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Abstract.
Background: A blood-based test for the early detection of Parkinson’s disease (PD) would be an important diagnostic tool and
useful for patient selection when developing novel drugs or treatments for the disease.
Objective: Here, we aimed to identify potential biomarkers associated with PD.
Methods: We applied gene expression profiling to the study of peripheral blood from 75 healthy control subjects and 79 PD
patients at different stages of the disease. Healthy control subjects were matched for age and gender with PD subjects, and the
diagnosis of patients was based on clinical evaluation by specialists in movement disorders. RNA was extracted from the blood
samples and the gene expressions were measured using the Illumina HumanHT-12 v4.0 Expression BeadChip.
Results: Our results support previous studies that gene expression in blood may be instrumental in the search for molecular
biomarkers for PD. Single cross-validation results show that PD can be correctly classified from healthy controls with an
agreement of 88% to clinical diagnosis. De novo PD patients are classified with a sensitivity of 87%, which is close to what was
achieved for the patients having a confirmed PD diagnosis with disease duration <5 and >5 years (93% and 88%). A double cross-
validation procedure showed that using a selected set of around 650 informative genes, similar results are achieved. Functional
analysis of the selected genes showed genes significantly associated to mitochondrial dysfunction, protein ubiquitination, gene
expression and cell death.
Conclusions: PD affects gene expression in blood, suggesting the potential for the development of a blood-based gene expression
test.
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INTRODUCTION

The incidence of Parkinson’s disease (PD) increases
with age and is estimated to be 0.1–0.2% over the age
of 65 years [1] and reaching a prevalence of almost 4%
in those aged above 85 years. By 2030, prevalence is
expected to at least double due to an ageing population
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[2]. Currently, all available treatments for PD, both
pharmacological and surgical, offer only symptomatic
benefit. These treatments improve the quality of life for
persons with PD, but they do not stop progression of the
disease. A blood-based test for the early detection of
PD would be important for clinical practice, but also a
useful tool for patient selection when developing novel
drugs or other treatments directed towards protection
or disease modifying properties.

Conventional diagnosis of PD is purely clinical and
based on medical history and a detailed neurological
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examination using clinical scales to test for the
presence of characteristic motor symptoms: tremor,
bradykinesia, rigidity and postural instability due to
loss of postural reflexes. These classic approaches are
subjective, depend on the experience of the treating
physician, and only applicable in the clinical stage
of the disease. The characteristic motor symptoms
are related to dopamine deficiency, a consequence
of progressive loss of dopaminergic neurons in the
substantia nigra and other brain structures. Because
the manifestation of symptoms may take years to
develop, more than 70–80% of the dopaminergic
neurons will have degenerated before the diagnosis is
made. Familial etiology of PD exists in approximately
5% of the affected population [3, 4] and since the
late 1990s, when the first monogenic form of PD was
discovered, a number of genes and loci have been
implicated in the disease. These include �-synuclein
(SNCA/PARK1/4), parkin (PRKN/PARK2), ubiquitin
carboxyl-terminal esterase L1 (UCHL-1/PARK5),
Pten-induced kinase 1 (PINK1/PARK6), Oncogene
DJ-1 (DJ-1/PARK7) and leucine-rich repeat kinase
2 (LRRK2/PARK8), with vacuolar protein-sorting
associated protein 35 (VPS35/PARK17) [5] and
eukaryotic translation initiation factor 4-gamma 1
(EIF4G1/PARK18) [6] being the latest genes added to
the list in 2011. Analysis of the expression of genes,
the proteins these genes produce and the pathways
that they are involved in, may provide essential clues
to our understanding of the molecular pathogenesis of
PD, including dopaminergic neuronal death.

A number of molecular studies on gene expres-
sion profiles for PD in peripheral blood [7–13], have,
together, shown that a significant change in gene
expression can be detected for PD subjects compared
to healthy control subjects and disease controls such
as Alzheimer’s disease, suggesting that there exists a
potential to develop a blood test for prediction of early
(preclinical) PD. To date, none of the described results
have been validated in an independent cohort, and no
blood test for PD detection based on gene expression
has been developed. However, the development of a
blood-based gene expression test for Alzheimer’s dis-
ease has recently been published [14–16] suggesting
that accurate blood-based tests can be developed for
major neurological diseases.

