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Abstract.
Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with genetic and phenotypic hetero-
geneity. Pathogenic genetic variants remain the only validated cause of disease, the majority of which were discovered in
familial ALS patients. While causal gene variants are a lesser contributor to sporadic ALS, an increasing number of risk
alleles (low penetrance genetic variants associated with a small increase in disease risk) and variants of uncertain significance
have been reported.
Objective: To examine the pathogenic potential of genetic variation in ALS, we sought to characterise variant- and gene-level
attributes of previously reported ALS-implicated variants.
Methods: A list of 1,087 genetic variants reported in ALS to March 2021 was compiled through comprehensive literature
review. Individual variants were annotated using in silico tools and databases across variant features including pathogenicity
scores, localisation to protein domains, evolutionary conservation, and minor allele frequencies. Gene level attributes of genic
tolerance, gene expression in ALS-relevant tissues and gene ontology terms were assessed for 33 ALS genes. Statistical
analysis was performed for each characteristic, and we compared the most penetrant variants found in familial cases with
risk alleles exclusive to sporadic cases, to explore genetic variant features that associate with disease penetrance.
Results: We provide spreadsheet (hg19 and GRCh38) and variant call format (GRCh38) resources for all 1,087 reported
ALS-implicated variants, including detailed summaries for each attribute. We demonstrate that the characteristics of variants
found exclusively in sporadic ALS cases are less severe than those observed in familial ALS.
Conclusions: We provide a comprehensive, literature-derived catalogue of genetic variation in ALS thus far and reveal crucial
attributes that contribute to ALS pathogenicity. Our variant- and gene-level observations highlight the complexity of genetic
variation in ALS, and we discuss important implications and considerations for novel variant interpretation.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neu-
rodegenerative disease caused by the progressive
degeneration of both upper and lower motor neurons,
which leads to muscle weakness, wasting, spasticity
and progressive paralysis, with death typically due to
respiratory failure [1, 2]. ALS is phenotypically het-
erogenous with a median survival of approximately
three years from disease onset [3, 4], although sur-
vival times vary from less than 12 months to over
20 years [5, 6]. Symptoms can onset in the limbs or
bulbar musculature, or in rare cases, the trunk [1, 7],
and may occur anywhere from 20 to 90 + years of
age, though is most often seen in the sixth decade of
life [6]. Significant co-morbidity with frontotemporal
dementia (FTD) is evident among ALS cases, where
around 13% meet diagnostic criteria, and up to 50%
present with some level of cognitive or behavioural
impairment [8].

A high degree of genetic heterogeneity is also
evident in ALS. Historically, ALS cases have been
classified as either familial (FALS, ∼10% of cases)
or sporadic (SALS, ∼90% of cases) based on the
presence or absence of a known family history of
the disease [9]. With variable penetrance seen in
familial ALS and variable effect sizes for risk alle-
les (low penetrance genetic variants associated with
a small increase in disease risk), the distinction
between familial and sporadic ALS is largely arti-
ficial. However, it is a widely accepted convention
that is useful in clinical and research settings for
informing familial disease risk and study design for
gene discovery. Indeed, there exists a spectrum of
ALS inheritance ranging from large, fully penetrant
monogenic families, through smaller low-penetrance
families and “apparently” sporadic cases, to truly spo-
radic cases. Heritability studies have demonstrated
that all forms of ALS have a significant genetic com-
ponent [10–13]. However, only ∼12% of all patients
carry a known ALS-causing genetic variant and most
remaining ALS cases have no known predisposition
to disease [9].

The discovery of ALS genes has grown dramati-
cally, with genetic variants in at least 33 genes now
implicated in the disease. Traditional gene discov-
ery efforts combined linkage analysis with candidate
gene sequencing in large ALS families to identify
highly penetrant causal variants in genes including
SOD1[14], TARDBP [15] and FUS [16, 17]. An accel-
eration in ALS gene discovery then came in the
2010’s with the advent of next generation sequenc-

ing (NGS) technologies that facilitated the discovery
of numerous ALS genetic variants in families, such
as those in C9orf72 [18, 19], UBQLN2 [20, 21],
OPTN [22], TBK1 [23, 24] and CCNF [25]. More
recently, the growing affordability of whole-genome
sequencing (WGS) has enabled larger-scale studies in
SALS cohorts to identify risk genes, including NEK1
[26] and KIF5A [27]. Increasingly powerful NGS
technologies, cohort sizes and genome data analy-
sis techniques can detect previously elusive disease
relevant variants but also unearth many variants of
uncertain significance (VUS; [28]). Interpreting the
disease relevance of VUS presents a major challenge
and many variants initially reported to be poten-
tially pathogenic are later reclassified as benign after
additional evidence is accumulated [29–31]. Under-
standing the characteristics of ALS variants may
assist with evaluating the potential pathogenicity of
novel variants.

Here we present a comprehensive in silico assess-
ment of 1,087 genetic variants reported in the
literature to be implicated in ALS from July 1993
to March 2021 (as a reference tool, the reported
genetic variants are provided here in a spread-
sheet [Supplementary Data file 1, including literature
references for each genetic variant] and variant
call format (VCF) [Supplementary Data file 2]).
We investigated key characteristics for these vari-
ants including pathogenicity scores, minor allele
frequencies, localisation to protein domains and
evolutionary conservation. We examined gene-level
features including genic tolerance, gene expression
in ALS relevant central nervous system tissues and
gene ontology term associations. In depth analyses
and summaries are provided for each of these features
among ALS-implicated variants, providing a compre-
hensive overview of the ALS genetic landscape thus
far.

