Pompe disease (PD), a glycogen storage inborn error of metabolism (type II), is caused by the deficiency of acid α-glucosidase (GAA); it can manifest itself in two forms: infantile onset (IPD) and late-onset (LOPD). Clinical presentation of this disorder is variable, depending on age at onset, level of organ involvement, progression rate, and genotype. PD is classified as a glycogenosis; and, since individuals with this disorder excrete oligosaccharides in the urine, can be considered to be an oligosaccharidosis as well. Urinary tetraglucoside (Glc₄), considered to be a biomarker of the disease, could be an auxiliary tool in screening for PD in suspected cases. Urine samples from 24 known patients with IPD (n = 15) and LOPD (n = 9), and normal controls (n = 215) were submitted to thin layer chromatography (TLC) analysis and high performance liquid chromatography (HPLC) quantification to evaluate urinary Glc₄. Analysis by TLC showed a characteristic Glc₄ band in all PD cases and quantification by HPLC revealed high Glc₄ levels in all PD patients when compared with healthy age-matched individuals. Urinary Glc₄ was further used in clinical follow-up of two PD patients submitted to long-term enzyme replacement therapy (ERT) with human recombinant GAA (Myozyme®). An inverse correlation of Glc₄ excretion with therapy duration was observed in both cases. Furthermore, systematic quantification of Glc₄ by HPLC showed that the reduction of Glc₄ levels in these two patients fluctuated according to clinical outcome complications or treatment interruption. Routine screening for PD can be performed by these two methods, and quantification of Glc₄ by HPLC proved to be a very useful and sensitive tool in monitoring patients on ERT.

Juan C. Llerena Jr¹,²,*, Ana Carolina Esposito¹, Anneliese Barth¹, Fernanda Scalco¹, Maria Lúcia Oliveira¹ and Dafne Horovitz¹
¹Centro de Genética Médica, Instituto Nacional Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
²Faculdades Arthur Sá Earp (FASE), Faculdade de Medicina, Petrópolis, Rio de Janeiro, Brazil
³LABEIM (Laboratório de Erros Inatos do Metabolismo), Instituto de Química, Departamento de Bioquímica, UFRJ, Rio de Janeiro, Brazil

*Correspondence to: Juan C. Llerena Jr, Centro de Genética Médica, Instituto Nacional Fernandes Figueira, Fiocruz, Faculdades Arthur Sá Earp (FASE), Faculdade de Medicina, Petrópolis, Rio de Janeiro, Brazil. E-mail: llerena@iff.fiocruz.br.