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Abstract. While the etiology and pathogenesis of Parkinson’s disease (PD) is still obscure, there is evidence for lifestyle
factors influencing disease risk. Best established are the inverse associations with smoking and coffee consumption. In other
contexts there is evidence that health effects of lifestyle factors may depend on gut microbiome composition. Considering the
gastrointestinal involvement in PD, it was recently speculated, that the associations between smoking, coffee, and PD risk could
be mediated by gut microbiota. Here we review such a possible mediatory role of gut microbiota taking into account recent
findings on microbiome composition in PD and extending the scope also to urate.
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RELATIONS OF SMOKING, COFFEE
CONSUMPTION, AND SERUM URATE
LEVELS TO PD RISK AND THEIR
PROPOSED MECHANISMS

A history of smoking reduces the risk of PD by
about 36%–50% and there is an inverse dose-response
relationship while for coffee consumption the risk
reduction is about 33% [1, 2]. The exact mechanisms
behind these associations are not known, but cigarette
smoke and coffee contain possibly neuroprotective
compounds such as nicotine and caffeine, respectively
[1, 3–5]. Coffee is also rich in potentially neuroprotec-
tive polyphenols [6].

On the molecular level, nicotine is a potent agonist
to nicotinic acetylcholine receptors (nAChR) whereas
caffeine is a nonselective adenosine receptor antago-
nist. It has been suggested that mainly nAChRs and
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Adenosine A(2A) receptors mediate the neuropro-
tective effects of nicotine and caffeine, respectively
[3, 4, 7, 8]. Another mechanism could be preven-
tion of misfolding and fibril formation of �-synuclein
[9, 10]. It is still unclear whether these molecules
are solely responsible for the observed risk reduction.
Challenging common interpretations related to neuro-
protection, a recent study suggested that the reduced
risk of PD in smokers could instead be explained by
reverse causation in terms of a greater ease of smok-
ing cessation in the prodromal phase of PD related to
the loss of nicotinic rewards [11]. More generally it
has been speculated that personality traits associated
with PD, in particular low sensation seeking, could
be the cause for reduced cigarette smoking and caf-
feine consumption in subjects later diagnosed with
PD [12].

Although the number of publications addressing
urate levels and PD risk is rather small, the results
have been relatively consistent [2, 13]. These studies
indicate a protective effect of high versus low serum
uric acid levels with a risk reduction of 33% [13].
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Furthermore, urate levels were inversely associated
with disease progression. Since urate is a powerful
antioxidant and oxygen radical scavenger it has been
speculated that its protective effect against PD is based
on a reduction of oxidative stress [13].

THE GUT AND ITS MICROBIOTA IN PD

In recent years, one important focus of PD research
has been on gut related pathology, pathophysiol-
ogy, and symptoms. Gastrointestinal dysfunction, in
particular constipation, affects up to 80% of PD-
patients and idiopathic constipation is one of the
strongest risk-factors for PD [1, 14]. In PD, prolonged
intestinal transit time and constipation are associated
with �-synuclein accumulation and neurodegenerative
changes in the enteric nervous system [15]. Further-
more, there are signs of local inflammation, oxidative
stress, and increased mucosal permeability [16, 17].
These changes can be found in earliest stages of
PD, sometimes years before the appearance of motor
symptoms, lending support to the hypothesis that
environmental factors relevant for PD pathogenesis
might act primarily via the gut [14, 18–21]. One pro-
posed pathophysiological pathway in this context is the
induction of intestinal mucosal inflammation leading
to accumulation of misfolded �-synuclein in enteric
nerves which thereafter could act in a prion-like fash-
ion leading to propagation of the neuropathological
changes via autonomic connections to the central ner-
vous system [16, 17, 22].

The human gut is home to 1-2 kg of bacteria, con-
tains 10-times more microbial cells than human cells
and these microbes carry approximately 100–200-
times more protein coding genes than the human
genome [23]. Gut microbiota influence the immune
system and the absorption of nutrients, vitamins, med-
ications, and toxic compounds [24–28]. Changes in
gut microbiota have been found in a multitude of
human diseases fuelling hope for better understand-
ing and new treatments for these disorders [29]. There
is an intense bidirectional interaction between gut
microbiota and the nervous system influencing brain
activity, behavior, as well as levels of neurotransmitter
receptors and neurotrophic factors [30–34]. Recently,
in a case-control study we identified alterations of
gut microbiota in PD, in particular a reduced abun-
dance of bacteria from the Prevotellaceae family [35].
Prevotella are mucous degrading diet sensitive bacte-
ria. Some studies have reported an association between
higher Prevotella abundance and a less developed