MATERIALS AND METHODS

Comprehensive cataloguing of > 1,000 genetic
variants reported in ALS

The present study extended our previously reported
853-genetic variant survey in McCann et al. (2020).
The list of ALS genes (Supplementary Table S1) was
updated to include the recently reported ALS/FTD
gene CYLD [33] and an updated literature search
was performed to include variants from publica-
tions published between February 2019 and March
2021. We aimed to compile a catalogue of ALS-
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implicated variants that included all genetic variants
reported in the peer-reviewed literature with evidence
that suggested a pathogenic role in ALS. In brief,
a PubMed (https://www.ncbi.nlm.nih.gov/pubmed/)
search was performed for each ALS gene name
(Supplementary Table S1) and ‘amyotrophic lateral
sclerosis’, with all resulting publications subse-
quently manually evaluated for reports of genetic
variants identified in ALS patients. Criteria for
inclusion of a variant in the reference list (Supple-
mentary Data file 1) was a predicted effect on protein
sequence (i.e., non-synonymous/missense, splicing,
frameshift, and non-frameshift insertions/deletions)
and naming within the main text of the publication
(for example, variants included in an aggregate of
variants used for burden testing were not added to
the list). For each variant, supporting details includ-
ing genomic location (hg19), transcript accession
number, cDNA change and protein change were
recorded, as well as case features of ancestry and
mode of ALS inheritance. The University of Califor-
nia Santa Cruz (UCSC) Variant Annotation Integrator
(http://genome.ucsc.edu/cgi-bin/hgVai) and the asso-
ciated Human Genome Variation Society (HGVS)
variant nomenclature track, were used to resolve
any details missing from the original publication(s)
or to correct variants not reported according to
HGVS nomenclature (e.g., following the 3’ rule).
Further, this approach was combined with manual
interpretation of sequencing chromatograms from the
original publication, and other reported features to
correct genomic description inconsistencies such as
nucleotide (e.g., forward vs reverse strand) and amino
acid identity from the original publication(s).

To enhance usability of the assembled variant cat-
alogue, variant coordinates were transformed from
hg19 to GRCh38 using the VEP liftover web ser-
vice and integrated into HGVS variant identifiers
which were verified for consistency with the origi-
nal hg19 HGVS identifiers using Mutalyzer v2.0.35
[34]. To obtain representations of the variants in VCF,
the GRCh38 variant identifiers were used to gen-
erate synthetic error-free 150nt paired-end Illumina
reads with mean fragment lengths of 380bp centred
at the variant position. Synthetic reads were mapped
with Burrows-Wheeler aligner [35, 36] (v 0.7.17-
r1188) to the GRCh38 reference genome assembly.
Variants were identified using the Genome Analy-
sis Toolkit (v4.2.6.1) HaplotypeCaller program in
single-sample mode [37–39]. Variant consequences
are provided for transcript and protein isoforms from
the Matched Annotation from NCBI and EMBL-

EBI project (MANE Plus Clinical) [40], a collection
of representative transcripts and proteins for each
protein-coding gene that exactly match the exonic
sequences of the reference genome and can be
used synonymously. Importantly, the MANE Plus
Clinical collection provides opportunities for clin-
ical communities to include additional transcripts
that include loci to represent clinically important
variants that cannot be represented in the basic
MANE set.

Data exploration and statistical analysis

All analyses were completed in R v4.1.1 using base
functions and the packages dplyr [41], ggplot2 [42],
purrr [43], readr [44], readxl [45], reshape2 [46],
spgs [47], stringr [48], tidyr [49] and tidyverse [50].

Variant level characteristics

Variant type classification
ALS-implicated variants were classed as either

a single nucleotide variant (SNV) or an insertion
and/or deletion variant (INDEL) based on the CADD
annotated variant “type”. Further categorisation was
applied using the Variant Annotation Integrator “con-
sequence” annotation.

Allele Frequency
Minor allele frequencies (MAFs) for all ALS-

implicated variants were determined in the non-neuro
subset of the Genome Aggregation Database (gno-
mAD, v2.1.1) [51], which excludes individuals
affected by neurological disorders. MAF values
were recorded across all ethnicities (n = 114,704),
as well as specifically among only non-Finnish
Europeans (n = 51,592), who represent the major-
ity of patient cohorts in reported ALS genetics
studies, and also have the highest reported inci-
dence of ALS [52]. Variant data for each
gene was downloaded from the gnomAD web
browser (https://gnomad.broadinstitute.org/), and
allele counts were annotated to ALS-implicated
variants using custom R scripts with subsequent cal-
culation of MAF.

Predicted pathogenicity
Two in silico meta-predictors of genetic

variant pathogenicity were used to score
ALS-implicated variants: CADD [53–55] and
REVEL [56]. CADD scores were computed
for all variants using the web-based tool (v1.6;
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https://cadd.gs.washington.edu/). Pre-computed
REVEL scores were available for missense variants
only (https://sites.google.com/site/revelgenomics/,
downloaded 5th March 2020). To determine the
correlation between CADD and REVEL, a Pearson’s
correlation test was performed using CADD raw
scores (which were log transformed to obtain CADD
phred scores) and REVEL scores.

