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Pseudoexons of the DMD Gene

Niall P. Keegan*

Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University and Perron Institute,

Perth, Australia

Abstract. The DMD gene is the largest in the human genome, with a total intron content exceeding 2.2Mb. In the decades
since DMD was discovered there have been numerous reported cases of pseudoexons (PEs) arising in the mature DMD
transcripts of some individuals, either as the result of mutations or as low-frequency errors of the spliceosome. In this review,
I collate from the literature 58 examples of DMD PEs and examine the diversity and commonalities of their features. In
particular, I note the high frequency of PEs that arise from deep intronic SNVs and discuss a possible link between PEs
induced by distal mutations and the regulation of recursive splicing.
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CHARACTERISTICS OF THE DMD GENE

The DMD gene is the largest gene in the human
genome. Situated on the p-arm of the X chromo-
some, DMD spans over 2.22Mb, more than 99%
of which is intronic sequence, with the coding
sequence of its largest isoform totalling 11,058 bases
across 79 exons. Eight unique alternative promoters
[1], alternatively spliced exons, and an alternative
polyadenylation site [2] produce at least 17 DMD
transcript variants [3], one or more of which are
expressed and translated in all types of muscle as
well as various other cell types throughout the body,
including myoblasts, lymphocytes and retinal cells.

The Dp427 m transcript of DMD encodes the mus-
cle isoform of dystrophin, the DMD protein. In XY
individuals, who carry just a single DMD copy, muta-
tions that fully disrupt the function of the DMD gene
(resulting in functionless or absent dystrophin pro-
tein) give rise to Duchenne muscular dystrophy, while
mutations that only partially diminish the gene’s
function and/or quantity of product give rise to Becker
Muscular Dystrophy.

*Correspondence to: Niall P. Keegan, Building 390, Discovery
Way, Murdoch University, WA, Australia. Tel.: +61 8 9360 6058;
E-mail: npkeegan@me.com.

THE MAJOR SPLICEOSOME

The vast majority of RNA splicing in humans is
achieved via the major spliceosome, a ribonucleopro-
tein complex responsible for excising introns from
pre-mRNA molecules [4]. In order for the spliceo-
some to process a transcript correctly it first must
accurately recognize the transcript’s exon-intron
boundaries. This recognition is achieved through a
network of mechanisms, including sequence-specific
interaction with conserved acceptor and donor splice
site motifs in the RNA, silencer and enhancer binding
motifs both proximal and distal to the splice junc-
tions, and RNA secondary structure [5, 6]. Mutations
to a gene that alter the interactions of these factors
with its transcripts can lead to errors in the pro-
cessing of those transcripts, such as the expansion,
truncation or loss of canonical exons, or the initiation
of pseudoexons (PEs) within its introns [7]. These
incorrectly spliced transcripts may be degraded prior
to translation or may be translated to less functional
or even harmful protein isoforms, with deleterious
consequences for the health of the patient.

Thirty-six of the 78 introns in DMD are more than
ten times the human median intron length of 1334bp
[4], and of these 36, three are more than 100 times the
median size. A transcript of this size and complexity
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presents a unique challenge to the major spliceosome,
and as a result is arguably more vulnerable to splicing
errors such as pseudoexons.

PSEUDOEXONS: ONE DEFINITION OF
MANY

In the literature, the terms “pseudoexon” and
“cryptic exon” are often applied interchangeably and
inconsistently in reference to a wide range of splic-
ing errors. For the sake of clarity, I hereby define a
pseudoexon as: Any continuous tract of a transcribed
gene that: (1) does not overlap, adjoin or duplicate
any sense-strand sequence of that gene’s canonical
exons; (2) bears an acceptor splice site motif at its 5
end and a donor splice site motif at its 3 end; and,
(3) via both these motifs, is spliced into a measurable
proportion of the mature transcripts of that gene in
at least one proband.

Though this definition of “pseudoexon” may not
agree with every prior usage of the term, it includes
the majority of prior use while excluding splicing
events that are better described by other terms, such
as cryptic splice sites and whole exon duplications.

While some PEs are observable as rare splicing
events in normal individuals, the majority are cre-
ated by mutations that give the PE site an exon-like
profile, resulting in the spliceosome falsely recogniz-
ing it and splicing it into an increased proportion of
transcripts. When PE-splicing levels are high com-
pared to normal splicing, these inclusions are likely
to bear negative consequences for the phenotype of
the affected organism, as the majority of PEs will
disrupt the transcript’s open reading frame and/or
encode premature stop codons. Consequently, the
resulting transcript, if it is not degraded by nonsense-
mediated decay, will be translated to a non-functional
or truncated protein. Even in cases where a pseu-
doexon preserves the reading frame and does not
encode a premature stop codon, it is likely that the
amino acids it encodes will disrupt the secondary
structure of the protein and thereby abrogate its
function.

