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Abstract. The reasons for the differences in emphasis on striatonigral or olivopontocerebellar involvement in multiple system
atrophy (MSA) remain to be determined. Semi-quantitative pathological analyses carried out in the United Kingdom and Japan
demonstrated that olivopontocerebellar-predominant pathology was more frequent in Japanese MSA than British MSA. This
observation provides evidence for a difference in phenotype distribution between British and Japanese patients with definite
MSA. Studies of the natural history and epidemiology of MSA carried out in various populations have revealed that the relative
prevalences of clinical subtypes of MSA probably differ among populations; the majority of MSA patients diagnosed in Europe
have predominant parkinsonism (MSA-P), while the majority of MSA patients diagnosed in Asia have predominant cerebellar
ataxia (MSA-C). Although potential drawbacks to the published frequencies of clinical subtypes and pathological subtypes
should be considered because of selection biases, the difference demonstrated in pathological subtype is also consistent with the
differences in clinical subtype of MSA demonstrated between Europe and Asia. Modest alterations in susceptibility factors may
contribute to the difference in MSA phenotype distribution between populations. Synergistic interactions between genetic risk
variants and environmental toxins responsible for parkinsonism or cerebellar dysfunction should therefore be explored. Further
investigations are needed to determine the environmental, genetic, and epigenetic factors that account for the differences in
clinicopathological phenotype of MSA among different populations.
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Multiple system atrophy (MSA) is a rare neu-
rodegenerative disorder with both clinical (MSA
with predominant parkinsonism: MSA-P versus MSA
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with predominant cerebellar ataxia: MSA-C) and
pathological (striatonigral degeneration: SND versus
olivopontocerebellar atrophy: OPCA) variants. Physi-
cians and scientists investigating the aetiology of MSA
have long been puzzled as to why some patients
present primarily with parkinsonism whereas in others
cerebellar ataxia predominates. MSA is characterized
pathologically by glial (oligodendroglial) cytoplasmic
inclusions (GCIs) [1, 2], which are composed of fib-
rillar �-synuclein [3–5] and other proteins. Recently,
genetic studies of single nucleotide polymorphisms
(SNPs) demonstrated that certain SNPs in the �-
synuclein gene (SNCA) were significantly associated
with increased risk of developing MSA in European
cohorts [6, 7]. The discovery of SNCA risk variants
for MSA provided useful information which may be
relevant to the mechanism underlying the �-synuclein
pathology in MSA. However, despite increased under-
standing of the pathological basis of MSA, the reasons
for the differences in emphasis of striatonigral (StrN)
or olivopontocerebellar (OPC) predominance in MSA
remain to be determined. The natural history and epi-
demiology of MSA have been reported from many
countries, and the variation in the phenotypic spec-
trum in different ethnic groups has recently attracted
considerable attention.

The purpose of this review is to explore the fac-
tors that may underlie such phenotypic variation and
to discuss any insights that these provide into the patho-
genesis of MSA. We will summarize the results of
neuropathological studies carried out in the United
Kingdom (UK) [8] and Japan [9] which demonstrate
that the spectrum of pathological involvement of the
StrN and OPC systems differs between these two
ethnically different populations and discuss the accu-
mulating evidence that the relative clinical prevalences
of MSA-P and MSA-C in Europe [10–17] may differ
from those in Asia [18–21].

COMPARATIVE STUDY OF MSA
PATHOLOGY IN TWO LARGE PATIENT
COHORTS

In the past few years semi-quantitative patholog-
ical analyses of MSA have been carried out in the
UK [8] and Japan [9] using autopsied brain material
from 100 British (Caucasian) cases of MSA referred
to the Queen Square Brain Bank, London, UK, and 50
cases of MSA referred to the Brain Research Institute,
Niigata University, Japan. In this section, we summa-
rize findings regarding MSA pathology that have been