Localisation to protein domains
Following thorough literature review, one rep-

resentative publication for each ALS gene was
selected to define its protein domains (Supplemen-
tary Table S1). Representative publications were
selected based on publication date, number of cita-
tions and journal quality (using metrics including
impact factor, SCImago Journal Rank). If exact
protein domain bounds were not provided by the rep-
resentative publication, coordinates were predicted
using the PROSITE (release prosite2022 02) [57],
SMART (v9) [58] or UniProt (release-2022 04) [59]
databases, dependent on which demonstrated great-
est concordance with the literature. Custom R scripts
were then used to annotate each ALS-implicated vari-
ant to their respective protein domain based on cDNA
location.

Conservation
Phylogenetic P-value (PhyloP) scores (100 verte-

brates Basewise Conservation) were computed for
all ALS-implicated variants using the UCSC Variant
Annotation Integrator (http://genome.ucsc.edu/cgi-
bin/hgVai). Given the nature of PhyloP scores
assessing the conservation of existing nucleotide
positions, insertion variants were not scored.

Gene level characteristics

Genic tolerance
The tolerance of each ALS gene to genetic

variation was assessed using gnomAD (v2.1.1)
constraint scores [60] for missense and loss of func-
tion (LoF) variants. Positive and negative z-scores
indicated intolerance and tolerance to variation,
respectively.

Gene expression
To assess the expression levels of ALS genes

in disease relevant tissue types, median gene-level
expression values were obtained from GTEx
(Genotype-Tissue Expression; Analysis V8, https://
gtexportal.org/home/datasets/GTEx Analysis 2017-

06-05 v8 RNASeQCv1.1.9 gene median tpm.gct.
gz) for the tissue types “Brain – Cortex ” (n = 255)
and “Brain – Spinal cord (cervical c-1)” (n = 159).

Gene ontology
Gene ontology (GO) [61, 62] term enrichment

analysis of ALS genes was completed in R using the
packages limma [63] and org.Hs.eg.db [64].

Gene-wise variant visualisation

Graphical representations of each ALS gene,
including their protein domains and reported ALS-
associated variants were generated using R and the
ggplot2 package. The most frequently reported acces-
sion number for each gene was selected for plotting of
ALS-implicated variant positions and protein domain
localisations. Gene plots include variant details of
reported ALS inheritance mode, and both CADD and
REVEL prediction scores, including density plots to
illustrate the most frequent scores by gene.

RESULTS

Characterisation of ALS-implicated variants

In addition to the 853 ALS-implicated variants
we reported in McCann et al. (2020), interrogation
of an additional 83 relevant peer-reviewed articles
published between February 2019 and March 2021
identified 234 additional ALS-implicated variants,
bringing the total number of ALS-implicated vari-
ants reported since 1993, to 1,087 (Supplementary
Data file 1). These 1,087 ALS-implicated variants
are provided in two formats: 1) a spreadsheet con-
taining hg19 and GRCh38 coordinates, detailed in
silico annotations and all literature references (Sup-
plementary Data file 1), and 2) a GRCh38 VCF,
(Supplementary Data file 2). Of the 1,087 ALS-
implicated variants, 942 were SNVs, 103 deletions,
31 insertions, nine deletion-insertions and two repeat
expansions. Notably, over 30% of ALS-implicated
variants reported in NEFH (34.6%), TBK1 (33.33%)
and FUS (30.70%) were indel variants. Missense
variants accounted for the majority (75.71%) of ALS-
implicated variants across all genes. Figure 1 and
Supplementary Table S2 provide a breakdown of vari-
ant types in each ALS gene. Graphical summaries
of each ALS gene provide a visual representation of
variant features on a gene-wise basis and are provided
in Supplementary Data file 3, while FUS is shown as
an example in Fig. 2.
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Fig. 1. Stacked bar chart of variant types in each ALS gene.

Minor allele frequency
Population-based MAF values were obtained from

the non-neuro subset of gnomAD (n = 114,704) for
all ALS-implicated variants except the polymorphic
C9orf72 and ATXN2 repeats (n = 1,085). Other than
three common population-based (MAF > 0.5) non-
coding SNPs (ELP3 rs2614046 and rs6985069, and
GPX3-TNIP1 rs10463311), all other ALS-implicated
variants had a MAF < 0.05. Over half (564/1,085,
51.98%) of all ALS-implicated variants were com-
pletely absent from this control cohort, and 95% had
a MAF below 0.000492705. Statistical analysis using
z-scores determined that the three common variants
at the ELP3 and GPX3-TNIP1 loci were indeed out-
liers (z-score>3), and therefore alongside the C9orf72
and ATXN2 repeats, were excluded from further
analysis.

Of the remaining 1,082 ALS-implicated variants,
MAF values in gnomAD ranged between 0 and 0.045,
with a mean of 0.00029 and median of 0. As seen in

Fig. 3, comparable MAF values were observed in the
non-Finnish European subset with a range of 0 to
0.028, mean of 0.00029 and median of 0. A break-
down of MAF value statistics per gene and by variant
type are provided in Supplementary Table S2. To
avoid deflation of summary statistics from the high
proportion of variants absent from gnomAD, ALS-
implicated variants with a MAF of 0 were collapsed
into a single representative variant, and summary
statistics were recalculated (Table 1). A summary
of all variant specific characteristics for the remain-
ing 1,082 rare ALS-implicated variants is provided
in Table 1.