mucous layer and a higher sensitivity to experimentally
induced colitis as well as associations with rheumatic
diseases [36–39]. This, however, is in contrast to the
strong evidence that a diet rich in fiber, fruit, and veg-
etables is associated with higher intestinal Prevotel-
laceae abundance, lower risk for the development of
inflammatory bowel disease, and higher production
of health promoting short-chain fatty acids (SCFAs)
[40–42]. Furthermore, several studies have demon-
strated lower Prevotella abundance in type 1 diabetes
and it has been suggested that this could be related to
impairment of mucin synthesis and barrier function
[43, 44]. We found no evidence for decreased Bifi-
dobacteria levels in PD [45]. However, our analyses
were restricted to the taxonomic family level and there-
fore do not exclude alterations at genus or species levels
[35]. In our study, the abundance of Enterobacteri-
aceae bacteria was related to the severity of postural
instability and gait difficulty. The relevance of these
bacterial families for PD is supported by previous
reports of colonic mucosal invasion by coliform bac-
teria, increased mucosal permeability, and increased
systemic endotoxin exposure in PD subjects [16].

RELATIONS BETWEEN SMOKING AND
GUT MICROBIOTA AND THEIR
RELEVANCE FOR GUT INFLAMMATION
AND PERMEABILITY

The best documented gastrointestinal effect of
smoking, after carcinogenesis, is immunomodulation
by nicotine and carbon monoxide [46, 47]. Smok-
ing increases the risk for and severity of Crohn’s
disease, but the opposite is seen with respect to ulcer-
ative colitis [48]. There is also some evidence for an
increased risk for gastric ulcers and dose dependent
effects on gut motility [49, 50]. Effects of cigarette
smoke on intestinal barrier function seem to differ
between gut segments. After cigarette smoke expo-
sure mice showed impairment of the intestinal barrier
and bacterial translocation in the small bowel, but
unchanged or even improved barrier function in the
large bowel [51, 52]. Improved gut barrier function
has been reported also in human subjects [53]. Over-
all, the effect of smoke and its constituents on the
small bowel seems deleterious, increasing suscepti-
bility for inflammatory stimuli. Instead, in the colon,
both pro- and anti-inflammatory effects are seen, pos-
sibly depending on genetic and environmental factors
and cytokine environment [47]. Importantly, smok-
ing also seems to have an effect on gut microbiome
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composition. Not only do smokers have higher abun-
dance of Bacteroides/Prevotella in their feces, but
this abundance decreases together with that of Pro-
teobacteria after smoking cessation while levels of
Firmicutes and Actinobacteria increase [54, 55]. Fur-
thermore, improvements in colonic barrier function
and inflammation caused by cigarette smoke were
associated with a decrease of Ruminococcus albus
and Enterobacteriaceae [52]. Less smoking in PD
subjects alone does, however, not explain decreased
Prevotellaceae and increased Ruminococcaceae levels
since these findings were independent of smoking sta-
tus [35]. Reduced inflammation and gut permeability
combined with a decrease in Enterobacteriaceae abun-
dance after smoke exposure fits to the co-occurrence
of Escherichia coli invasion, mucosal inflammation,
and permeability increase reported in PD [16, 52].
Even the abovementioned hypothesis of the inverse
association of smoking and PD being explained by
certain personality traits or loss of nicotine reward is
not in contradiction with an involvement of gut micro-
biota [11, 12]. The gut microbiome influences reward
seeking behavior and could therefore influence the
propensity to smoke [56].

In summary, smoking affects gut microbiome com-
position and this seems to go along with improved
barrier function and anti-inflammatory effects in the
colonic mucosa. It remains to be established whether
these simultaneous changes are causally related to each
other and eventually to PD. Also a possible reverse
effect of gut microbiota on smoking propensity and
its relevance for PD is an interesting field for future
studies.

THE TRIANGLE OF COFFEE, GUT
MOTILITY, AND MICROBIOTA – IS IT
RELEVANT FOR GUT DYSFUNCTION IN
PD?