reported separately in two papers [8, 9]. The first author
(T.O.) of these studies performed semi-quantitative
assessments of neuronal cell loss in 24 anatomical sites
in the StrN and OPC regions (Fig. 1). For this, the fol-
lowing brain regions were selected for examination: (i)
basal ganglia at the level of the nucleus accumbens and
the anterior commissure; (ii) midbrain at the level of
the red nucleus and also at the decussation of superior
cerebellar peduncle; (iii) cerebellar vermis and hemi-
sphere at the level of the dentate nucleus; (iv) rostral
pons at the level of the locus coeruleus and caudal pons;
and (v) medulla oblongata [8]. The semi-quantitative
assessments of neuronal cell loss were performed using
sections stained by haematoxylin and eosin (H&E) and
Luxol fast blue/cresyl violet, and assigned one of four
scores for the degree of neuronal loss (0, 1+, 2+, or
3+) in each anatomical site. There was a trend for the
British cases to feature greater involvement of the basal
ganglia, while in the Japanese cases the OPC region
tended to be more severely affected than StrN struc-
tures (Fig. 2). The substantia nigra was found to be
equally vulnerable in both the British and the Japanese
MSA cases. Based on the data of the semi-quantitative
assessments, the grading scale used to characterize
StrN pathology was as follows. Grade 1: the SbN
demonstrates 1+ or 2+ neuronal cell loss, and there
is 0 or 1+ neuronal cell loss in globus pallidus, caudate
nucleus or putamen. Grade 2: the SbN and putamen
demonstrate 2+ or 3+ neuronal cell loss, and there is
1+ or 2+ neuronal cell loss in the caudate nucleus and
globus pallidus (except for cases with 3+ neuronal cell
loss in both SbN and putamen). Grade 3: the SbN and
putamen demonstrate 3+ neuronal cell loss. The grad-
ing scale used to characterize OPC pathology was as
follows. Grade 1: in the inferior olivary nucleus, pon-
tine nuclei, cerebellar hemisphere or vermis, there is 0
or 1+ neuronal cell loss or one structure demonstrating
2+ neuronal cell loss, while the others have less than
1+ neuronal cell loss. Grade 2: in the inferior olivary
nucleus, pontine nuclei, cerebellar hemisphere or ver-
mis, there is either 2+ neuronal cell loss or one structure
demonstrating 3+ neuronal cell loss, while the others
have less than 2 + neuronal cell loss. Grade 3: more than
two structures among the inferior olivary nucleus, pon-
tine nuclei, cerebellar hemisphere or vermis demon-
strate 3+ neuronal cell loss, If there were different
degrees of pathology in the same structure (e.g., ros-
tral pons 1+, caudal pons 3+), the worst (e.g., 3+) was
used for the grading. Combinations of scores reflect-
ing the grading for StrN and OPC neuronal loss were
allotted to three categories: “StrN-predominant pathol-
ogy”, “OPC-predominant pathology”, and “StrN and
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Fig. 1. The 24 anatomical sites in the striatonigral and olivopontocerebellar regions examined in a comparison of two large patient cohorts
[8, 9]. Semi-quantitative assessment of neuronal loss in these anatomical regions was performed in autopsied brain samples from 100 British
patients and 50 Japanese patients with multiple system atrophy. Put = putamen, Cau = caudate nucleus, GP = globus pallidus, SbN = substantia
nigra, CBH = cerebellar hemisphere.

Fig. 2. Summary of the results of a comparative study of multiple system atrophy (MSA) cohorts carried out in the UK and Japan, which were
presented separately in two papers [8, 9]. British MSA patients have significantly higher scores for neuronal loss in Put2, Cau2 and GP1 than
do Japanese patients (P < 0.05, Bonferroni corrected). In Pons1 and 2, Japanese MSA patients have significantly higher scores for neuronal loss
than British patients (P < 0.001, Bonferroni corrected). Generally, British MSA cases tended to feature greater involvement of the basal ganglia,
while Japanese cases tended to feature greater involvement of the olivopontocerebellar region. The substantia nigra is equally vulnerable in both
British and Japanese patients with MSA. Put = putamen, Cau = caudate nucleus, GP = globus pallidus, SbN = substantia nigra, Cbh = cerebellar
hemisphere. Data are represented as mean ± standard error of the mean.
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Fig. 3. Relative prevalence of striatonigral (StrN)- and olivopontocerebellar (OPC)-predominant pathology in British and Japanese multiple
system atrophy (MSA), as presented separately in two papers [8, 9]. (A) In the British MSA cohort, the relative prevalence of pathological
phenotypes was as follows: 17% had OPC-predominant, 34% StrN-predominant, and the remainder (49%) equivalent pathology. (B) In the
Japanese cohort, 40% of cases had OPC-predominant pathology, 18% StrN-predominant pathology, and the remainder (42%) had equivalent
pathology. The frequency of OPC-predominant pathology in the Japanese series was significantly higher than in the British series (P = 0.004,
Fisher’s exact test).