In the current study, we performed a large-scale
gene expression study using Illumina microarrays on
peripheral blood samples from patients with PD to
develop a prediction model based on canonical partial
least squares (CPLS) and to investigate its diagnostic
accuracy in detection of de novo PD. We additionally

looked at how disease activity and treatment affected
the blood gene expression profile.

MATERIALS AND METHODS

Ethics Statement

All subjects included in the study gave written
informed consent, and the local ethics committees
approved all procedures, including blood sample col-
lection (Ref. No. 4.2008.1123, REC Central, Norway;
Ref. No. 154-08109c 2008-4196, REC South East,
Norway; DNr. M217-08, EPN Linkoping, Sweden).

Study subjects

Patients with clinically defined PD, patients with
de novo PD and healthy control subjects matched for
age and gender were recruited from three clinical cen-
ters located in Norway and Sweden from August 2008
until October 2010. Diagnostic evaluation included the
UK Parkinson’s Disease Society Brain Bank Criteria
(UKPDSBB) [17], Hoehn and Yahr staging [18], and
Unified Parkinson’s Disease Rating Scale (UPDRS)
[19, 20] for PD and de novo PD patients. Clinical diag-
nosis was established by an experienced movement
disorder specialist who performed a clinical interview,
medical examination and studied medical records,
developmental history and other available diagnostic
information. Control subjects were healthy individu-
als with no apparent neurological symptoms, recruited
as age- and gender-matched controls to PD and de
novo PD subjects. The majority of the healthy control
subjects were spouses. Exclusion followed if other neu-
rological disease, i.e. epilepsy, multiple sclerosis and
dementia, or severe depression was present. Dementia
was evaluated based on a cognitive evaluation con-
sisting of Mini–Mental State Examination (MMSE)
score [21], clinical interview and the use of UPDRS,
which includes a question about cognition. Depres-
sion was evaluated based on the clinical interview and
UPDRS, which contains a question regarding depres-
sion. No additional tests were conducted to diagnose
depression. Demographic and clinical information was
obtained for all patients and control subjects included
in the study (Tables 1, 2).

The inclusion of patients with a known PD diagnosis
was based on: (1) a diagnosis of PD according to the
UKPDSBB criteria; (2) a PD diagnosis for more than
five years after onset; (3) on medical treatment for PD;
and (4) MMSE equal to or greater than 27. Inclusion of
patients with newly diagnosed PD was based on: (1) a
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Table 1
Demographic characteristics of Parkinson’s disease patients and healthy control subjects

PD subjects n = 79 Healthy control subjects n = 75 All subjects n = 154
Mean (Range) Mean (Range) Mean (Range)

Demographics
Age (years) 65.0 (43–83) 63.3 (35–80) 64.2 (35–83)
Gender (male) 51.9% 49.3% 50.6%
Education (years) 13 (7–23) 13 (7–21) 13 (7–23)

Table 2
Characteristics of Parkinson’s disease patients.

Score Mean Median SD Min Max

De novo PD Hoehn and Yahr 1.67 2 0.5 1 2.5
UPDRS 31.2 31 9.5 15 49

Treated PD∗ Hoehn and Yahr 2 2 0.6 0 3
UPDRS 31.4 32 12.7 11 62

All PD Hoehn and Yahr 1.9 2 0.6 0 3
UPDRS 31.3 32 11.8 11 62

∗De novo PD patients were examined before they started taking
dopaminergic drugs. Treated PD patients were examined in the on-
medication state. This is probably the reason for the similar UPDRS
scores in the two groups.

PD diagnosis for less than five years after onset; (2) on
medical treatment for PD; (3) Hoehn and Yahr equal
to or less than three; and (4) MMSE score equal to or
greater than 27. De novo PD subjects were recruited
based on: (1) no final PD diagnosis (2) no medical
treatment for PD; (3) Hoehn and Yahr equal to or less
than three; and (4) a clinical picture assuming devel-
opment of PD. The de novo PD subjects subsequently
received dopaminergic therapy and their condition was
followed up annually for up to 3 years past first visit
to confirm diagnosis. Four of the de novo PD patients
were followed up once within 3 years past first visit.
Healthy control subjects were mostly recruited from
spouses or family of patients to the study based on:
(1) MMSE score greater than 27; (2) age-matched as
cohort to patients; and (3) no signs or symptoms sug-
gesting neurological disease.