Deleteriousness predictions
Three-quarters of ALS-implicated variants

(817/1082, 75.51%) had CADD phred-scaled scores
greater than 20, placing them in the top 1% of most
deleterious variations in the genome (Fig. 4A).
Among these 817 variants, 158 had a CADD phred
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Fig. 2. Visual summary of ALS-implicated variants in the FUS gene. Panels A and B) The horizontal bars on the x-axis represents the cDNA
sequence of the gene, with variants plotted along the length of the gene according to their cDNA position. CADD phred (A, all variants)
and REVEL (B, missense variants) scores are denoted by the height of points on the y-axis. Genomic context is indicated by point shape, as
exonic (circle) and intronic (diamond), with the latter plotted at the exon bounds as indicated by vertical dashed lines. The 3’ untranslated
region (UTR) is specifically plotted for FUS due to the large number of variants that lie in this region. Panels C and D) Density plots of CADD
phred (C, all variants) and REVEL (D, missense variants) reported in FALS (red) versus SALS exclusively (blue). Bolded vertical lines
indicate group median score, while grey dashed lines denote standard threshold bins. Visual summaries of remaining ALS-associated genes
can be found in Supplementary Data file 3. QGSY, (glutamine-glycine-serine-threonine)-rich region; RGG, (arginine-glycine-glycine)-rich
motif; RRM, RNA recognition motif; NES, nuclear export signal; ZnF, zinc finger domain; NLS, nuclear localisation signal.

Fig. 3. Histogram of minor allele frequency of ALS-implicated
variants in the gnomAD non-neuro control cohort based on eth-
nicity.

score between 30-40 (top 0.1%), and 15 a CADD
phred > 40 (top 0.001%). The genes SOD1, TBK1
and FUS had the most variants with CADD phred
scores falling within these deleterious ranges (Sup-
plementary Fig. S1). A breakdown of CADD scores
by variant type, per gene is shown in Supplementary
Fig. S2. REVEL scores use an absolute range of
0-1 to score missense variants only. Among the 823
ALS-implicated missense variants, REVEL scores
ranged from 0.010-0.992, and 80% had a REVEL
score > 0.236 (Fig. 4B).

When comparing CADD and REVEL scores
for ALS-implicated missense variants using the
Pearson’s correlation test, a moderate, signifi-
cant correlation was apparent (cor = 0.5372964,
p < 2.2x10−16, Fig. 4C). Notably, the distribution of



E.P. McCann et al. / ALS Genetic Variant Catalogue and Assessment 1133

Ta
bl

e
1

Su
m

m
ar

y
st

at
is

tic
s

fo
r

1,
08

2
A

L
S-

im
pl

ic
at

ed
va

ri
an

ts
ac

ro
ss

ge
ne

tic
va

ri
an

t-
sp

ec
ifi

c
ch

ar
ac

te
ri

st
ic

s

To
ta

lM
A

F
N

on
-F

in
ni

sh
E

ur
op

ea
n

M
A

F
C

A
D

D
ph

re
d

R
E

V
E

L
Ph

yl
oP

al
lv

ar
ia

nt
s

co
lla

ps
ed

va
ri

an
ts

†
FA

L
S

SA
L

S
on

ly
al

lv
ar

ia
nt

s
co

lla
ps

ed

va
ri

an
ts

†
FA

L
S

SA
L

S
on

ly
al

l

va
ri

an
ts

FA
L

S
SA

L
S

on
ly

al
l

va
ri

an
ts

FA
L

S
SA

L
S

on
ly

al
l

va
ri

an
ts

FA
L

S
SA

L
S

on
ly

m
in

im
um

0
0

0
0

0
0

0
0

0.
00

1
0.

00
3

0.
00

1
0.

01
0.

02
0.

01
-3

.6
16

98
-3

.1
77

65
-3

.6
16

98

m
ax

im
um

4.
50

84
x1

0−
02

4.
50

84
x1

0−
02

1.
72

76
x1

0−
02

4.
50

84
x1

0−
02

2.
81

51
0x

10
−0

2
2.

81
51

x1
0−

02
2.

26
80

x1
0−

02
2.

81
51

x1
0−

02
46

42
46

0.
99

2
0.

99
2

0.
98

9.
81

4
9.

73
69

9.
81

4

m
ea

n
2.

93
03

x1
0−

04
6.

08
56

x1
0−

04
2.

21
00

x1
0−

04
3.

50
00

x1
0−

04
2.

90
16

x1
0−

04
8.

57
78

x1
0−

04
2.

74
00

x1
0−

04
3.

03
00

x1
0−

04
22

.9
65

24
.0

68
22

.0
99

0.
52

3
0.

65
7

0.
42

2
4.

02
25

5
4.

48
15

2
3.

66
39

3

m
ed

ia
n

0
1.

98
00

x1
0−

05
0

4.
95

00
x1

0−
06

0
2.

91
00

x1
0−

05
0

0
23

.8
24

.3
5

23
.3

0.
51

0.
72

1
0.

36
4

3.
83

08
4

4.
62

95
3

3.
41

51

80
th

2.
91

00
x1

0−
05

1.
04

65
x1

0−
04

9.
60

00
x1

0−
06

4.
71

00
x1

0−
05

2.
24

00
x1

0−
05

1.
45

00
x1

0−
04

1.
12

00
x1

0−
05

3.
27

00
x1

0−
05

18
.1

08
21

.3
16

.0
6

0.
23

6
0.