Regarding coffee the best documented effects
on the gastrointestinal tract are promotion of
gastro-oesophageal reflux, stimulation of gallbladder
contraction and an increase of colonic motor activ-
ity [57]. Distal colonic motility increases as early as
4 minutes after coffee ingestion [58]. These effects
are unlikely mediated by caffeine, instead an indirect
action on the colon mediated by neural mechanisms
or gastrointestinal hormones has been suspected. Cof-
fee consumption is also inversely associated with the
prevalence of self-reported constipation [59]. Some
effects of coffee might be related to constituents such

as alkaloids, phenolic compounds, fibers, and minerals.
Dietary fiber contained in coffee has marked effects
on gut microbiota. It is rapidly metabolized into
SCFAs and causes a marked expansion of Bacteroides/
Prevotella bacteria [60]. In vivo, one study found
a decrease of Bacteroides after coffee consumption
while another did not find changes of Bacteroides/
Prevotella [61, 62]. This could, however, indicate an
expansion of Prevotella bacteria since their abundance
is inversely associated with that of Bacteroides [63].
In vivo, coffee caused an increase of anti-inflammatory
Bifidobacteria and a decrease of Clostridium spp. and
Escherichia coli that invade the gut mucosa in PD
[16, 61, 62, 64].

It is important to consider that alterations in
gut motility, as found in PD, and gut microbiome
composition could be independently related to each
other. Decreased Prevotella abundance and, more
consistently, a decreased abundance of Bifidobacte-
ria were found in constipated subjects [65–67]. In
our recent study, however, we did not find such
associations. Instead, constipation was associated pos-
itively with abundance of Verrucomicrobiaceae and
negatively with levels of Bradyrhizobiaceae [35].
Apparently, constipation itself may predispose to
microbiome alterations, increased mucosal permeabil-
ity, and inflammation [66].

In summary, there seem to be complex interrela-
tions between coffee and more generally the amount
and type of consumed polysaccharides, gastrointesti-
nal transit, and microbiome composition that are not
well understood, but may have connections to mucosal
permeability and inflammation [68]. All these domains
are known to be altered also in PD and in the few stud-
ies available, microbiome changes induced by coffee
somewhat resemble what has been seen in the micro-
biome of control subjects versus PD patients [16, 35].
Although direct evidence for the relevance of these
interactions for phenomena seen in PD is still miss-
ing, there is an intriguing framework for hypothesis
generation.

GUT MICROBIOTA ARE RELATED TO
SERUM URATE LEVELS, BUT LITTLE IS
KNOWN ABOUT LOCAL EFFECTS IN THE
GUT

Although relatively scarce, data regarding the rela-
tionship between gut microbiota and urate metabolism
mostly corroborate recent microbiome findings and
lower urate levels in PD. In particular, it has been
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Table 1
Summary table of bacterial taxa that have been reported to show altered abundances in the colon or feces in relation to PD and/or PD risk modifiers (includes in vitro as well as in vivo studies on

humans and animal models)

Taxon Abundance in Effect of Effect of Association with Remarks References
PD vs. Controls smoking coffee higher urate levels

Bacteroidetes Together with Firmicutes constitute over 90% of distal gut microbiota. [72]
Prevotellaceae ↓ Positively associated with levels of the neuroprotective gut hormone Ghrelin. Increased

abundance reported in ankylosing spondylitis.
[35, 39, 73]

Prevotella ? ↑? ↑ Breakdown of carbohydrates and mucous. Abundance correlates with fiber, fruit, and
vegetable consumption and is inversely related to Bacteroides abundance. Prevotella
copri has been associated with rheumatoid arthritis. Low abundance has been associated
with autism and type I diabetes.

[36–38, 40,
42–44, 54, 55,
60–63, 69, 74]

Bacteroidaceae
Bacteroides ? ↓ ↓ Abundance positively associated with protein- and animal-fat-rich “western” diet and

inversely related to Prevotella abundance.
[40, 54, 55,

60–63]
Firmicutes ↓ Together with Bacteroidetes constitute over 90% of distal gut microbiota. [72]

Ruminococcaceae ↑ Higher abundance was not PD specific in confounder adjusted analysis. [35]
Ruminococcus albus ↓ Obtain nutrients by breaking down cellulose. Ferments glucose and xylose. [52]
Lactobacillaceae ↑ May perform several beneficial roles including immunomodulation, interference with

enteric pathogens, and maintenance of healthy intestinal microflora. Inversely
associated with levels of the neuroprotective gut hormone Ghrelin. Modulate activity of
enteric neurons.