Blood sampling

Blood sampling was performed at the same time as
the clinical evaluation. Venous blood samples (2.5 mL)
were drawn into PAXgeneTM tubes (Becton & Dick-
enson, Qiagen Inc., Valencia, CA) according to the
manufacturer’s instructions. Tubes were incubated at
room temperature (18–25◦C) overnight prior to freez-
ing and storage at −70◦C or below. Tubes were
transported on dry ice to DiaGenic’s laboratory in Oslo,
Norway, and stored at −70◦C or below until processed
further. RNA was extracted from all samples within 6
months of blood draw.

RNA extraction and Quality Control

The blood samples were thawed for 2 hours
before total RNA was extracted using PAXgeneTM

Blood RNA kit (Qiagen Inc., Valencia, CA) accord-
ing to the manufacturer’s instructions. Total RNA
was stored at −70◦C or below until analysis. The
RNA was assessed for quality and quantity using the
NanoDrop ND-1000 spectrophotometer (NanoDrop,
Wilmington, DE) and the Agilent 2100 BioAnalyzer
(Agilent, Santa Clara, CA), with sample acceptance
limits RIN ≥ 7.3; 28 S/18 S ≥ 1.0; A260/A230 ≥ 1.0;
A260/A280 ≥ 1.8; and RNA concentration ≥15 ng/L.
cDNA was prepared in batches using the High-
Capacity cDNA Reverse Transcriptase kit (Applied
Biosystems, Foster City, CA) according to manufac-
turer’s instructions.

Microarray experimental design

All samples were organized in batches of 12 due to
microarray experimental steps. Each batch consisted
of five PD subjects and five healthy control subjects,
together with two technical replicates used solely for
quality control assessment. All patients and control
subjects were distributed so that each batch contained
five women and five men, equally distributed between
disease status, and a total of 17 batches were randomly
created as described.

RNA samples were shipped on dry ice to the AROS
Applied Biotechnology laboratories (Aarhus, Den-
mark) for microarray analysis, and the study was
blinded for the operators.

Microarray procedure

The gene expression screen was performed using the
Illumina whole-genome expression array HumanHT-
12 v4.0 Expression BeadChip (Illumina, Inc., San
Diego, CA), containing 47, 231 oligonucleotide probes
representing 34,602 genes, and processed accord-
ing to the manufacturer’s protocol. The Illumina®

TotalPrep™ RNA Amplification Kit (Applied Biosys-
tems, CA) was used to prepare labeled cRNA. To
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start, 600 ng of total RNA were used. For the synthe-
sis of cDNA, T7-oligo (dT) primers were used and the
cDNA then underwent second strand synthesis before
it was purified and subjected to an in vitro transcription
(IVT) labeling using T7 RNA Polymerase. The labeled
and fragmented cRNA was hybridized overnight on
the BeadChip (Illumina, Inc., San Diego, CA). The
arrays were then washed, blocked, and stained using
streptavadin-Cy3. The arrays were finally scanned on
an Illumina BeadArray Reader following the man-
ufacturer’s protocols. Illumina BeadStudio software
(Illumina, Inc., San Diego, CA) was used to quan-
titatively detect fluorescence emission by Cy3, and
generate signal intensity values, detection p-values,
average bead number and bead standard deviation from
the scans.

Microarray data quality control

To ensure high sample signal quality the following
quality criteria were applied on the microarray data:
(1) homogenous background signal based on visual
inspection; (2) the average of the average signal on
each microarray to be within 100–150, and the aver-
age signal on all microarrays to be within 20% of the
overall average; (3) the average signal/noise ratio to be
above ten on each microarray; (4) the median back-
ground signal to be below 60 on each microarray; (5)
the present call rates to be within 23–37%; (6) the probe
signals of two technical duplicates on each microarray
to have a Pearson correlation coefficient (r) of at least
0.97; (7) the perfect match/mismatch ratio to be above
5×; and 8) the P95/P05 ratio to be above seven. If at
least one of the criteria was violated, the array was
rerun.

Microarray data pre-processing

Building prediction models based on tens of thou-
sands of features (gene probes) is an exhaustive and
memory consuming process. Moreover, some statistics
tools, such as R, have memory limitations [22]. Hence,
it is necessary to filter out the features that have little or
no contribution to the prediction performance. All gene
probes were first filtered using flags to select detected
genes. A ‘present’ flag was defined as a signal detection
p-value less than 0.1, or average bead number of at least
two. Further, a coefficient of variance was calculated
by dividing the bead standard deviation by the aver-
age expression signal, and probes with values below
0.3 were also flagged as present. Only a probe that had
present flags in at least 90% of the samples for all the

arrays was kept for further analysis. The data for each
of the remaining gene probes was subsequently pro-
cessed by introducing a missing value (null) for each
probe with an average bead number lower than three,
or a coefficient of variance above 0.3. The reduced
dataset was then log2 transformed and any missing
values were imputed using the k-Nearest Neighbor (k-
NN)-algorithm with k = 10 nearest neighboring values
[23].

