Case Report

Oral Dantrolene Reduces Myalgia and Hyperckemia in a Child with RYR1-Related Exertional Myalgia/Rhabdomyolysis

Elis Vanessa de Lima Silvaa, *, Karina Carvalho Donisb, Fabiana Rita Camara Machadoc, Leonardo Simão Medeirosa, b, Fabiano de Oliveira Poswarab, and Jonas Alex Morales Sauteb, e, f

a Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, RS, Brazil
b Medical Genetics Service – Hospital de Clínicas de Porto Alegre, RS, Brazil
c Physiatry Service – Hospital de Clínicas de Porto Alegre, RS, Brazil
d Graduate Program in Child and Adolescent Health, Federal University of Rio Grande do Sul, RS, Brazil
e Graduate Program in Medical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
f Internal Medicine Department, Federal University of Rio Grande do Sul, RS, Brazil

Accepted 11 September 2023
Pre-press 28 September 2023

Abstract. RYR1-related exertional myalgia/rhabdomyolysis (ERM) is an underrecognized condition, which may cause limiting muscle symptoms, and may account for more than one-third of undiagnosed rhabdomyolysis cases. Dantrolene has shown promising results in controlling muscle symptoms in individuals with ERM, however, its use in children remains poorly documented. This case report presents the successful treatment of a 5-year-old patient with ERM using oral dantrolene. The patient experienced notable improvements, including a reduction in the frequency and intensity of myalgia episodes, no hospitalizations due to rhabdomyolysis, a substantial decrease in creatine phosphokinase (CPK) levels, and enhanced performance on the 6-minute walk test. The use of dantrolene was well-tolerated, and no significant adverse effects were observed. This report adds to the existing evidence supporting the effectiveness of oral dantrolene in managing ERM, and, to the best of our knowledge, this is the first report of the use of dantrolene in a pediatric patient for controlling anesthesia-independent muscle symptoms.

Keywords: Rhabdomyolysis, Myalgia, Malignant Hyperthermia, Dantrolene, RYR1

INTRODUCTION

RYR1-related exertional myalgia/rhabdomyolysis (ERM) is an underdiagnosed condition, which may be responsible for more than one-third of undiagnosed rhabdomyolysis [1]. Muscle symptoms in ERM can manifest at all ages, with variable triggers, including physical activity, heat, infection, alcohol ingestion, or a combination of multiple factors [2]. There is incomplete penetrance, with a predominance of symptomatic males [2].

Pathogenic variants in skeletal muscle ryanodine receptor (RYR1) gene can cause multiple phenotypes and muscle symptoms, spanning from congenital myopathies to malignant hyperthermia susceptibility (MHS) [3]. Additionally, there’s an increasing...
amount of evidence that gain of function variants in
RYR1, associated with MHS, frequently cause ERM,
even without a MH history, suggesting that ERM may
be a more common manifestation in MHS variants
than clinical MH [4].

Dantrolene is a muscle relaxant used for the treat-
ment of MH that selectively blocks the RyR1 channel,
thus, relaxing the skeletal muscle. In individuals with
MHS, the use of oral dantrolene has been reported
to control anesthesia-independent muscle symptoms,
such as awake MH and ERM since the 1980s [5–7]. In
2023, Moreno et al. evaluated the use of oral dantro-
lene for myopathic symptoms in 164 MHS patients
with muscle symptoms, showing that the drug was
well-tolerated, with no serious adverse effects, and
87% of patients adhered to therapy and reported
improvement of myalgia, fatigue, or rhabdomyolysis/hiperCKemia [8].

Pediatric use of dantrolene is recommended both
for the treatment of MH and spasticity. Chronic
use is recommended for children older than 5 years
old, with a minimum dose of 0.5 mg/kg/dose. The
main adverse reaction is hepatotoxicity, therefore
frequent monitoring of Aspartate Aminotransferase
(AST) and Alanine Aminotransferase (ALT) is rec-
ommended [9].

This report describes the case of a 5-year-old
patient diagnosed with ERM and his response to oral
dantrolene, corroborating existing evidence of signif-
icant benefit with this medication.

