion in pdr-1
causes the protein to aggregate and increases sensi-
tivity to proteotoxic stress [71]. Finally, mutations in
pdr-1 have been shown to cause the accumulation of
dysfunctional mitochondria [53, 64] and deficiencies
in oxidative phosphorylation [53, 84], which are asso-
ciated with activation of the mitochondrial unfolded
protein response [53]. Perhaps as a means of jettison-
ing their accumulating mitochondria, pdr-1 mutant
animals also produce more exophers than wild-type
worms [85].

PINK1/PINK-1

Mutations in PINK1/PARK6 cause an autosomal
recessive form of PD with early disease onset [8, 86].
PINK1 (PTEN-induced putative kinase 1) is a mito-
chondrial kinase that acts with Parkin in mitophagy
[87, 88] and is also first identified ubiquitin kinase
[89]. Mutations in the PINK1 homolog pink-1 result
in increased sensitivity to multiple stresses [64, 65,
83]. While pink-1 worms show a significant reduction
in basal slowing, these mutants exhibit a wild-type
survival of dopamine neurons [53]. The mitochondria
of pink-1 worms accumulate with age, show altered
morphology and have deficiencies in oxidative phos-
phorylation [53, 65, 84]. As in pdr-1 mutants,
worms with dysfunctional pink-1 also produce sig-
nificantly more exophers in neurons expressing toxic
proteins [85].

DJ-1/DJR-1.1,DJR-1.2

Mutations in the DJ-1/PARK7 gene cause a
recessive form of PD with an early age of onset
[90]. DJ-1 is a deglycase that has been shown
to protect against oxidative stress [91, 92]. There
are two orthologs of DJ-1 in C. elegans, djr-1.1,
which is expressed primarily in the intestine, and
djr-1.2, which is expressed primarily in neurons
[93]. Deletion of either ortholog (or both together)
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Table 2
Transgenic worm models of Parkinson’s disease

Expression pattern Transgene Phenotypes Reference

�-synuclein models
Dopamine neurons Pdat-1::asyn ↑DA neuron loss, ↓DA, asyn

accumulation
Lakso et al., 2003 [49];
Cao et al., 2005 [68];
Kuwahara et al., 2006 [59]

Pdat-1::asyn (A53T) ↑DA neuron loss, ↑DA neurite
defects, ↓DA, asyn accumulation,
movement deficit, ↓basal slowing,
↓ARS, ↓ethanol avoidance

Lakso et al., 2003 [49];
Kuwahara et al., 2006 [59];
Kuwahara et al., 2008 [70];
Cooper et al., 2015 [60]

Pdat-1::asyn (A30P) ↑DA neuron loss, ↑DA neurite
defects, ↓DA, asyn accumulation,
↓basal slowing

Kuwahara et al., 2006 [59];
Karpinar et al., 2009 [143]

Pdat-1::asyn (A56P) ↑DA neurite defects, ↓basal slowing Karpinar et al., 2009 [143]
Motor neurons Pacr-2::asyn Movement deficit Lakso et al., 2003 [49]

Pacr-2::asyn (A53T) Movement deficit Lakso et al., 2003 [49]
Punc-30::asyn Movement deficit Lakso et al., 2003 [49]
Punc-30::asyn (A53T) Movement deficit Lakso et al., 2003 [49]

Mechanosensory
neurons

Pmec-7::asyn Impaired touch response Kuwahara et al., 2008 [70]

Pmec-7::asyn (A53T) Impaired touch response Kuwahara et al., 2008 [70]
Pan-neuronal Paex-3::asyn ↑DA neuron loss, movement deficit Lakso et al., 2003 [49]

Paex-3::asyn (A53T) ↑DA neuron loss, movement deficit Lakso et al., 2003 [49]
Punc-51::asyn Movement deficit, growth defect,

impaired touch response
Kuwahara et al., 2008 [70]

Punc-51::asyn (A30P) Movement deficit, growth defect,
impaired touch response

Kuwahara et al., 2008 [70]

Punc-51::asyn (A53T) Movement deficit, growth defect,
impaired touch response

Kuwahara et al., 2008 [70]

Body wall muscle Punc-54::asyn:GFP Movement deficit, asyn
accumulation, asyn aggregation

Hamamichi et al., 2008 [73]

Punc-54::asyn:YFP Movement deficit, asyn
accumulation, asyn aggregation,
↓stress resistance

van Ham et al., 2008 [58];
Cooper and Van
Raamsdonk, unpublished
data

Ubiquitous Peft-3::asyn :RFP asyn accumulation, axon blebbing,
↓basal slowing, ↓stress resistance