Next, normalization was applied by subtracting the
signal intensity of each probe in each sample by the
mean intensity for that sample across all probes (global
mean normalization). Finally the data were adjusted
for batch effects from chips, using analysis of vari-
ance (ANOVA) correction for each individual gene
probe [24]. These normalized data were used for all
downstream analyses.

Microarray data analysis

For initial discrimination between the two classes
of samples, healthy (class 1) and diseased (class 2),
we used Canonical Partial Least Squares (CPLS) [25].
Leave-one-out cross-validation (LOOCV) was used
to assess the performance of candidate classifiers.
The ‘pls’ package of the freely available R software
[26], which can be downloaded from CRAN (cran.r-
project.org), was used to perform the analyses. CPLS
is an extension of partial least squares (PLS) regres-
sion [27], which is a dimension reduction method that
enables the use of secondary information about the
samples as additional data during model fitting. The
secondary data are assumed to be available at the
stage of model building, but they are not necessar-
ily available for prediction of future samples. Hence,
this information may not be used as direct input to a
classifier.

The gene expression data served as predictors for
predicting a response matrix which can be split into
two sets of variables, a set of primary interest and a
set of additional responses. In our setting, the primary
response is the health status of the subjects (dummy
coded during computations as −1 for class 1, and 1 for
class 2), and the secondary responses are the clinical
variables and laboratory measurements (Table 3). The
secondary responses provide extra input to the CPLS
algorithm which may, given that the extra information
is relevant, stabilize parameter estimates and improve
prediction performance. A new sample was classified
as PD based on gene expression if the predicted pri-
mary response was larger than zero and as healthy
otherwise.
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Table 3
Clinical variables included as additional responses in canonical par-

tial least squares modeling.

Order Variable

1 Site 1
2 Site 2
3 Site 3
4 Gender
5 A260/A280∗
6 A260/A230∗
7 Concentration∗
8 28 S/18 S∗
9 RNA integrity number∗
10 Age
11 Any chronic disease (other than Parkinson’s disease)
12 Cancer
13 Hypertension
14 Diabetes
15 Heart disease
16 Coronary disease
17 Other chronic disease
∗Measures of RNA quality.

Microarray data contain up to about 50,000 mea-
surements of gene expression per sample, but usually
the sample sizes are small. In addition, they also
suffer from class-imbalance. Classifiers built on class-
imbalanced data are biased towards the majority class,
performing inaccurately on the minority class [24]. In
order to prevent this problem from happening, sample
balancing was applied in this study by down-weighting
the majority class and up-weighting the minority class.
The prediction method was fitted using a LOOCV rou-
tine. In each test, n − 1 of the samples are used for
training and one sample is for testing (acting as an
unseen data set). For each training set consisting of
n − 1 of the samples, sample weights were calculated
based on the class-imbalance. The samples from class
j(j = 1, 2) were weighted according to:

wj = 0.5 · (n − 1)

nj

where nj is the number of samples belonging to
class j.

The elimination of features not contributing signif-
icantly to the model may improve the accuracy of
classification, but also simplify the model and pos-
sibly reveal biologically important genes related to
PD. Jackknife feature selection was used to select
significant gene probes using a p-value of maximum
0.05 as selection criterion. A double leave-one-out
cross-validation (DCV) procedure with weighting for
class imbalance (Karlsson MK, Lönneborg A, Sæbø
S, unpublished data) was carried out in order to avoid
overly optimistic performance estimates of the subsets

of predictive gene probes. The prediction performance
was estimated using the clinical diagnosis as reference,
and the accuracy, sensitivity, specificity and the area
under the curve (AUC) was calculated.

The partial least squares framework handles mul-
tiple and potentially highly correlated features very
well, however, it was assumed that it would be favor-
able to include more gene probes in the final model
rather than to minimize the number of features and
thus risk losing biological information. We therefore
collected significant probes from all segments of a sin-
gle cross-validation analysis. Any gene probe that was
found significant in at least one segment was included
in a final feature set from all the training set samples.
Gene probes in the final feature set were investigated
in terms of networks, pathways and biological function
using the Ingenuity Pathway Analysis (IPA) software
tool (Ingenuity Systems; Mountain View, CA) [28].