Numerous DMD PEs have been reported over
the last few decades, perhaps more than have been
described for any other single gene. When consid-
ered as a body of research, these reports comprise a
unique opportunity for generating new insights into
the splicing of DMD and other large genes.

In this review, I catalog the characteristics of 58
reported DMD PEs. Where possible, I describe the

origins of these rare splicing events and draw infer-
ences from their common features.

PSEUDOEXONS OF THE DMD GENE

Following a thorough search of the literature, I
compiled a catalog of all 58 known PEs of the DMD
gene (Table 1). In order to consistently record highly
similar PEs, I adopted the criteria of unique local
sequence: 1 assigned a separate catalog entry to each
PE that was unique in at least one nucleotide of its
sequence or splice motifs (eg. PEQ9 vs. PE10, PE15
vs. PE16); and listed as single entries all PEs with
locally identical sequence (eg. PEs 11 and 12).

PSEUDOEXONS ARISING WITHOUT
MUTATIONS

Six DMD pseudoexons have been reported as low-
frequency splicing events in normal cells lacking any
known mutation: PEs 04, 07,08, 11, 21 and 44. Inter-
estingly, four of these PEs are of lengths that do not
shift the reading frame of the transcript — 162bp for
PE04, 357 bp for PE11, 66bp for PE21 and 84bp for
PE44 — and of these four, only PEs 04 and 11 contain
stop codons.

In addition to their splicing profile in normal cells,
PEs 04,07, 08 and 11 are also spliced at much higher
frequencies in the cells of some patients with other
DMD mutations. For PEs 08 and 11, this behavior was
observed for the cells of only a single patient each (see
below, subsection ‘Pseudoexons arising from dupli-
cations’). However, the behavior of PEs 04 and 07 —
referred to in some prior literature as exons la[10-14]
and 2a[16, 17] respectively —is somewhat more com-
plex. Though the inclusion of PEO4 in muscle cell
DMD transcripts is rare [14], this PE is included in
approximately 50% of DMD transcripts in lympho-
cytes [11], and is included at higher frequencies in
both cell types as a result of a frame-shifting single
nucleotide deletion in exon 5 [12] and, in a different
proband, an exon 2 tandem duplication [13]. Given
the frequency of its inclusion in mature DMD tran-
scripts, especially in normal lymphocytes, it may be
that PEO4 would be better classified as a canonical,
alternatively spliced exon rather than a pseudoexon.
However, at the time of writing no functional role for
PEO4 has been conclusively determined [10]. Simi-
larly, PEO7 has also been observed as a predominant
inclusion in the muscle DMD transcripts of multi-
ple patients with deletions and duplications in the 5’
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exons of the gene — though, as with PE(4, it is yet
to be determined whether these inclusions indicate a
functional role for PEO7 [17].

PSEUDOEXONS OF UNKNOWN ORIGIN

Underlying genomic mutations were not identified
for three of the pseudoexons catalogued (PEs 53, 56
and 58). However, as these pseudoexons were exclu-
sively detected in the RNA of specific DMD patient
cells, they are believed to be pathogenic and therefore
were not classed as arising sans mutation.

PSEUDOEXONS ARISING FROM
DELETIONS

Of the 54 known mutation-obligate DMD PEs, ten
arose from genomic deletions: PEs 02, 03, 12, 17,
18, 27, 28, 29, 35, and 49. For some of these cases,
PE initiation can easily be explained as a direct result
of the deletion event bringing into conjunction tracts
of sequence that, when transcribed, present a strong
exon signal to the spliceosome. Pseudoexons appear-
ing to fit this description are PEs 17, 28 and 35,
though it should be noted that PE28 also has two
small insertions (17bp and 8bp) near its junction site.
Two additional but less obvious examples can be seen
with PEs 29 and 49 — in these cases, the sequence
of the pseudoexons and their splice sites are unal-
tered from normal individuals, but their inclusions in
mature transcripts are initiated by deletions of imme-
diately flanking intronic regions, which presumably
contain essential splicing silencers.