OPC with equally severe pathology” [8]. In the
British MSA cohort the relative prevalence of these
phenotypes was as follows: 17% of cases had OPC-
predominant pathology, 34% had StrN-predominant
pathology, and the remainder (49%) had StrN and OPC
with equally severe pathology (Fig. 3A) [8]. In the
Japanese cohort, 40% of cases had OPC-predominant
pathology, 18% had StrN-predominant pathology, and
the remainder (42%) had equally severe StrN and OPC
pathology (Fig. 3B) [9]. Thus the occurrence of OPC-
predominant pathology in the Japanese series was
significantly higher than that in the British series [9].

With regard to the clinicopathological correlations
observed in the two studies, analyses of parkinsonism
and cerebellar dysfunction demonstrated a reasonable
correlation between clinical findings and neuropathol-
ogy in both StrN- and OPC-predominant cases [8, 9].
Initial symptoms were quite variable in the patients
with “StrN and OPC with equally severe pathology”
groups [9], indicating that the clinical diagnoses of
patients in this category include a mixture of MSA-P
and MSA-C.

FREQUENCY OF LEWY BODY
PATHOLOGY IN CAUCASIAN AND
JAPANESE MSA

Lewy bodies have been identified in 8–12% of brains
of normal individuals over age 60 years; this condition

is often termed incidental Lewy body disease and is
thought to represent presymptomatic Parkinson’s dis-
ease (PD) [22–24]. Only a few studies have examined
the frequency of Lewy bodies in patients with MSA.
Wenning and colleagues found that 3 of 35 MSA cases
(8.5%) had Lewy bodies in cerebral cortex and substan-
tia nigra [25]. Jellinger reported that 10 of 44 MSA
cases (23%) had Lewy bodies mainly in the brain-
stem [26]. Ozawa and colleagues reported that 10 of
94 cases (10.6%) had Lewy bodies in the substantia
nigra or the dorsal motor nucleus of the vagus [8].
All of these studies involved Caucasian cases. Regard-
ing the frequency of Lewy bodies in Japanese cases of
MSA, Ozawa and colleagues did not find Lewy bodies
in the substantia nigra or the dorsal motor nucleus of the
vagus in any of their 50 MSA cases [9]. However, Sone
and colleagues reported that 4 of 26 MSA cases (15%)
had a few Lewy bodies in the substantia nigra and the
dorsal motor nucleus of the vagus [27]. Whilst it is of
interest to compare the frequency of Lewy body pathol-
ogy in MSA among various populations, there are some
difficulties with investigating Lewy body pathology
in MSA brains. Thus it can be difficult to differenti-
ate Lewy bodies from �-synuclein-positive neuronal
cytoplasmic inclusions (NCIs) [27], which have been
described in the substantia nigra in MSA [28]. Also, as
Lewy bodies occur in various anatomical sites the sam-
pling strategy employed may influence their detection.
In the context of MSA there are no guidelines for the
diagnosis of concomitant PD or incidental Lewy body
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Table 1
The relative frequencies of MSA-P and MSA-C in various populations

Author Year Population or Total number Number of Number of Notes Ref
regional study

group
of cases MSA-P (%) MSA-C (%) no

Wenning,
et al.

1994 United Kingdom 100 82 (82) 18 (18) The research center was located
in London

13

Testa, et al. 1996 Italy 59 34 (57.6) 25 (42.4) The research center was located
in Milan

12

Watanabe,
et al.

2002 Japan 230 75 (32.6) 155 (67.4) The research center was located
in Nagoya

19

Chrysostome,
et al.

2004 France 50 35 (70) 15 (30) The research center was located
in Bordeaux

16

Benrud-
Larson,
et al.