40
9

0.
17

2
0.

87
18

4
1.

07
93

5
0.

73
25

9

pe
rc

en
til

e

A
bb

re
vi

at
io

ns
:M

A
F,

m
in

or
al

le
le

fr
eq

ue
nc

y;
FA

L
S,

fa
m

ili
al

A
L

S;
SA

L
S,

sp
or

ad
ic

A
L

S.
†T

o
av

oi
d

de
fla

tio
n

of
m

in
or

al
le

le
su

m
m

ar
y

st
at

is
tic

s
fr

om
a

hi
gh

pr
op

or
tio

n
of

gn
om

A
D

ab
se

nt
va

ri
an

ts
,

A
L

S-
im

pl
ic

at
ed

va
ri

an
ts

w
ith

a
M

A
F

of
0

w
er

e
co

lla
ps

ed
,a

nd
su

m
m

ar
y

st
at

is
tic

s
re

ca
lc

ul
at

ed
.

CADD scores was concentrated between phred 20-
30, while REVEL scores were more widely dispersed
(Fig. 4A-B). Further, CADD phred and REVEL
scores on a gene-wise basis tended to show similar
distributions and trends (Fig. 4D).

Protein domains
Two-thirds of ALS-implicated variants were found

to fall within defined protein domains (700/1082,
64.7%). Of 197 SOD1 variants, 177 (89.85%)
localised to the protein’s catalytic domain, while
55/63 (87.30%) TARDBP variants were found in
the protein’s aggregation-prone C-terminal domain.
Among 114 FUS variants, 86 (75.44%) fell within
protein domains, including the nuclear localisation
signal (38), QGSY-rich region (11), RRG-rich motif
(35) and zinc finger domain (2). Across all ALS
genes, disease-implicated variants were most fre-
quently observed in coiled-coil domains, ubiquitin
related domains and nuclear localisation signals
(Supplementary Table S3).

Species conservation
Among 1,051 SNV and deletion ALS-implicated

variants, a large proportion (91.44%) had positive
PhyloP scores indicating these positions are evolu-
tionarily conserved (Fig. 5).

SALS-exclusive variants had weaker evidence of
pathogenicity

Among the 1,082 rare ALS-implicated variants,
606 (56.01%) were reported in SALS cases only,
whereas the remaining 476 variants (43.99%) had at
least one report in a FALS case. Variants reported
exclusively in SALS cases had significantly less
severe characteristics compared with those seen in
FALS cases as determined using Wilcoxon signed-
rank testing (Fig. 6 and Table 1). Namely, these
SALS-exclusive variants had higher MAF values
and lower CADD, REVEL and PhyloP scores.
Fisher’s Exact testing showed that significantly
fewer SALS-exclusive variants fell within protein
domains compared to variants reported in FALS cases
(349/606 [57.59%] and 351/476 [73.74%] variants
fell in protein domains respectively, p = 3.29x10−8).

Characterisation of ALS genes

ALS genes were found to have varied levels of
expression in ALS-specific tissues (cortex and spinal
cord). Using gnomAD constraint metrics, 29/33
(87.88%) and 32/33 (96.97%) ALS genes were found
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Fig. 4. Comparison of CADD and REVEL predicted deleteriousness scores for all rare ALS-implicated variants. A) Density plot of CADD
phred scores for all 1,082 rare variants of any variant type. Supplementary Fig. S2 provides a further breakdown of CADD phred scores
per gene for different variant types. B) Density plot of REVEL scores for the 823 rare missense variants. C) Scatter plot with regression
line (cor = 0.5372964) and Pearson’s correlation testing (p < 2.2x10−16) of CADD RawScore and REVEL scores for the 823 rare missense
variants. D) Box plots of CADD phred and REVEL scores per ALS gene for the 823 rare missense variants.

Table 2
Top 10 enriched gene ontology terms for each of three separate ontology categories among 33 ALS genes

Biological processes Cellular components Molecular functions

organelle organization cytoplasmic stress granule polyubiquitin modification-dependent
protein binding

cellular component organization axon identical protein binding
cellular component organization or
biogenesis

cytoplasmic ribonucleoprotein granule protein binding

regulation of organelle organization ribonucleoprotein granule enzyme binding
positive regulation of biological process cytosol modification-dependent protein binding
cellular component assembly supramolecular complex miRNA binding
microtubule-based process intracellular organelle RNA binding
macroautophagy organelle regulatory RNA binding
endomembrane system organization autophagosome pre-mRNA binding
cellular response to stress vacuole G-rich strand telomeric DNA binding

to have positive z-scores indicating intolerance to
missense and LoF variation, respectively. However,
only 9/33 (27.27%) had a pLI score > 0.9 indicating
extreme intolerance to protein-truncating variation. A
summary of gene expression and constraint metrics

across all 33 ALS genes is provided in Supplementary
Table S4, including values per gene.