For the remaining five deletion-initiated PEs, the
link between mutation and pseudoexon is less clear.
PEs 12 (i3), 18 (i11) and 27 (i29) all arose from frame-
shifting deletions of one, two and one bases in exons
5, 12 and 27 respectively, and PEO2 (il1) and PEO3
@i1) (both from the same patient) were purportedly
initiated by a deletion of exons 3 to 6. Though a more
detailed explanation of these PEs may not be possible
at present, they appear to support the general theory
that splicing of a given DMD intron is often interde-
pendent on the correct processing of distant elements
of the same transcript [46].

PSEUDOEXONS ARISING FROM
DUPLICATIONS

Five DMD pseudoexons arose from genomic dupli-
cations: PEs 08, 09, 10, 11, and 33. PEOS (i2), which
has also been observed as a low-frequency inclusion

in normal skeletal muscle RNA, was converted to a
pseudoexon by a tandem duplication of exon 2. PE09
(i2), PE10 (i2) and PE11(i3) were reported in the
same proband as a result of an exon 8§—11 duplication,
and PE33 (i43) arose from an exon 44 duplication.
These cases offer further support to the theory of cor-
rect DMD splicing occurring through coordination
of distant elements. At this point, however, it is not
clear whether these PEs are induced specifically by
alterations to the canonical exon order, or whether
they arise from disruptions to intronic sequences that
would normally act as distal pseudoexon silencers.

PSEUDOEXONS ARISING FROM
INVERSIONS

Eight DMD pseudoexons arose from inversion
mutations: PEs 34, 38, 39, 40, 41, 42, 43, and 46.
In all these cases, each PE was completely internal
to the inverted region. PE34 arose from an inver-
sion internal to intron 44 — i.e. no canonical exons
were directly affected. PEs 38 to 43 (i48 and i49)
were reported from a single patient with a com-
plex inversion of exons 49 and 50, while PE46 (i53)
arose in a patient with a deletion of exons 48-52
and an inversion of exon 53. It is perhaps unsur-
prising that such dramatic rearrangements of large
tracts of transcribed sequence would result in splicing
disturbances of some kind, but these cases neverthe-
less serve to illustrate that, in addition to recognition
of canonical exons, the silencing of pseudoexons is
an equally essential component of spliceosome func-
tion, and one that is likely to be achieved through
orientation-dependent sequence motifs in the intron.

PSEUDOEXONS ARISING FROM
INSERTIONS

Two DMD pseudoexons arose from insertion muta-
tions, PEs 32 and 45. PE32 was created by an insertion
into intron 43 of two large tracts (88.0kb and 2.6kb)
of intragenic sequence from chromosome 4, the PE
itself originating within the larger of these two tracts,
while PE45 was created by a 6096bp LINE-1 retro-
transposon with a potential donor site at its 5" end
inserting immediately 3’ of a latent acceptor site in
DMD intron 51.

PSEUDOEXONS ARISING FROM SINGLE
BASE-PAIR SUBSTITUTIONS

Single base-pair substitutions were the most com-
monly observed cause of DMD PEs, accounting for
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Acceptor 417
SNVs 37
5 30
ttttca gG
Donor 57
SNVs 54 50
23 48
19 36
14 31 55

Fig. 1. Locations of pseudoexon-initiating single-nucleotide vari-
ations in the DMD gene, relative to acceptor and donor splice
site consensus sequences. Numbers above each nucleotide indi-
cate the exemplar pseudoexons. Lower-case letters indicate intron
sequence, upper-case letters indicate exon sequence. Dash-line
boxes highlight the essential “ag” and “gt” of the acceptor and
donor site motifs respectively.

26 of the 58 catalogued, through 24 unique mutations.
In most of these cases, the etiology of the PE appears
to stem from the creation or enhancement of a latent
mid-intron splice site — of the 24 unique mutations,
7 created new acceptor splice sites (PEs 01, 05/06,
15, 22, 30, 37 and 47) and 15 created new donor
splice sites (PEs 13, 14, 16, 19, 23/24, 26, 31, 36, 48,
50, 51, 52, 54, 55 and 57). All 22 of these acceptor-
motif and donor-motif mutations greatly enhanced
the Shapiro-Senapathy splice score of the mutated
site, and in every case the new nucleotide was the
most common consensus base for that position in
the splice site (Fig. 1). While a possible exception
to this rule was noted at the acceptor site of PE14
(c.650-39575A>C), this mutation was found to be a
common SNP (rs113593006, dbSNP build 151 — see
ref. 44) that only marginally decreased the Shapiro-
Senapathy score of the acceptor site (from 79.91 to
78.04). 1 therefore judged that this SNP was likely
to be incidental to the pathology of this pseudoexon
and did not constitute a true counterexample to the
prevailing pattern of splice site enhancement.