The legal guardian of the patient provided
informed consent to publish this case report.

CASE STUDY

A 2-year-old male child started presenting
episodes of myalgia and gait alterations during phys-
ical activity, such as playing, running and jumping.
At 3 years old, during preschool activities, he had a
sudden bout of fever (38.5°C) and intense lower limb
myalgia, making him unable to walk, thus prompt-
ing an emergency room (ER) visit. Lab results were
suggestive of rhabdomyolysis, with a creatine phos-
phokinase (CPK) level of 66,413 U/L, a C-reactive
protein (CRP) of 66.7 mg/L (reference value < 10), no
other lab abnormality or sign of localized infection,
thus being diagnosed as viral myositis.

After a few days of rest, he experienced no fur-
ther episodes of fever and made a complete recovery.
Additionally, his CPK levels decreased to 3,835 U/L
after three days. However, the child continued to
experience recurrent episodes of myalgia following
a varied and unpredictable range of activities. These
activities could be intense, such as playing and run-
ning, or as mild as holding a phone, engaging in small
building block play, or participating in a pincer grasp
activity at preschool. The mother did not associate
viral illness as a trigger for the myalgia episodes since
the child was generally healthy and presented no other
respiratory or gastrointestinal symptoms.

The myalgia manifested in different muscle
groups, including the upper limbs, lower limbs,
neck, and back, depending on the triggering activity.
It predominantly occurred during physical activity,
although the mother also reported a few instances
where the myalgia occurred a couple of days after
strenuous activity. During more severe myalgia
episodes, the boy typically refrained from walking,
and the mother noticed an elevation in body temper-
ature (ranging from 37–38°C), leading to visits to the
emergency room. Furthermore, the boy’s CPK levels
would rise significantly, ranging from 8,145 to 21,176
U/L. However, after a few days of rest, his CPK levels
would typically decrease to a mean resting CPK of
2,932 U/L.

At 4 years of age, he was admitted for investigation.
After an unremarkable biochemical investigation for
metabolic myopathies and inflammatory diseases,
the patient underwent a next-generation sequencing
panel of neuromuscular diseases, which identified
the likely pathogenic variant *RYR1* (NM_000540.2
c.7076 G>A: p.(Arg2359Gln)), in heterozygosity, previ-
ously described as associated with MHS [10, 11],
and curated by ClinGen MHS Variant Curation
Expert Panel, confirming the diagnosis of *RYR1-
related ERM.*

Family history (Fig. 1A) revealed a pattern of
muscle cramps among some maternal relatives. The
mother (II.2) reported experiencing muscle cramps
even with minor exertion, such as holding a phone or
walking. Similarly, the aunt (II.3) experienced mild
muscle cramps during physical activity but was able
to recover after resting. Another aunt (II.4) encoun-
tered muscle cramps while playing soccer, which
eventually caused her to discontinue the sport. The
grandfather (I.3) experienced nightly cramps almost
daily.

Family segregation analysis revealed that the
mother, aunt II.4, and grandfather were also carri-
ers of the variant. Notably, none of these individuals
had experienced a clinical MH reaction, despite anes-
thesia exposure. The mother (II.2) underwent spinal
anesthesia for a C-section and reported inhaling an
Fig. 1. – A: Pedigree showing segregation of the variant with the phenotype (ERM and/or muscle cramps). Individual II-3 complained of a history of mild muscle cramps, possibly a phenocopy. B: Bar chart showing CPK levels that decreased remarkably after initiating dantrolene therapy. Dantrolene was started at half of the effective dose at night to evaluate potential side effects including dizziness and fatigue. The patient tolerated it well, and the dose and time of administration were adjusted, to maintain the lowest effective dose, which was 0.5 mg/kg/day (= 10 mg of dantrolene), taken during the morning, which was the time when the patient was more active, and achieved a greater decrease in the level of CPK.

unspecified anesthetic during a nose surgery. The grandfather (I.3) was exposed to general anesthesia for a spine surgery following an accident, but the specific anesthetics used were not documented in his medical records. Aunt II.4, on the other hand, has never been exposed to anesthesia.