Cooper and Van Raamsdonk,
unpublished data

LRRK2 models
Dopamine neurons Pdat-1::LRRK2 ↑DA neuron loss, ↓DA, movement

deficit
Yao et al., 2010 [76];
Cooper et al., 2015 [60]

Pdat-1::LRRK2 (G2019S) ↑DA neuron loss, ↓DA, movement
deficit, ↓basal slowing, ↓ARS,
↓ethanol avoidance

Yao et al., 2010 [76];
Liu et al., 2011 [78];
Yao et al., 2013 [77];
Cooper et al., 2015 [60]

Pdat-1::LRRK2
(G2019S/D1994A)

↑DA neuron loss compared to WT,
but ↓DA neuron loss compared to
G2019S

Liu et al., 2011 [78]

Pdat-1::LRRK2 (R1441C) ↑DA neuron loss, ↓DA, movement
deficit, ↓basal slowing

Yao et al., 2010 [76];
Yao et al., 2013 [77]

Pan-neuronal Psnb-1::LRRK2 ↑DA neuron loss Saha et al., 2009 [75]
Psnb-1::LRRK2 (R1441) ↑DA neuron loss, ↓DA Saha et al., 2009 [75]
Psnb-1::LRRK2

(G2019S)
↑DA neuron loss, ↓DA Saha et al., 2009 [75]

DA, dopamine; ARS, area-restricted searching; asyn, �-synuclein.

does not cause the loss of dopamine neurons or
significantly impact dopamine-dependent behaviors
[53]. Nonetheless, djr-1.1 mutants show increased
sensitivity to oxidative stress, mitochondrial frag-
mentation and a decreased ability to generate energy
[53, 93].

ATP13A2/CATP-6

Mutations in ATP13A2/PARK9 cause an atypical
form of early-onset parkinsonism called Kufor-
Rakeb Syndrome [10, 94]. This gene encodes
a lysosomal P-type ATPase transporter. Loss of
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Table 3
Genetic loss of function C. elegans models of Parkinson’s disease

Human gene C. elegans gene Phenotypes Reference

PRKN pdr-1 ↑DA neuron loss, ↓basal slowing, ↓ethanol avoidance,
↓lifespan, mitochondrial accumulation, ↓stress resistance

Springer et al., 2005 [71];
Ved et al., 2005 [102];
Bornhorst et al., 2014 [81];
Chakraborty et al., 2015 [82];
Kirienko et al., 2015 [83];
Palikaras et al., 2015 [64];
Luz et al., 2015 [84];
Cooper et al., 2017 [53]

PINK1 pink-1 ↓basal slowing, mitochondrial accumulation, ↓stress resistance Samann et al., 2009 [65];
Kirienko et al., 2015 [83];
Palikaras et al., 2015 [64];
Luz et al., 2015 [84];
Cooper et al., 2017 [53]

DJ-1 djr-1.1 ↓stress resistance, mitochondrial fragmentation Lee et al., 2012 [93];
Cooper et al., 2017 [53]

djr-1.2 ↓stress resistance Lee et al., 2012 [93]
ATP13A2 catp-6 ↑DA neuron loss, ↓basal slowing, movement deficit, ↓stress

resistance
Cooper and Van Raamsdonk,
unpublished data

DA, dopamine.

ATP13A2 function leads to enhanced oxidative
stress, protein misfolding, and aggregation due to
deficiencies within the lysosome [94]. Mutations
in catp-6 causes a number of deficits including
accelerated loss of dopamine neurons, deficits in
dopamine-dependent behavior, decreased rate of
movement and increased sensitivity to multiple
stresses (Cooper and Van Raamsdonk, unpublished
data). Levels of CATP-6 have been shown to influence
the accumulation of �-synuclein [95].

TOXICANT MODELS

In addition to genetic models, a number of groups
have used neurotoxins to induce dopaminergic cell
death as a model of PD [45, 96, 97]. Treating
worms with MPP+ (1-Methyl-4-phenylpyridinium),
the active metabolite of MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine), has been shown to
cause deficits in movement and dopamine neuron
loss [98–100]. Similarly, treating worms with the
dopamine analog 6-hydroxydopamine (6-OHDA),
Manganese (Mn), or methylmercury also causes
degeneration of dopamine neurons [45, 48, 101]. The
insecticide rotenone and the herbicide paraquat have
also been used to induce behavioral deficits and neu-
rodegeneration in C. elegans [15, 102–104]. These
compounds cause toxicity by increasing ROS lead-
ing to cellular toxicity, damage and disruption of
neuronal morphology [45, 46, 97, 105–107].