2005 United States 99 62 (63) 25 (26) Remaining 11 cases had equally
severe findings of MSA-P and
MSA-C. Racial breakdown was
96% Caucasian, 3% Asian/Pacific
Islander, and 1%
African-American

15

Yabe, et al. 2006 Japan 142 23 (16.2) 119 (83.8) The research center was located
in Sapporo

18

May, et al. 2007 North American
MSA Study
Group

67 (60) (13) The remaining cases (27%) had
equally severe findings of MSA-P
and MSA-C. The majority was
non-Hispanic Caucasian

14

Kollensperger,
et al.

2010 European MSA
Study Group

437 298 (68.2) 139 (31.8) This study involved 19 research
centers in 10 countries (Germany,
Austria, France, UK, Portugal,
Spain, Italy, Sweden, Denmark,
and Israel) Spanish data revealed
68% MSA-C

11

Seo, et al. 2010 South Korea 100 27 (27) 73 (73) The research center was located
in Seoul

20

disease. Thus, determining clinicopathological corre-
lations of Lewy body pathology in MSA cases remains
problematic.

DISTRIBUTION OF PATIENTS WITH
MSA-P AND MSA-C IN VARIOUS
POPULATIONS

We have reviewed articles detailing the natural his-
tory or epidemiology of MSA to determine the relative
frequencies of MSA-P and MSA-C in various popu-
lations (Table 1). Studies with more than 50 patients
with possible or probable MSA performed since the
publication of the original Quinn diagnostic crite-
ria [29], which analyzed the relative frequencies of
MSA-P and MSA-C, were reviewed. Where more
than 2 articles were published by the same group,
the most recent publication was included. In Wen-
ning and colleagues’ study of 100 British patients
with clinical MSA, 82% were MSA-P and 18% were
MSA-C [13]. The interim report from the European
MSA Study Group (EMSA-SG) involving research

groups in 11 countries (Germany, Austria, France,
UK, Portugal, Spain, Italy, Sweden, Denmark, Slove-
nia and Israel) described 412 European patients with
MSA had been entered into the registry by 2004,
63% of these patients were diagnosed with MSA-
P and 34% with MSA-C, while the remaining cases
(3%) did not meet criteria for MSA [10]. The final
report from the EMSA-SG involving 437 MSA patients
confirmed that the majority of patients exhibited MSA-
P (68%); however, the Spanish group reported 69%
MSA-C, probably due to the large number of cases
emanating from the group of Berciano et al. in San-
tander that has a special interest in cerebellar disorders
[11]. In Milan in Italy, Testa and colleagues stud-
ied 59 patients with MSA, including 34 (57.6%) with
MSA-P and 25 (42.4%) with MSA-C [12]. Chrysos-
tome and colleagues, studying 50 French patients
with MSA, found that 35 (70%) had MSA-P and
15 (30%) had MSA-C [16]. In the United States,
Benrud-Larson and colleagues reported that among
99 patients with MSA, 62 (63%) had MSA-P and 25
(26%) MSA-C -the remaining patients had equally
severe findings of MSA-P and MSA-C (“equivalent”
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MSA) [15]. The North American MSA Study Group
(NAMSA-SG) enrolled 67 patients with MSA (the
majority of patients were non-Hispanic Caucasian),
and found that 60% were diagnosed with MSA-P and
13% with MSA-C, while the remaining patients (27%)
had “equivalent” MSA [14]. Yabe and colleagues,
studying 142 Japanese patients with MSA from the
northern island of Japan, included 119 (83.8%) cases
of MSA-C and 23 (16.2%) of MSA-P [18]. From
the main island of Japan, Watanabe and colleagues
enrolled 230 Japanese patients with MSA, 155 (67.4%)
of whom had MSA-C and 75 (32.6%) had MSA-
P [19]. In Korea Seo and colleagues, studying 100
Korean patients with MSA, noted that MSA-C patients
accounted for 73% of their cohort [20]. There are
some studies with fewer than 50 MSA patients that
nevertheless should be mentioned in this review. A
Singaporean study involving 33 cases [21], the only
study from South East Asia, revealed that MSA-C
patients accounted for 67% of the cohort. A study
from a centre in Germany with a special interest in
cerebellar disorders enrolled 32 patients that included
11 (34.4%) patients with MSA-P and 21 (64.6%)
patients with MSA-C [17]. In summary, in studies from
Asia, the majority of patients exhibited features of
MSA-C, whereas in studies from Europe and North
America MSA-P patients predominated; however,
there are a few isolated studies presenting contrasting
results. As suggested above, published frequencies of
MSA-P and MSA-C are influenced by selection biases
determined by the clinical interest of the investigators
in either parkinsonism or cerebellar dysfunction. Nev-
ertheless, the comparative study of MSA pathology
in two large patient cohorts mentioned above [8, 9]
demonstrated that OPC-predominant pathology seems
to be more frequent in Japanese MSA than British
MSA, and this finding is consistent with the trend
that MSA-C patients are more frequent in Asian popu-
lations (East and Southeast Asian countries) than in
European populations (of Europe and North Amer-
ica). This points to the need for further investigation to
elucidate biological factors determining this regional
difference in distribution of clinicopathological phe-
notypes of MSA.