Following the diagnosis of ERM, the family was advised about triggers and primary prevention of MH crisis. They did not report any other RYR1-associated symptoms, such as heat intolerance and/or bleeding abnormalities. The adult family members had learned to cope with the muscle symptoms by regulating their level of unaccustomed physical activity. However, despite their efforts to manage the child’s physical activities, he continued to experience recurrent episodes of ERM, which impaired his overall development.

As an attempt to control muscle symptoms, low-dose oral dantrolene was initiated according to the scheme detailed in Fig. 1B. Prior to dantrolene administration, the median CPK levels (interquartile range, IQR) were 6,153 U/L (8005) over a 5-month period. However, after initiating therapy, the median CPK levels decreased to 1,956 U/L (4341), indicating a significant 68% reduction. A similar trend was observed when comparing the mean CPK (standard deviation, SD) levels between the two periods. Before dantrolene administration, the mean CPK level was
6,564 U/L (4,389), whereas after therapy initiation, it decreased to 2,690 U/L (2410). The highest CPK level recorded after dantrolene administration was 6,128 U/L, which occurred following a myalgia episode triggered by running and playing on a swing two days earlier. When comparing the pre-dantrolene mean resting CPK (2932 U/L) with the post-dantrolene mean CPK, there was a reduction of 8.2%.

Moreover, the mother was advised to document the occurrence of myalgia episodes in a diary starting one month before the dantrolene trial. The analysis revealed a 50% reduction in the frequency of myalgia attacks – 10 episodes in the month pre-dantrolene vs. 5 episodes in the month post-dantrolene, primarily induced by playing and walking. The family also reported a notable decrease in the intensity of myalgia attacks, enabling the child to progressively engage in activities that were previously limited by myalgia, such as extended playtime, jumping on a trampoline, and fully participating in school activities. During the period of dantrolene use, there were no hospitalization due to myalgia, whereas two hospitalizations occurred prior to initiating dantrolene treatment.

No significant adverse effects were observed throughout the treatment period. In order to monitor hepatotoxicity, AST and ALT levels were regularly measured prior to every dose adjustment, and after dose stabilization at Day 30, measurements were taken every 1 to 2 months. These evaluations revealed a progressive decrease in AST and ALT levels, corresponding to the decline in CPK levels. The mean AST level decreased from 117.5 U/L pre-dantrolene to 63.3 U/L post-dantrolene, while the mean ALT level decreased from 40.0 U/L pre-dantrolene to 25.3 U/L post-dantrolene. As expected, the administration of dantrolene in the morning, when the child was more physically active, demonstrated improved control over myalgia attacks and resulted in lower CPK levels (Fig. 1B).

Furthermore, in the 6-minute walk test (6MWT) pre-dantrolene, the distance traveled was only 295 meters, which is lower than the p3 (approximately 350 m) for 5-year-old caucasian boys [12] vs. 431 meters (p10-p25) post-dantrolene. Additionally, during the pre-dantrolene 6MWT, the child exhibited an initial Borg scale rating of 0, which increased to 0.5 by the test’s conclusion, indicating a slight perceived exertion. Conversely, in the post-dantrolene 6MWT, both the initial and final Borg scale ratings remained consistently at 0, indicating a reduced perception of exertion throughout the test.

CONCLUSION

Multiple descriptions of oral low-dose dantrolene in adults with both MHS and ERM indicate an improvement in muscle symptoms and good tolerability, without significant adverse events [5–8]. To the best of our knowledge, this is the first report of the use of dantrolene in a pediatric patient for controlling anesthesia-independent muscle symptoms. Our report corroborates previous descriptions that dantrolene is an effective medication for managing ERM. It adds further evidence about the use of dantrolene in children, in whom it was able to reduce frequency, intensity, and hospitalizations due to ERM, decreased CPK levels, and improved distance on 6MWT, which may be a useful functional parameter for therapeutic response assessment.

CONFLICT OF INTEREST STATEMENT

The authors declare that there is no conflict of interest regarding this publication.

REFERENCES