A total of 1,006 GO terms were found to be
enriched among the 33 ALS genes (p < 0.05), includ-
ing 800 biological process, 115 cellular components
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Fig. 5. PhyloP scores for 1,051 single nucleotide (SNV) and dele-
tion ALS-implicated variants. The grey area represents a density
plot for all PhyloP scores across all variants. The dashed line rep-
resents the threshold for evolutionary conservation, with positive
and negative scores indicating conserved and fast-evolving sites,
respectively.

and 91 molecular functions. The top 10 terms in each
ontology category are shown in Table 2, and full
details can be found in Supplementary Table S5.

DISCUSSION

The genetic contribution to ALS, while estab-
lished, is incredibly complex. Causal genetic variants
occur across a range of biologically diverse genes,
demonstrate a spectrum of genetic inheritance
patterns, and have variable influence on clinical phe-
notype. Further, the late disease onset and apparently
sporadic presentation of most patients suggests that
genetic variation is but one of multiple contributors
to disease onset and progression. While it is there-
fore difficult to employ strict criteria for ALS variant
interpretation, there is a need for strategies to assess
the potential pathogenicity of the growing number
of VUS. To better understand the defining charac-
teristics of genetic variation in ALS, we investigated
key gene and variant level features of > 1,080 pub-
lished genetic variants implicated in ALS from 1993
to 2021. We have provided a comprehensive char-
acterisation of these genetic variants and anticipate
that this resource will be used as a reference point for
the interrogation of known and novel ALS candidate
variants moving forward.

Fig. 6. Comparison of variant characteristics between ALS-implicated variants reported in FALS or exclusively in SALS. A) gnomAD allele
frequency, including a zoomed-in view to better represent low frequency variants (p = 3.8e-16), B) CADD phred (p = 7.4e-6), C) REVEL
(p = p<2.2e-16) and D) PhyloP scores (p = 2.9e-5). Statistical testing was performed using Wilcoxon signed-rank testing.
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Defining features of ALS genes

SOD1 had the most reported variants (Supplemen-
tary Table S4). The median REVEL score for SOD1
variants was 0.901, the highest score for all genes
(Supplementary Table S4). FUS had the second most
variants, reflective of the prevalence of FUS variants
and the established severity of their associated ALS
phenotypes [65]. TARDBP ranked sixth for number
of reported variants, below TBK1, SETX and SPG11.
However, these three genes are markedly more tol-
erant to genetic variation than TARDBP, as indicated
by gnomAD constraint scores (Supplementary Table
S4). Substantially more TARDBP variants (based on
both gross number and proportion) were reported in
FALS patients, as well as across multiple patients,
compared with TBK1, SETX and SPG11 (Supple-
mentary Data file 1). Together this suggests that
TARDBP variants confer larger ALS disease effects
than those in TBK1, SETX and SPG11, and that many
of the variants reported amongst these other genes
have lower disease penetrance, and therefore smaller
disease effects. While these results support the com-
monly accepted notion that SOD1, FUS and TARDBP
are “major” ALS genes, it is worth noting some
inherent biases when scrutinising the number of ALS-
implicated variants reported for any given gene. This
includes gene size, with larger genes naturally har-
bouring a higher number of variants, as well as time
since the original report of the gene as an ALS gene,
which has influence over the number of subsequent
studies that have investigated the gene.

ALS gene expression levels were variable in the
cortex and spinal cord, ranging from barely detectable
(0.93 transcripts per million, TPM) to highly abun-
dant (1160.24 TPM) (Supplementary Table S4).
Interestingly, the most common ALS gene C9orf72
had quite low expression in these tissues (8.21
TPM and 11.70 TPM, respectively), while TARDBP,
encoding the major constituent of ALS hallmark pro-
tein aggregates, exhibited modest expression levels
(36.06 TPM and 57.33 TPM). This therefore indi-
cates that ALS genes need not have high baseline
expression in central nervous system tissues in order
to have strong disease effects. This suggests that gene
expression levels obtained from databases should
only be used as ancillary information in predicting
ALS pathogenicity, rather than required as evidence
for disease relevance. This is also supported by func-
tional studies of ALS variants that suggest gain of
function mechanisms [66], which may manifest as
a change in central nervous system expression lev-

els. This suggests that even genes with no detectable
expression in the central nervous system may have
potential to gain pathogenic activity leading to aber-
rant elevated expression in these tissues.

When considering genic tolerance, a large propor-
tion of ALS genes exhibited intolerance to genetic
variation (87.88% and 96.97% for missense and LoF
variation, respectively), indicating that this is gener-
ally required for ALS pathogenicity. While gnomAD
suggests that any positive z-score indicates genic
intolerance, stricter thresholds are recommended by
the ClinGen Sequence Variant Interpretation working
group (General Sequence Variant Curation Pro-
cess Standard Operating Procedure v1.0), where
z-scores>3.09 are used to indicate a heightened intol-
erance to missense variation [67]. Interestingly, only
5/33 (15.15%) of ALS genes reach this stricter
threshold of 3.09 (VCP, TARDBP, KIF5A, CYLD
and TUBA4A). It is important to note however that
the ClinGen threshold is intended for use across a
multitude of conditions and mainly aims to capture
monogenic disease genes, therefore as a late onset
disease with variable penetrance, this may not be
appropriate for evaluation of ALS genes. Moreover,
it has been suggested that genes causal for late onset
diseases including ALS are more tolerant to variation
compared to earlier onset conditions [68]. As such,
it is more appropriate to determine genic tolerance
thresholds for each individual disease [68]. Unsur-
prisingly, gene ontology analysis identified various
terms associated with RNA binding activities and
protein homeostasis, both of which are established
as central pathways in ALS pathogenesis [1].