[35, 73, 75, 76]

Clostridiaceae (IV) ↑ ↓ in confounder adjusted analysis [35]
Clostridium ↓ Around 100 species that include common free-living bacteria, as well as important

pathogens.
[62]

Proteobacteria ↑ [54, 55]
Enterobacteriaceae ↓ A large family of bacteria that includes, along with many harmless symbionts, also

familiar pathogens. Abundance associated with PIGD symptoms in PD patients.
Increased abundance reported in autistic children.

[35, 52, 77]

Escherichia coli ↓ Includes hundreds of different strains that are involved in food digestion, but some can
cause intestinal and extra-intestinal infections. Invade gut mucosa in PD.

[16, 62]

Bradyrhizobiaceae ↑ Was negatively related to constipation in PD microbiota study. [35]
Actinobacteria ↓ [54, 55]

Bifidobacteriaceae
Bifidobacterium ↑ Ubiquitous, endosymbiotic inhabitants of the gastrointestinal tract, vagina, and mouth.

Some strains are considered important probiotics. May exert beneficial health effects
such as immune modulation, inhibition of pathogens, and bioconversion of dietary
compounds into bioactive molecules. Improve gut mucosal barrier and lower levels of
lipopolysaccharide in the intestine.

[61, 62, 64, 78]

Verrucomicrobia
Verrucomicrobiaceae ↑ Was positively related to constipation in PD microbiota study. [35]

Taxonomic levels: Phylum, Family, Genus/Species. ↑/↓ = Direction of bacterial abundance difference related to the respective factor. ? = Alterations of abundance have been reported, but reports
are inconclusive since Bacteroides/Prevotella were analyzed as one group although abundances of these genera are usually inversely related to each other.
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Fig. 1. Flow chart illustrating reported effects between urate, smoking, coffee, and different physiological domains with possible relevance for
PD risk. Furthermore, it is shown which of these factors are also related to changes in gut microbiota providing ground for interactions. However,
at present direct evidence for such interactions is missing and information is derived from in vitro as well as in vivo studies on humans and
animal models.

shown that the Prevotella dominated enterotype, which
seems to be underrepresented in PD subjects, is asso-
ciated with higher serum uric acid levels [35, 69].
This could be due to a lower activity of hydroxy-
isourate hydrolase, which is involved in the conversion
of uric acid to allantoin (intestinal uricolysis) [69].
With respect to effects of uric acid on gut physiol-
ogy, mainly oxidative stress and inflammation have
been studied, but results are heterogeneous and can-
not necessarily be extrapolated to systemic or central
nervous compartments. In plasma, uric acid accounts
for about half of the antioxidant capacity, while in
colonic biopsies, it has only a small contribution [70].
In the gut mucosa, xanthine oxidase is upregulated in
response to oxidative stress [52]. However, in addi-
tion to producing uric acid, this enzyme also produces
reactive oxygen species. Therefore, an increase in uric
acid production may actually go along with increases

in oxidative stress and inflammation, at least in the
gut mucosa [70, 71]. The Prevotella enteroype pro-
duces high amounts of the anti-inflammatory SCFA
butyrate which likely influences colonic uric acid lev-
els [40, 43, 70]. Thus, in particular Prevotellaceae, that
mainly determine microbiome differences between PD
patients and controls, seem to be related also to urate
metabolism, providing ground for further studies.

CONCLUSIONS

Considering the well established gastrointestinal
abnormalities in PD and the vast interactions of gut
microbiota with the human host, it seems mandatory
to explore whether gut microbiota are involved in
this devastating disorder. The recent discovery of gut
microbiome alterations in PD is a promising first step,
but obviously only a scrape on the surface. Intriguing
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associations have been reported based on which micro-
biota could indeed play a role at the interface between
environmental and lifestyle factors and PD. Figure 1
gives an overview of these possible connections and
Table 1 provides a list of the taxa mentioned in this
context. However, data about the mechanisms behind
these associations and their relevance for PD is scarce.
The most promising domains seem to be related to
gut barrier function, inflammation, oxidative stress,
gut motility, and metabolism. By studying these we
may gain more insight into the hugely complex net-
work of microbiome-host-interactions underlying the
observed associations. Longitudinal studies integrat-
ing metagenomic, transcriptomic, metabolomic, and
systems biology approaches with clinical parameters
and eventually interventional studies will hopefully
elucidate the temporal and mechanistic relationships
between established risk modifiers, gut microbiota,
and PD.
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