Overall, there are a large variety of C. elegans
models of PD to choose from when designing an

experiment. The best model to utilize depends on the
experimental question of interest. Of the genetic mod-
els, those expressing mutant �-synuclein or LRRK2
in dopamine neurons provide the most robust loss of
dopamine neurons and dopamine-dependent behav-
iors. These models would be most appropriate for
the development of neuroprotective strategies. pdr-1,
pink-1 and djr-1.1 mutants have subtler phenotypic
deficits making them less ideal for therapeutic stud-
ies, but can be used to identify factors contributing
to disease (e.g., identification of synthetic lethal
interactions).

CONSERVATION ACROSS SPECIES

An important premise for studying PD in animal
models is that the findings obtained in the animal
model are also observed in PD. There have been mul-
tiple examples in which findings from C. elegans have
been shown to be conserved across species and for the
purpose of this review we will highlight only a few
of these.

In one study examining the neuroprotective prop-
erties of ATP13A2/CATP-6, it was initially shown
that the yeast homolog of ATP13A2 could protect
against �-synuclein toxicity in a colony growth assay
[108]. It was subsequently shown that overexpression
of CATP-6 in C. elegans decreases �-synuclein-
mediated neuronal loss, while catp-6 RNAi causes
increased aggregation of �-synuclein [95]. Finally,
this same phenomenon was examined in a mam-
malian system. In rat primary midbrain neurons, it
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was shown that expression of ATP13A2 could pro-
tect against �-synuclein(A53T) toxicity [95]. Thus,
the ability of ATP13A2/CATP-6 to protect against �-
synuclein toxicity is conserved from yeast to worm
to rodent.

Similarly, another group examined the interaction
between glucocerebrosidase (GBA) and �-synuclein.
Mutations in GBA1 are the most common genetic
risk factor for PD: about 10% of people with PD
have mutations in GBA1. Glucocerebrosidase acts
to degrade glycolipids and homozygous mutations
in GBA1 lead to the development of a lysosomal
storage disorder called Gaucher disease. Based on
the observation of �-synuclein positive Lewy bod-
ies in patients with Gaucher disease [109], Mazzulli
et al. explored the relationship between GBA and
�-synuclein. They found that knocking down GBA
is primary cortical neurons or human iPS neurons
resulted in increased levels of �-synuclein [110].
Similarly, RNAi against gba-2 caused increased
aggregation of �-synuclein in C. elegans, while
a mouse model of Gaucher disease also showed
increased �-synuclein accumulation [110].

It is important to note that the corroboration of
findings between organisms is not always observed
and validating the results from one species in another
can be complicated by the absence of an ortholog
and deciding which assay to use. In a recent study
seeking to prioritize loss of function variants that
were found by whole exome sequencing in 1148 PD
patients, only 10 of the 27 genes identified had an
ortholog in C. elegans [111]. The effect of 9 of these
genes on developmental lethality and survival was
tested and it was found that 3 of the genes exhibited a
detrimental effect. Interestingly, two of those genes,
DIS3 and KALRN, were known to also reduce viabil-
ity in Drosophila [112, 113] and rodents [114, 115].
The fact that 6 of the 9 genes did not reduce survival
does not exclude the possibility that these genes con-
tribute to PD, since most worm models of PD exhibit
normal longevity. It is possible that knocking down
these genes would impact dopamine neuron survival
or dopamine-dependent behavior but these outcomes
were not assessed.

ENVIRONMENT FACTORS
CONTRIBUTING TO PD AND
GENE-ENVIRONMENT INTERACTIONS

While monogenetic forms of PD facilitate studying
the molecular mechanisms underlying the disease,

most cases of PD likely result from a complex interac-
tion of genetic and environmental risk factors [116].
Work in C. elegans has been able to connect expo-
sure to environmental toxins such as pesticides, Mn or
methylmercury to the degeneration of dopamine neu-
rons [102–104]. Interestingly, it has also been shown
that specific bacterial metabolites can also contribute
to neurotoxicity in dopamine neurons [117–119]. The
availability of genetic models of PD permits study-
ing gene-environment interactions in C. elegans. For
example, it was shown that genes implicated in PD
(SNCA, pdr-1, djr-1.1) cause increased susceptibil-
ity to mitochondrial complex I inhibitors, such as
rotenone [102]. Similarly, others have examined the
effect of PD-causing mutations on Mn toxicity [81,
120] and showed that exposure to pesticides can exac-
erbate �-synuclein aggregation [121].

DRUG SCREENING AND DISCOVERY

C. elegans models of PD can also be used as a
tool for drug discovery. Compounds can be added to
the solid agar plates on which the worms are main-
tained, or worms can be grown in liquid culture and
the compounds added directly to the culture medium.
While worms have a thick cuticle that can limit the
ability of compounds to enter the worm, genetically
modified strains are available with increased drug
permeability [122]. Previous work has examined the
beneficial effect of specific compounds in genetic
and toxicant models of PD, including acetaminophen
[123] and valproic acid [124]. In some cases, the
compounds investigated are specific to certain geno-
types, such as testing kinase inhibitors in LRRK2
mutants [77, 78]. In addition, multiple studies have
performed targeted drug screens most commonly for
compounds that protect against neurotoxin induced
deficits [100–102].