Defining features of ALS relevant genetic
variants

While the ACMG provide distinct guidelines
and thresholds for variant interpretation in classi-
cal Mendelian disorders [69], these are not always
appropriate for a more complex disease such as ALS.
Nevertheless, the general principles of the ACMG
guidelines highlight key features that are pertinent to
variant interpretation, and these form the foundation
of our characterisation of ALS-implicated variants.
This includes population frequency and computa-
tional data pertaining to both functional predictions
and evolutionary conservation.

At the centre of this characterisation is our
comprehensive catalogue of > 1,000 ALS-implicated
variants. This catalogue was curated from peer-
reviewed literature published between 1993 and
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2021. For this study, we only included variants
reported in the literature and not those solely in
databases such ClinVar, Project MinE or ALSKP.
While we acknowledge that these databases are
invaluable resources for ALS genetics research, they
are aggregated catalogues of variants across a cohort
of patients rather than a survey of an individuals’
genetic variants. As such, they were unsuitable for
the aims of our study.

Importantly, we compiled a list of functional vari-
ants believed to exert ALS disease effects, aiming
to remove any non-functional marker variants. Most
notably this was achieved based on MAF filtering
as described below, as well as the literature survey
criteria of a predicted effect on protein sequence
and/or naming and discussion in the main text of
the publication. Of note, upon conversion from
hg19 to GRCh38, three variants that had previously
been annotated to an 5’ or 3’ untranslated region of
SQSTM1 or VCP (NC 000005.9:g.179247900 C>T,
NC 000005.9:g.179265085 G>C and
NC 000009.11:g.35072710 C>G) were found to no
longer overlap a genomic transcript, questioning
their pathogenic potential.

Interestingly, we showed that ALS-implicated
variants that were observed in familial cases showed
stronger pathogenic potential than variants exclu-
sively seen in SALS cases. FALS variants had lower
population-based MAF, higher deleteriousness and
conservation scores, and were more likely found
within recognised protein domains. Although it is
well accepted that the phenotypic distinction between
FALS and SALS is largely arbitrary, this distinc-
tion is useful in that it identifies individuals who
have a higher likelihood of developing ALS (that is
FALS cases). This was reflected in our data whereby
genetic variants that predispose individuals to FALS
had larger predicted effects than those only seen in
SALS cases.

Predicted deleteriousness
For predicted pathogenicity, the distribution of

CADD scores for ALS-implicated variants displayed
a far clearer trend than that of REVEL scores,
and there was only a moderate correlation observed
between the two scores (Fig. 4C). Notably, CADD
scores can be applied to all possible SNP and indel
variants, while REVEL scores are only available for
missense variants, though a large portion of ALS vari-
ants (75.71%) are missense. Both CADD and REVEL
are meta-predictors that combine the results of multi-
ple protein prediction tools, and while many of these

tools overlap, there are a number of tools unique to
each. The minimal correlation between CADD and
REVEL scores may also reflect that CADD uniquely
incorporates sequence context details in addition to
the protein prediction results, as well as differences in
algorithms and tool weightings. Although both scores
indicate relative ranking of variant pathogenicity,
CADD phred scores are more easily interpretable, as
they directly indicate the genome-wide percentile of
deleteriousness, whereas REVEL scores are arbitrary.
As such, CADD score thresholds of> ∼15 are rou-
tinely used for a variety of conditions, while REVEL
thresholds need to be independently determined for
each disease [67].

As ALS is a late onset condition, it stands to
reason that seemingly less pathogenic variants (i.e.,
those with lower pathogenicity prediction scores)
may not manifest their disease effects until such
time that additional contributing factors have com-
pounded to reach a threshold that triggers disease
onset, as suggested by the multistep hypothesis of
ALS [70]. Interestingly, we can see examples of
the penetrance of ALS-implicated variants reflected
in REVEL scores. For instance, the highly pene-
trant SOD1 p.V149 G variant [71] has a REVEL
score of 0.948 (approaching the maximum score of
one), while the lower penetrance, and often reces-
sive, SOD1 p.D91A variant [72] has a REVEL score
of 0.555. Crucially, the risk variant C21orf2 p.V58 L
[73] has a REVEL score of just 0.023. This suggests
that REVEL scores may be helpful for interpret-
ing the effect size of ALS variants. Although the
ClinGen Sequence Variant Interpretation working
group (General Sequence Variant Curation Process
Standard Operating Procedure v1.0) recommends a
general threshold of > 0.75 for REVEL scores to sup-
port a pathogenic classification, they do encourage
the use of disease specific thresholds [67], and our
findings suggest that a far lower threshold around 0.2
(80th percentile of ALS-implicated variants) would
be more appropriate for ALS. Such a precedent is
reflected in the ClinGen Hearing Loss variant cura-
tion panel uses a lower threshold of ≥0.15, as 95%
of pathogenic variants met this value [67, 74]. Simi-
larly, ClinGen guidelines recently suggested a CADD
phred threshold of 28.1 to provide moderate support
for pathogenicity, although only 21.07% (228/1,082)
of ALS-implicated variants satisfy this criteria, also
suggesting this generalised threshold is not appropri-
ate for ALS. Despite the weak correlation between
CADD and REVEL scores for ALS-implicated vari-
ants, the scores may serve complementary purposes.
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CADD scores may serve as a prioritisation or filtering
tool for higher penetrance scenarios such as familial
gene discovery, while REVEL scores may be used
to predict variant effect sizes, which could poten-
tially be correlated with the six steps of the multi-hit
hypothesis of ALS [70, 75].