Given the difference demonstrated in clinical sub-
type of MSA between Europe and Asia, its treatment
also presumably differs between Europe and Asia.
In Europe, the majority of patients presenting with
MSA-P indicates the importance of treatment of
parkinsonism, while in Asia, with the majority of
patients presenting with MSA-C, management of cere-
bellar dysfunction may be more important.

DO GENETIC RISK VARIANTS FOR MSA
DIFFER BETWEEN POPULATIONS?

α-synuclein gene (SNCA)

The neuropatholgical hallmark of MSA is the GCI
associated with neuronal cell loss in brain regions
involved in motor and preganglionic autonomic con-
trol [30]. The major protein component of the GCI
is insoluble, fibrillar �-synuclein hence MSA is recog-
nized as a member of the group of �-synucleinopathies,
which also includes PD and dementia with Lewy
bodies [31]. Previous studies including sequencing
of the SNCA coding sequence, gene dosage mea-
surements, and microsatellite testing have failed to
identify significant associations of SNCA variants with
MSA [32–34]. SNCA expression studies did not detect
altered gene expression levels in MSA brains [35–37].
Furthermore, a haplotype study by Ozawa and col-
leagues using single nucleotide polymorphism (SNP)
failed to demonstrate any association with MSA [38];
this negative finding might be explained by the fact
that the SNPs selected for examination were limited
and therefore unable to detect SNCA risk variants
for MSA. Recently, Scholz and colleagues found
increased risk for MSA associated with SNCA vari-
ants in Caucasian MSA patients [6]. They reported that
the SNPs rs11931074 and 3857059 in SNCA, origi-
nally identified in a genome-wide association study
of PD, exhibited highly significant associations with
increased risk of development of MSA. The finding
for SNP rs11931074 was subsequently replicated in
an independent set of autopsy-proven cases of MSA
from the Mayo Clinic in Jacksonville [39]. However,
whether SNPs rs11931074 and 3857059 in SNCA con-
tribute to the diversity of clinical subtypes including
MSA-P and MSA-C remains to be elucidated. Al-
Chalabi and colleagues found another two positive
associations in the SNCA gene with Caucasian patients
with MSA, one with rs3822086 and the other with
rs3775444 [7]. Interestingly, the association between
MSA-C and these two SNPs was strong despite the
small number of MSA-C cases in their cohort [7]. It
would be of interest to examine whether these two
SNPs of SNCA are also associated with increased risk
of MSA in Asian cohorts, which feature a high preva-
lence of MSA-C patients.

Although genetic variants of SNCA have been found
in Caucasian patients to be associated with MSA,
this finding has not been replicated in Asian patients
with MSA. Yun and colleagues, seeking an associa-
tion between SNP rs11931074 and possible or probable
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MSA in Korean patients (n = 100), could not replicate
the results previously reported in Caucasian patients
[40]. They observed that the inconsistent results
regarding the association between SNP rs11931074
and risk for MSA could be related to the fact that the
frequency of risk allele T of rs11931074 is low (2 to
10%) in European populations but very high (51 to
58%) in Asian populations [40]. It is tempting to spec-
ulate that the SNCA risk variants for MSA contribute
to the disequilibrium in MSA phenotype distribution
between populations. If this is the case, the broad range
of variation in risk-allele frequencies in different pop-
ulations should be carefully reviewed.