RESULTS

Characteristics of study subjects

This study comprised 154 subjects; 79 subjects with
PD and 75 healthy control subjects. Among the 79 PD
subjects, 23 were untreated subjects, so called de novo
PD patients, 14 were recently diagnosed PD patients
treated less than 5 years (PD < 5yrs), and 42 were estab-
lished PD patients treated 5 years or more (PD > 5yrs).
Subject demographics are provided in Table 1. Clin-
ical data were available for all subjects. The healthy
subjects included 37 men and 38 women, and the
PD subjects included 41 men and 38 women. There
was no significant group difference for age or gender
(p > 0.01). PD patient characteristics are provided in
Table 2.

Identification of a prediction model for PD in
blood

We applied the CPLS method to the microarray data
including 17 clinical variables (Table 3) as additional
responses. The data set used consisted of all the 154
samples. A LOOCV procedure was applied to validate
the prediction performance. Of the 154 subjects, 74
(48.1%) were predicted as healthy and 80 (51.9%) were
predicted as PD by the CPLS classifier, and 135/154
subjects (accuracy, 87.7 ± 5.2%) were predicted in
agreement with clinical diagnosis. Among the PD sub-
jects, 20 out of 23 (87%) of de novo PD subjects were
classified in agreement with the clinical diagnosis. The
corresponding numbers for the other groups were 13 of
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Table 4
Performance characteristics for the data set (n = 154) based on

LOOCV with 95% confidence interval

Performance characteristics N LOOCV (%)

Accuracy 154 87.7 ± 5.2
Sensitivity All 79 88.6 ± 7.0

De novo 23 87.0 ± 13.8
PD < 5yrs 14 92.9 ± 13.5
PD > 5yrs 42 88.1 ± 9.8

Specificity 75 86.7 ± 7.7
Positive likelihood ratio (PLR) 6.65
Area under the ROC curve (AUC) 0.94

14 (92.9%) for PD < 5yrs patients and 37 of 42 (88.1%)
for the PD > 5yrs patients. This gives a total sensitivity
of 88.6 ± 7.0%. Among the healthy control subjects 65
of 75 subjects (specificity, 86.7 ± 7.7%) were classified
correctly (Table 4). The Positive Likelihood Ratio was
6.65. The distribution of the test scores for patients and
controls in the training set is given in Fig. 1A. When
plotting the sensitivity versus 1-specificity in a receiver
operating characteristics (ROC) curve (Fig. 1B), there
was a good separation of the two groups with an AUC
of the ROC curve of 0.94.

Applying a DCV procedure together with Jackknife
feature selection to the 154 sample set identified a set
of 1367 gene probes to be significant at p-level 0.05
in at least one of the single CV segments. On average,
647 gene probes were selected in each segment, with a

Table 5
Performance characteristics for the data set (n = 154) based on DCV

with jackknife feature selection (±95% confidence interval)

Performance characteristics N DCV (%)

Accuracy 154 83.8 ± 5.8
Sensitivity All 79 83.5 ± 8.2

De novo 23 91.3 ± 11.5
Treated 56 80.4 ± 10.4

Specificity 75 84.0 ± 8.3
Positive likelihood ratio (PLR) 5.22
Area under the ROC curve (AUC) 0.89

standard deviation of 33. The performance character-
istics of the feature selection and classifier estimation
method are presented in Table 5. Of the 79 PD sam-
ples in the set, 66 were predicted correctly, while 63
of the 75 healthy control samples were predicted cor-
rectly, showing an overall accuracy of 83.8%. Among
the PD subjects, 91.3% (21/23) de novo PD subjects
and 80.4% (45/56) treated PD were classified in agree-
ment with the clinical diagnosis (Fig. 2A). The area
under curve (AUC) was 0.89 (Fig. 2B).