RECENT ADVANCES IN PARKINSON’S
DISEASE RESEARCH IN C. ELEGANS

C. elegans models to dissect the mechanism of
cell-to-cell transfer of α-synuclein

Recent work has suggested that the cell-to-cell
transfer of �-synuclein may be a key step in the
pathogenesis of PD [125]. While the transfer of �-
synuclein has been demonstrated in multiple model
systems [126, 127] and importantly in neurons
grafted into PD patients [128, 129], the mechanisms
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involved have yet to be elucidated. To explore the
underlying mechanisms of �-synuclein transfer, two
groups have developed worm models using a bimolec-
ular fluorescence (BiFC) approach. In this approach,
two parts of a fluorescent protein (e.g., GFP) are
fused to �-synuclein such that they will only emit flu-
orescence if two molecules of �-synuclein interact
thereby bringing the two parts of the fluorescent pro-
tein close enough together to act as one protein [130].
In order to detect neuron-to-neuron transfer of �-
synuclein, the two different BiFC-�-synuclein fusion
proteins were expressed in separate populations of
neurons, which are synaptically connected [131]. The
observation of fluorescence in these worms indicated
that the BiFC-�-synuclein molecules move from one
cell to another. Having shown that neuron-to-neuron
transfer occurs in C. elegans, this model can now
be used to screen for modifiers of �-synuclein trans-
fer. As a proof of principle, it was shown that genes
involved in autophagy, endocytosis and exocytosis
all modulate �-synuclein transfer [131]. Interestingly,
silencing C. elegans orthologs of PD-related genes
PRKN, PINK1, DJ-1, ATP13A2, VPS-35, and LRRK2
using RNAi increased �-synuclein accumulation in
these animals [131]. Another study that used a dif-
ferent BiFC strain to visualize �-synuclein transfer
between neuron and muscle demonstrated that trans-
fer of �-synuclein increased with age and could be
decreased by genes that have been shown to delay
aging [132].

Targeting aging pathways is protective in
C. elegans models of Parkinson’s disease

While it has long been known that aging is the
greatest risk factor for the development of PD [133,
134], the role of aging in PD is still poorly defined.
The large number of similarities that exist between
the normal aging process and the development of
PD indicates a strong association [135]. However, in
order to demonstrate a causative role of aging in the
pathogenesis of PD, it is necessary to experimentally
modulate aging and show an effect on PD. Because C.
elegans has been used extensively to study the genet-
ics of aging, it provides the ideal organism to study
the relationship between aging and PD. To test this
idea, two groups examined the effect of modulating
molecular pathways that have been shown to extend
longevity in C. elegans models of PD. Both groups
chose to test the effect of decreasing insulin-IGF1 sig-
naling, which has been shown to double the lifespan
of a worm [136]. It was found that delaying aging by

decreasing insulin-IGF1 signaling decreased aggre-
gation and protected against dopamine neuronal loss
in multiple different worm models of PD [60, 137].
Decreasing insulin-IGF1 signaling also reduced the
cell-to-cell propagation of �-synuclein [132]. Impor-
tantly, a beneficial effect of delaying aging was
also observed in a Drosophila model indicating
conservation across species [137]. Since decreas-
ing insulin-IGF1 signaling has also been shown to
increase lifespan in mice [138], and genetic vari-
ants in this pathway are associated with longevity
in humans [139], targeting this pathway may provide
an effective treatment for patients with PD.

CONCLUSIONS

C. elegans provides a number of advantages as an
animal model for the study of PD. The most signif-
icant advantages include the wide array of genetic
tools available and the ability to screen for disease
modifiers in a rapid and cost effective manner. On
the other hand, the main limitations of using C. ele-
gans for the study of PD include the lack of a homolog
to �-synuclein, the challenge of performing molecu-
lar biology specifically on dopamine neurons (which
make up only 8 of 959 cells), and the fact that neu-
ronal connectivity differs from humans. With these
limitations in mind, the model system has enabled
numerous significant contributions to our understand-
ing of PD. For example, although C. elegans lack
an ortholog to �-synuclein, this has not precluded
using this model to identify numerous modifiers of �-
synuclein aggregation and toxicity, which are shared
with mammals. As with all model systems, in using
C. elegans for PD research, it is important to take
advantage of its strengths while using other models
to complement its limitations.
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