Duplication or triplication of SNCA has been
identified in families with parkinsonism [41–43].
Gwinn-Hardy and colleagues performed neuropatho-
logical investigation on an individual from the family
with parkinsonism, in which the SNCA triplication
was subsequently identified [44]. This patient had
striking alpha-synuclein pathology characterized by
numerous Lewy bodies in the brainstem and cere-
bral cortices, but also widespread GCIs in the cerebral
and cerebellar white matter [44]. In cases of SNCA
duplication, alpha-synuclein positive GCIs have also
been found in substantia nigra and other CNS regions
[45]. These observations emphasise that further inves-
tigations are required to determine whether altered
expression of SNCA contributes to the pathogenesis
of MSA.

Genes responsible for spinocerebellar ataxia

Patients with dominantly inherited spinocerebel-
lar ataxia (SCA) have been reported to occasionally
exhibit parkinsonism [46–49], autonomic failure [50,
51], and other non-motor symptoms [52, 53], clinical
features similar to those seen in MSA. Furthermore,
neuropathological examination demonstrated that a
few cases of SCA1 [54], SCA2 [55, 56] and SCA3 [57]
had inclusions resembling GCIs. The nature of the glial
inclusion in the patient with SCA1 remains uncertain as
immunohistochemical profile for �-synuclein was not
available [54]. The two cases of SCA2 were reported
to have ubiquitin-positive, �-synuclein-negative glial
inclusions indicating that although there is some mor-
phological resemblance, these inclusions should be
considered as different from the GCIs of MSA [55, 56].
In the reported case of SCA 3 the pathological changes
were found to be typical of MSA including �-synuclein
immunoreactive GCIs and it was considered likely that
this was a case of MSA with concomitant SCA3 expan-
sion, although it does raise the possibility that SCA3

expansion may be a risk factor for MSA [57]. Consider-
ing the phenotypic diversity of MSA, it should be noted
that the relative prevalence of SCA genotypes also dif-
fers between Caucasian and Japanese patients; SCA1
and SCA2 are more prevalent in Caucasians, whereas
SCA3, SCA6, and dentatorubral pallidoluysian atro-
phy (DRPLA) are more prevalent in the Japanese
population [58]. Interestingly, the frequency of normal
alleles with relatively large numbers of CAG repeats
is also associated with the prevalence of these SCA
genotypes [58]. In this regard, further study is needed
to determine whether normal alleles with a relatively
large number of CAG repeats in SCA genes have
any relationship to the pathogenesis or phenotype of
MSA.

Other genes related to neurodegeneration
or inflammation

Previous studies have failed to identify signif-
icant associations between MSA and other genes
implicated in neurodegenerative diseases such as
those for apolipoprotein E [33, 59, 60], dopamine
beta-hydroxylase [61, 62], ubiquitin C-terminal
hydrolase-1(UCHL1) [63], fragile X mental retarda-
tion 1 [64–67], and leucine-rich kinase 2 (LRKK2)
[68, 69]. Mutations in the glucocerebrosidase gene
coding for lysosomal beta-glucocerebrosidase have
recently been found to be a risk factor for PD and
dementia with Lewy bodies [70–76]; however, these
mutations have not been found in patients with MSA
[77, 78]. Recently, a mutational screening study of
parkin and PINK1 has been performed in 87 patho-
logically proven MSA cases, but the frequencies of
the possibly pathogenic variants were not significantly
different from control data [79]. Thus any relation-
ship between the genes mentioned above and MSA
phenotypic diversity appears to be unlikely. Regarding
the tau gene (MAPT) and MSA, haplotype analyses
had failed to identify any association between MAPT
and MSA [33, 60]; however, a recent study involving
61 cases of pathologically confirmed MSA demon-
strated that the frequency of SNP rs 1052553 in MAPT,
which corresponded to H1 haplotype, was signifi-
cantly increased in MSA cases [80]. In this regard,
it is important to determine whether this finding is
replicated in Asian patients with MSA, because the
frequency of A0 allele in H1 haplotype in Japanese
population was reported to be very high (98.5% in
control subjects) [81]. Whether MAPT H1 haplotype
contributes MSA phenotypic diversity remains to be
elucidated.
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Several studies of the genes responsible for inflam-
matory processes indicated that polymorphisms of
interleukin-1A [82], interleukin-1B [83], interleukin-8
[84], and intercellular adhesion molecule-1 genes [84]
were associated with increased risk of MSA. Another
study demonstrated an association between polymor-
phism of the alpha-1-antichymotrypsin gene and risk
of MSA [85]. Promoter region polymorphism in the
tumor necrosis factor gene has also been reported to
be associated with increased risk of MSA [86]. How-
ever, whether variants of these genes may contribute
to phenotypic diversity in MSA has not been investi-
gated.