Comparison with published blood gene expression
studies

Seven studies on gene expression in blood for PD
have been published over the last five years [7–13], but
only three present classifiers for PD. Scherzer et al. [7]
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Fig. 1. Prediction performance of the PD classifier based on leave-one-out cross-validation. (A) Classification scores. Among the 79 PD subjects
in the data set, 70 were correctly classified, while 65 of the 75 healthy subjects were assigned to the correct class. Twenty of 23 de novo PD
subjects were correctly classified, 13 of 14 PD < 5yrs subjects were correctly classified, whereas out of 42 PD > 5yrs subjects the classifier
predicted the final diagnosis correctly for 37 subjects. A test score > 0 classifies a subject as having PD while a score < 0 classifies a subject as
non-PD. (B) ROC curve from data set. Prediction of the 154 subjects based on leave-one-out cross-validation results. Data set gave a classification
accuracy of 87.7% and an AUC of 0.94 reflecting a good separation of the two groups.
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Fig. 2. Prediction performance of the PD classifier based on double leave-one-out cross-validation. (A) Classification scores. Among the 79
PD subjects in the data set, 66 were correctly classified, while 63 of the 75 healthy subjects were assigned to the correct class. Twenty-one of
23 de novo PD subjects were correctly classified, whereas out of 56 treated PD subjects the classifier predicted the final diagnosis correctly for
45 subjects. A test score >0 classifies a subject as having PD while a score < 0 classifies a subject as non-PD. (B) ROC curve from data set.
Prediction of the 154 subjects based on double leave-one-out cross-validation results. Data set gave a classification accuracy of 83.8% and an
AUC of 0.89 reflecting a good separation of the two groups.

conducted a microarray study and present a set of 22
differentially expressed genes, while Grünblatt et al.
[8] and Molochnikov et al. [13] used real-time poly-
merase chain reaction (RT-PCR) to evaluate twelve and
seven genes, respectively. The remaining four studies
[9–12] have either not successfully found a discrim-
inating model, or solely perform univariate analysis
of differentially expressed genes based on fold change
and significance tests. We compared our identified gene
list to genes lists presented by Scherzer, Grünblatt and
Molochnikov.

Among the set 22 genes identified by Scherzer
et al. [7], we found three genes overlapping with our
set of genes: the nuclear encoded mitochondrial gene
LRPPRC; B-cell CLL/lymphoma 2 (BCL2), which
reportedly suppresses apoptosis in a variety of cell
systems including neural cells and is linked to the
PD-associated gene Parkin; and serine/arginine-rich
splicing factor 8 (SRSF8/SRP46).

Grünblatt et al. [8] reported a set of four significant
genes, but none of these were selected in our analysis.
Grünblatt et al. initially evaluated a set of 12 candidate
genes selected by postmortem brain profiling, and two
of these genes overlap with our gene set: the down-
regulated heat shock 70 kDa protein 8 (HSPA8), and
the up-regulated ubiquitin-conjugating enzyme E2K

(UBC1 homolog, yeast) (UBE2K/HIP2). HSPA8 and
HIP2 are similar genes, related to ST13, which has
previously been linked to PD by Scherzer et al. Simi-
larly, Molochnikov et al. [13] evaluated a set of seven
candidate genes selected from the same postmortem
brain profiling study as Grünblatt et al., and presented
a five-gene set for differentiating between early PD
and controls. Here we found an overlap of two genes:
HSPA8 and UBE2K/HIP2, and a third gene, Egl nine
homolog 1 (EGLN1) was also found overlapping with
the initial set evaluated by Molochnikov et al.

Functional analysis by Ingenuity Pathway
Analysis (IPA)

Analysis of differential expression in genes is fre-
quently carried out with the aim to interpret the
identified subset of genes in terms of biological func-
tions and pathways. The 1367 selected informative
gene probes between the 79 PD patients and 75 healthy
control subjects were further explored through path-
way and functional analyses using the “Core Analysis”
function included in IPA. Out of the 1367 gene probes,
a significant number were not annotated (n = 195) or
had limited biological information and these were
removed from the list along with duplicate gene
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symbols. One thousand, one hundred and sixteen gene
symbols from the total list were recognized by IPA and
included in the analysis.

As expected, the functional analysis results iden-
tified a number of genes significantly associated to
toxicity due to mitochondrial dynamics and function,
and oxidative stress (p < 0.05). This is in accordance
with the established mitochondrial dysfunction in PD
[29] and provides further evidence for mitochondrial
impairment at the transcriptional level in blood. The
significant functions with higher number of genes
implicated correspond to ‘infectious disease’, ‘tran-
scription’, ‘apoptosis’, and ‘cell death’. Among the
most significant canonical pathways were several path-
ways related to cellular signaling, together with the
protein ubiquitination pathway.