Minor allele frequency
Defining a MAF threshold for ALS is compli-

cated by numerous factors, including the spectrum
of disease penetrance, late disease onset, and vari-
able prevalence across ethnicities. Our analysis
showed that ALS-implicated variants are typically
very rare in the general population, with over half
absent from neurologically normal controls, 80%
with MAF < 0.000029 and 95% with MAF < 0.00049.
There were however three ALS-implicated variants,
ELP3 rs2614046 and rs6985069, and GPX3-TNIP1
rs10463311, with a MAF > 0.5. Each of these variants
was reported in a genetic association study, thereby
implicating their loci in ALS. This method of iden-
tification coupled with such a high MAF suggests
that these three variants may actually be markers for
an associated functional variant rather than them-
selves exerting disease effects. This contrasts with
the C21orf2 p.V58 L risk variant, which was sim-
ilarly identified by GWAS, though has a far lower
MAF of 0.00795770, and has in vitro evidence to
support a functional role in ALS [76]. The range of
MAFs seen amongst ALS-implicated variants also
reflects the fact that there is a spectrum of disease
penetrance for ALS, ranging from highly penetrant
familial variants (absent from neurologically normal
control populations) that cause ALS in almost all car-
riers, to variants with variably reduced penetrance
(absent or exceedingly rare in neurologically normal
control populations), and finally to risk variants that
confer much smaller, yet highly variable, magnitudes
of disease susceptibility (potentially present, however
rare, in neurologically normal control populations).
This is exemplified when considering MAF for vari-
ants found in FALS cases or exclusively SALS cases,
where we saw a striking, almost five-fold difference,
with 80th percentile values of 0.0000096 in FALS
and 0.0000471 in SALS. The more common, SALS-
exclusive variants are therefore potentially either
markers of rarer functional variants as mentioned
above, or themselves risk factors with small disease
effects.

The late onset of ALS further complicates the def-
inition of an appropriate MAF threshold. Individuals
who will go on to develop ALS later in life may inad-

vertently be included in control cohorts, and therefore
ALS relevant genetic variation may also be present
within such cohorts. Given disease onset can be seen
anywhere from 20 to 90 + years of age, it is not pos-
sible to circumvent this issue by simply applying an
age threshold to control cohorts. A further consider-
ation around MAF is ethnicity, with disease related
and common benign variants differing in frequency
between distinct ethnic populations, as well as the
incidence of ALS itself [77, 78]. Interestingly, we
did not observe a notable difference in gnomAD
MAFs for ALS-implicated variants between non-
Finnish European and all ethnicities (Fig. 3), however
this could stem from the fact that the non-Finnish
European subset accounts for the largest proportion
(44.98%) of the entire gnomAD non-neuro cohort.

A substantial proportion of ALS-implicated vari-
ants were reported prior to the availability of large
public databases of common genetic variation. For
these early studies, variants were compared to
relatively small control cohorts that were often insuf-
ficient in size and power to properly resolve their true
population-based frequency. Some historically impli-
cated variants may be more common than originally
reported, and in fact represent rare population-based
variants rather than true ALS-relevant variation.

Genomic context
Sequence conservation is a strong indicator of

potential ALS pathogenicity with 91.44% (961/1051
non-insertion variants) of ALS-implicated variants
satisfying this criterion according to PhyloP. While
PhyloP is included in the meta-predictor REVEL
used as part of the deleteriousness prediction analysis,
its use in isolation is necessary to consider conser-
vation across species. Indeed, this more specialised
analysis revealed that species conservation was a cru-
cial variant level characteristic for ALS and was the
most consistent feature across all ALS-implicated
variants. Localisation to a functional protein domain
was less prevalent, with only two-thirds of ALS-
implicated variants falling within predicted domains.
Interestingly, the proportion of ALS-implicated vari-
ants found in functional domains varies widely
among ALS genes, with the highest percentages
seen in the “major” ALS genes SOD1 (89.85%),
TARDBP (87.30%) and FUS (75.44%). Variants in
these genes have been shown to be among the
most penetrant [65, 71, 72]. Further, we found that
FALS variants fell in functional domains signifi-
cantly more frequently than those found exclusively
in SALS (p = 3.29x10−8). Together this suggests
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localisation to a protein functional domain may be
a strong indicator of disease effect size and pene-
trance of ALS-implicated variants. Furthermore, the
individual plots of each ALS gene provided in Sup-
plementary Data file 3, will assist interpretation of
novel variants by providing a visual representation of
ALS-implicated variant hot spots. Interestingly, three
or more ALS genes had ALS-implicated variants
reported in Ubiquitin-related (n = 6 genes), Coiled-
coil (n = 5 genes), Zinc finger (n = 4 genes) and
Nuclear localisation signal (n = 3 genes) domains,
suggesting these domain types may have an important
role in ALS pathogenesis.

Conclusion

Our characterisation of ALS-implicated variants
provides an executive overview of the key character-
istics associated with ALS pathogenic potential. In
particular, we highlighted the nuanced considerations
specific to ALS that must be considered in variant
interpretation.
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