ARE ENVIRONMENTAL FACTORS
RESPONSIBLE FOR THE DIVERSITY
OF MSA PHENOTYPE?

Environmental toxins associated with
parkinsonism or cerebellar dysfunction

Accumulating evidence indicates that the prevalence
of PD in Asian countries is slightly lower than that
in Western countries [87, 88]. Professional exposure
to some pesticides (e.g., organochlorine insecticides)
has been reported to be associated with PD [89, 90].
In this regard, it is tempting to speculate that agri-
cultural use of pesticides might also differ between
Asian and Western countries. Further studies are
needed to determine differences in the pattern of pesti-
cide use between Asian and Western countries. For
patients with MSA, the relationship between expo-
sure to pesticides and increased risk of MSA has
been controversial [16, 91–93], and whether expo-
sure to pesticides modifies the MSA phenotype is
unclear.

Given the finding that MSA-C is more frequent
than MSA-P in Asian populations, environmental
exposures related to cerebellar dysfunction should be
carefully reviewed. Recently, beta-fluoroethyl acetate
(ethyl fluoroacetate, FEA), a highly potent toxic chem-
ical that has been used against rats and wild animals,
was reported to cause selective cerebellar dysfunction
[94]. This is a unique finding reported from South
Korea. In South Korea, FEA had been available to
the general public as an effective pest control agent
with less than optimal regulation until 2005 [94]. In
Japan, FEA has been designated as a Type II Mon-
itoring Chemical Substance, indicating that the use
of this compound is under government surveillance.
On the whole, FEA is banned or severely restricted in
most countries, and so cases of FEA poisoning are very

rare [94]. Whether FEA is likely to be an environmen-
tal toxin in South Korea and Japan warrants further
investigation.

Perspective on the interaction between
environmental toxins and genetic risk variants

Brighina and colleagues tested possible joint effects
of pesticide exposures and SNCA variants (REP1 geno-
types) on risk of PD, and found that both SNCA REP1
score and pesticide exposure were significantly associ-
ated with PD in younger subjects, though no pairwise
interactions were detected [95]. The synergistic inter-
action between genetic risk variants and environmental
toxins may be important when considering the rea-
sons for the differences in emphasis on StrN or OPC
involvement in MSA. Further study is needed to deter-
mine epigenetic factors in the phenotypic diversity of
MSA.

CONCLUSION

Comparative study of MSA pathology with an iden-
tical methodological approach in two large patient
cohorts (one British, one Japanese) demonstrated a dif-
ference in the distribution of phenotypes between the
two populations. The frequent observation of OPC-
predominant pathology in Japanese cases of MSA is
in keeping with previous findings that the majority
of Asian patients exhibit MSA-C. These observations
raise the possibility that different populations may
have different disease susceptibility factors for MSA.
Although genetic variants of SNCA have been found
to be associated with MSA in Caucasian patients, this
finding has not been replicated in Korean patients with
MSA. It is tempting to speculate that SNCA risk vari-
ants for MSA may contribute to the difference in MSA
phenotype distribution among populations; thus, the
broad range of risk-allele frequencies in different pop-
ulations should be carefully reviewed. In the case of
environmental factors, the relationship between expo-
sure to pesticides and increase in risk of MSA has
been controversial, and whether exposure to pesticides
modifies MSA phenotype remains unclear. Never-
theless, the synergistic interaction between SNCA
variants and some environmental toxins could play
a role in the pathogenesis and phenotypic diversity
of MSA. Further investigation is needed to deter-
mine the environmental, genetic and epigenetic factors
that account for the differences demonstrated in the
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clinicopathological phenotype of MSA in different
populations.
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