Using IPA we identified genes directly interacting
between our gene list and for each of the gene lists
presented in [7, 8] and [13]. A cluster of 34 genes
from our list was found directly interacting with 9 of
the 22 genes on Scherzer’s list. These 43 genes were
associated with gene expression, mainly ‘transcrip-
tion’ (p = 1.2E-12, Fisher’s exact test), but also with
‘cellular growth and proliferation’ (p = 1.6E-9), ‘cell
death and survival’ (p = 2.8E-8), and ‘oxidative stress’
(p = 1.3E-5).

Analyzing Grünblatt’s 12 gene list, a cluster of 4
genes was found directly interacting with 32 genes
from our list. Twelve of these 36 genes were associ-
ated with neurological disease, and 11 of which were
related to function ‘movement disorder’ (p = 4.6E-
5). However, ‘cellular growth and proliferation’, ‘cell
death and survival’, and ‘skeletal and muscular dis-
orders’, including ‘Parkinson’s disease’ were also
functions significantly associated. The most significant
canonical pathway identified was ‘protein ubiquiti-
nation pathway’, and interestingly, prostaglandin J2
emerged as a highly significant upstream regulator with
p = 9.2E-14 (Fisher’s exact test).

Five of the seven genes investigated by Molochnikov
et al. [13], were directly interacting with 49 of our 1116
genes. Eleven genes were significantly associated with
the protein ubiquitination pathway (p = 3.7E-10), and
among the most significant functions were ‘neurolog-
ical disease’, ‘cell death and survival’, ‘inflammatory
response’, and several functions related to mitochon-
drial function and dynamics.

Furthermore, SNCA (alpha-synuclein), the first PD-
associated gene identified and believed to have a
central part of PD pathology, is one of the identified
genes in our list. It has previously been reported to be
down-regulated for PD patients [7, 11].

DISCUSSION

Identification of biomarkers for early, preclinical
stages of PD is important for the disease treatment and
prevention of disease progression to be successful, and
towards identifying individuals at risk. This is impor-
tant since clinical criteria are only applicable late in
the disease and here an accurate biomarker for PD has
the potential to be a key tool in the process of diag-
nosis. Further, biomarkers could provide insights into
our understanding of the molecular pathogenesis of
PD, which in turn, could be used to identify therapeutic
targets. Previous studies of gene expression in PD have
mainly focused on brain tissue and cerebrospinal fluid
(CSF) or animal models [30–32], with limited sample
sizes. The present need in a biomarker for PD is for it
to be of clinical use. Because brain tissue is obtained
at autopsy, it is not a potential candidate for a clinical
test. CSF is in direct contact with the brain and spine,
but it is more difficult to obtain a spinal fluid sample
than a blood sample. Entering the spinal canal with
a needle requires expert knowledge and experience
to avoid serious complications from the procedure,
while blood sampling is a much simpler procedure and
can be performed by any trained health professional.
More recent genomic studies in PD show an increased
interest for gene expression in blood [7–13]. These
studies support the hypothesis that changes in gene
expression in the brain due to PD can also be found in
blood [33], and they also show, together with studies
such as [14–16], the potential of developing accurate
blood-based tests for major neurological diseases. The
present study is the most extensive gene expression
profiling for PD yet done in blood. Our analysis of
gene expression profiling in peripheral blood from a
larger number of samples confirms the findings in pre-
vious studies that gene expression in blood may be
instrumental in the search for molecular biomarkers
for PD.

One of our main findings was that not only did we
identify an effective prediction model for PD with 88%
accuracy by LOOCV, and 84% accuracy when apply-
ing the more robust DCV on a selected subset of the
gene probes, but we also found a classifier that predicts
de novo PD, the earliest clinical stage of the disease,
with high accuracy. Since the de novo PD patients have
not yet been treated for the disease at blood sampling,
it strongly suggests that the identified classifiers’ pre-
dictive ability is not affected by disease treatment. The
performance characteristics showed good agreement
with clinical diagnosis reaching 87% for LOOCV and
91% for DCV with feature selection. Diagnosis of PD
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is usually a straightforward clinical exercise in patients
with typical presentation of characteristic symptoms
and excellent response to levodopa treatment. Never-
theless, clinicopathological studies have demonstrated
difficulties in the diagnosis of the disease in the early
stages [34, 35], but also the challenges of differential
diagnosis versus atypical parkinsonian disorders, such
as progressive supranuclear palsy and multiple sys-
tems atrophy, especially early in the disease when signs
and symptoms have greater overlap [11]. A blood-
based test for the early detection of PD would i) help
physicians in difficult cases and potentially identify
individuals at risk of the disease; ii) aid clinicians in
choosing the best medical treatment at earlier stages;
iii) be a useful tool for patient selection when develop-
ing novel drugs or other treatments to delay or prevent
disease progression.