Only two PEs arose from SNVs outside of the PE
consensus splice sites, PE20 and PE25. PE20 (i18)
arose from a G-to-A substitution at the first base of
intron 20, suggesting that the correct splicing of these
two introns may be interdependent. In this way, PE20

is qualitatively similar to PEs 12 and 18, which also
arose from small mutations distal to the pseudoexon,
although the mutation that initiated PE20 did not
directly alter the DMD coding sequence. PE25 (i26)
is a unique case that arose from a G-to-C substitution
internal to the PE that altered the predicted binding
of splicing enhancer SRp55 [30].

PSEUDOEXONS AND RECURSIVE
SPLICING

Multi-step or recursive splicing was first described
in Drosophila in 2005 [47] and has more recently
been discovered to be prevalent in the genes of
the human transcriptome [48, 49], including DMD
[50, 51]. While conventionally spliced introns are
removed with a single splicing event, recursively
spliced introns are excised from their maturing tran-
scripts in two or more segments, via intronic acceptor
splice sites called ‘ratchet points’. Sibley et al. [48]
have also reported that recursive splicing in verte-
brates is facilitated by recognition of evolutionarily
conserved donor-like splice sites downstream of
acceptor-like ratchet points.

Georgomanolis et al. [49] have postulated that
some of the low-frequency pseudoexons observed
in the transcripts of normal cells may be a natural
byproduct of the spliceosome incorrectly recogniz-
ing exon-like intronic ratchet points. I suggest that
this hypothesis can reasonably be extended to include
mutation-induced PEs — i.e. mutations that enhance
the exon-like characteristics of intronic ratchet points
may thereby convert them into pathogenic PEs. Evi-
dence supporting this hypothesis has already been
described by Bouge et al. [14], who noted the align-
ment of six pseudoexon splice sites with six of the
DMD intron ratchet points predicted by Gazzoli et
al. [51]. Seeking to expand upon these observations,
I cross-referenced the splice sites of all eligible PEs
in Table 1 with all of the intronic ratchet points pre-
dicted by Gazzoli et al. This analysis excluded the
splice sites of the DMD inversion PEs (34, 38, 39,
40, 41, 42, 43 and 46), the chromosome 4 insertion
PE (32), and the de novo donor site for PE45, as these
sites could not be sensibly compared to any part of
the DMD reference sequence. Splice sites shared by
multiple PEs (acceptor sites for PEs 5 and 6, 15 and
16, and donor sites for PEs 9 and 10, 11 and 12, and
15 and 16) were included but were counted only once
each to avoid bias. Using these criteria, including the
matches noted by Bouge et al. I confirmed 12 Gazzoli
matches out of 47 unique acceptor sites and 14 Gaz-
zoli matches out of 44 unique donor sites (Table 2).
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Table 2
DMD pseudoexon splice sites coinciding with recursive splicing ratchet points predicted
by Gazzoli et al. (2016). Co-ordinates listed are for genomic reference sequence
NC_000023.10, as used by the cited authors. Dotted-line boxes enclose pairs of split
reads that match to the same pseudoexon splice site. Asterisks (*) indicate the six
coinciding splice sites previously noted by Bouge et al. [14]

Genome positions of split Rect_:r_sive E
Intron read Splicing Match Donor/Acceptor
Type
1 chrX:33190805-33192302 nested 1 D
1 chrX:33096464-33229399 5'RS 4* A
1 chrX:33038317-33096303 3'RS 4* D
2 chrX:32978464-33038256 5RS 7 A
chrX:32978004-32978325 nested
2 chrX:32867937-32978325 3'RS ! P
2 chrX:32897097-33038256 5'RS 8
2 chrX:32867937-32897000 3'RS 8
3 chrX:32862977-32864739 3'RS 11,12 D
chrX:32532339-32536125 5'RS
18 20 A
chrX:32532339-32533049 nested
18 chrX:32519959-32532208 3'RS 20 D
21 chrX:32499062-32503036 5RS 21* A
21 chrX:32490426-32498997 3RS 21* D
27 chrX:32460395-32466573 5'RS 26 A
27 chrX:32459431-32460277 3'RS 26 D
chrX:32430180-32456358 5'RS
29 27 A
chrX:32430180-32430279 nested
29 chrX:32430030-32430136 3'RS 27 D
43 chrX:32253321-32305646 5RS 33 A
43 chrX:32235180-32253264 3RS 33 D
51 chrX:31770641-31792077 5RS 44 A
51 chrX:31747865-31770558 3RS 44~ D
56 chrX:31515061-31515196 3'RS 49 D
63 chrX:31265885-31279072 5'RS 53 A
63 chrX:31241238-31265811 3'RS 53 D
67 chrX:31221511-31222078 5'RS 56 A
77 chrX:31150750-31152219 5'RS 58 A
77 chrX:31144790-31150600 3'RS 58 D