Functional analysis, using IPA [28], of the selected
set of gene probes yielded significant biological func-
tions and canonical pathways previously reported
central in PD, such as mitochondrial dysfunction,
oxidative stress, neurological disease, cell signaling,
and the ubiquitin-proteasome pathway. Functional
mitochondria are important for neurotransmission,
synaptic maintenance and neuronal survival [29].
Mitochondrial dysfunction is also associated with
the generation of oxidative stress, and dysfunctional
mitochondria more readily mediate the induction of
apoptosis.

Four microarray studies on PD in blood have
been conducted over the last five years using mainly
the Affymetrix platform. The Illumina platform was
selected over others for being quality and cost-
effective. We compared our list of identified jack-knife
selected genes with some other published gene lists
from independent studies on gene expression in blood
to determine common findings. Three of the 22 dif-
ferentially expressed genes presented by Scherzer et
al. [7] were present in our gene set. Interestingly,
the down-regulated nuclear encoded mitochondrial
gene LRPPRC, mentioned in [7] was one of these,
and BCL2, which regulates cell death by control-
ling the mitochondrial membrane permeability, was
another. BCL2 has been linked to the PD-associated
gene Parkin. Of the PD-associated genes, only alpha-
synuclein (SNCA) was present in our gene list.
SNCA has previously been demonstrated to de down-
regulated in PD patients by Scherzer et al. [7] and
Soreq et al. [11]. We also found supporting data for a
number of the identified differentially expressed genes
reported in real-time PCR (RT-PCR) studies [8, 13],
which strengthens the results in this study.

The availability of different technologies and plat-
forms for measuring gene expression generates ever
more data, and with it, poor reproducibility because
different studies analyzing the same clinical out-
come report different genes used in the classifiers.
A recent study comparing different microarray tech-
nologies [36] showed high agreement between data
generated by different microarray platforms (correla-
tion = 0.8–0.9), but also that platform differences do
exist. Furthermore, the study concluded that sample
tissue, signal filtering, and normalization method may
also affect the reproducibility. Using small, moderate
or large sample sizes for generating gene lists is also
an important factor. While we analyzed a relatively
balanced set of 154 samples (79 PD and 75 healthy
controls), the only two studies of comparable size was
the microarray study by Scherzer et al. [7], which com-
pared 66 samples (31 PD and 35 controls), and the
RT-PCR study by Grünblatt et al. [8], which compared
139 samples (105 PD and 34 healthy controls).

The gene expression profile identified in this
genome-wide microarray study is intended to be
further refined and developed into a validated and clin-
ically useful test. Such a test will offer clinicians a
convenient blood based tool to supplement the exist-
ing diagnostic workup for early diagnosis of PD, as
PD is a progressive disorder developing for many years
before clinical symptoms become apparent. Consider-
ing that the identified gene expression profile predicted
de novo PD and treated PD patients with equally high
accuracy, it is possible that the profile can predict PD at
a preclinical stage of the disease. This is yet to be tested.

In this study potential biomarkers for PD were
selected by jackknife selection based on the CPLS
algorithm. This method is a multivariate approach to
variable selection. The identification of a set of rele-
vant, but not redundant, features is central for building
prognostic and diagnostic models. Most commonly,
individual features are ranked in terms of a quality
criterion, such as correlation or t-test p-values, out of
which the top k features are selected. However, most
feature-ranking methods do not sufficiently account for
interactions and correlations between the features, and
therefore redundancy is likely to be encountered in the
selected features. The results in this paper show that the
predictive performance of the CPLS/jackknife method
is very good and that the selected set of features are
associated with a number of different functions and
pathways central in PD. This is an example showing
that multivariate approaches may be far more effective
than univariate counterparts when it comes to identi-
fying biomarkers for diagnostic purposes. The subtle
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differences between sample classes may be much eas-
ier to find in the multivariate variable space, than in
the limited space spanned by the genes selected on the
basis of univariate considerations.
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