Several interesting features were apparent in this
set of Gazzoli-matched splice sites. Firstly, most of
the matched PEs matched at both their acceptor and
donor splice sites. Only PEs 1, 11/12 and 49 matched
at their donor sites alone, and only PE56 matched at
its acceptor site alone. Secondly, a clear bias was evi-
dent in the mutation categories of the matched PEs, as
the majority of the Gazzoli-matched sites were from
PEs induced either without mutations or by mutations
distal to the PE and its splice motifs, PEs 1 and 26
being the only exceptions to this rule. Lastly, of the 15
PEs where inducing distal mutations were identified,

11 arose exclusively from mutations that were 3 to
the PE (PEs 2, 3, 4,7, 8, 9, 10, 11, 12, 18 and 20).
Only PEs 27 and 29 were induced exclusively by 5’
mutations, while PEs 33 and 49 were each induced
by flanking mutations.

PSEUDOEXONS AND RECURSIVE
SPLICING REGULATION

Canonical splicing of a donor-acceptor pair is often
dependent on distal regulatory elements, including
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Fig. 2. Suggested model of the two most common modes of pseudoexon initiation observed in the DMD gene. (A) Proximal mutations at
non-RS sites. (i) In the absence of mutation, a putative pseudoexon presents a weak exon-like profile to the spliceosome and is predominantly
excluded from mature transcripts. (ii) The presence of a mutation, usually a splice-site-creating SNV, increases the exon-like profile of the
putative pseudoexon, resulting in its inclusion in a much higher proportion of transcripts. (B) Mutations 3’ distal to RS sites. (i) In the absence
of mutation, the exon n donor site and RS-acceptor site are used to excise the 5’ segment of an intron. Silencing elements distal (usually 3')
to the RS-exon prevent spliceosome recognition of its donor-like motif, and the RS-exon is subsequently removed from the transcript along
with the rest of the 3’ intron segment. (ii) When mutations to the distal silencing elements impair their function, the intron segment 5’ to the
RS-exon is spliced as normal, but the RS-exon donor-like site escapes silencing and is more readily recognised by the spliceosome, leading
to a much higher frequency of inclusion of the RS-exon in the mature transcript population.

but not limited to other canonical splice sites [51, 52,
53]. Mutations that alter or destroy these distal ele-
ments can impede exon definition and decrease the
frequency of inclusion of the affected exons in the
mature transcript [42, 43]. It may be that spliceosome
recognition of recursive splice sites (which necessar-
ily exhibit a strong exon-like profile in their local
motifs) is regulated by a similar system of mostly 3’
distal elements, but a system that acts to silence rather
than promote the inclusion of its targets. Mutations
that impaired these distal silencing elements might
thereby permit an increase in the erroneous process-
ing of recursive splice sites, converting them to PEs
via a distinctly different pathway than PEs created
by proximal mutation (Fig. 2). If valid, this model
would explain the high coincidence of Gazzoli pre-
dicted recursive splice sites with the splice sites of
PEs induced by distal mutations. However, while the
mutations collated in this report may offer broad clues
as to the locations of some such suppressive distal ele-

ments in the DMD gene, any further analysis of their
common features awaits the assembly and analysis
of a much larger dataset of PEs and recursive splice
sites —one that will have to encompass multiple other
genes besides DMD.

CONCLUSIONS

The 58 DMD pseudoexons collated from pub-
lished reports exhibit great diversity in their sizes,
locations, and pathologies. Surprisingly, PEs arising
either from no mutation, or from mutations dis-
tal to the pseudoexon and its splice sites, exhibited
a high coincidence with predicted recursive splice
sites in the DMD introns, suggesting that some such
pseudoexons may arise from disruptions to recursive
splicing regulation. This finding may represent an
important new insight into the etiology of pseudoex-
ons in DMD specifically and human disease genes
generally.
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