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Abstract. Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle
degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and
stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost
effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of
dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by
our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice
on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe
phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences
in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation
in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic
phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent
therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background
(C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdx?9%°, Dmd-null, humanized DMD (hDMD), mdx
on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.

Keywords: Duchenne muscular dystrophy (DMD), exon skipping, mdx, mdx52, hDMD, dko, C5STBL/6-mdx, DBA/2-mdx,
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INTRODUCTION

Duchenne muscular dystrophy (DMD) is the most
common and fatal form of muscular dystrophies with
an incidence of 1 in 5,000 boys [1, 2]. It is character-
ized by progressive muscle wasting and degeneration
[3]. Mutations in the DMD gene result in the absence
of a protein, dystrophin in the sarcolemma [3]. The
DMD gene, the largest known gene in humans,
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consists of 79 exons and a 14 kb long dystrophin
mRNA [4]. Dystrophin has four domains: N-terminal
domain, 24 spectrin-like rod-shaped domain, cys-
teine rich domain and C-terminal domain [5]. The
N-terminal domain of dystrophin binds to actin,
and the cysteine rich and C-terminal domains of
dystrophin bind to dystrophin-glycoprotein complex
(DGC), a multimeric protein complex found at the
plasma membrane (sarcolemma) of muscle fibers
(aka myofibers) [5, 6]. Along with DGC, dystrophin
crucially links the actin cytoskeleton of the sar-
colemma to the extracellular basement membrane, as

ISSN 2214-3599/16/$35.00 © 2016 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.


mailto:merryl@ualberta.ca

30 M. Rodrigues et al. / Murine Models of Duchenne Muscular Dystrophy

illustrated in Figure 1 [5, 7]. In the presence of dys-
trophin, DGC maintains muscle membrane integrity
by serving as a signalling center, and a shock absorber
to reduce contraction-induced damage [7]. Muta-
tions in many protein components of DGC (such
as dystrophin, sarcoglycans or dystroglycans) lead
to various forms of muscular dystrophy and murine
models with various dystrophic phenotypes, partly
because certain components of DGC are more crucial
in function than others [7].

In the absence of dystrophin, almost all compo-
nents of DGC is either lost or mislocalized, the DGC
is rendered dysfunctional and, the sarcolemma is
highly susceptible to damage during muscle con-
traction [8]. Normal skeletal muscles regenerate
following injury via satellite cells, which are resi-
dent muscle stem cells found beneath the basement
membrane of myofibers [9, 10]. However, since dys-
trophic skeletal muscles undergo rapid degeneration
followed by regeneration, these chronic cycles of
degeneration and regeneration progressively lead to
exhaustion of satellite cell pools [9, 11]. As regen-
eration slows down and can no longer keep up with
rapid degeneration, damaged myofibers are replaced
with adipose and fibrotic tissues instead of new mus-
cletissue [9, 11]. The exhausted regenerative capacity
along with chronic inflammation exacerbates the dys-
trophic phenotype.

The clinical onset and diagnosis of DMD occur
between 3-5 years of age. During this period, the
affected children display walking difficulties, and
elevated creatine kinase levels [3, 12, 13]. Dys-
trophic muscles of DMD patients display muscle
necrosis, invasion of inflammatory cells, impaired
regeneration due to exhausted satellite cell pools, and
progressive fibrosis and adiposis [6]. As the disease
progresses, the affected individuals are wheelchair
bound at around 11 years, require ventilation support
and, death ensues due to respiratory or cardiac failure
between ages 20 to late 30 [1, 14, 15].

Although there is no cure for DMD right now,
the current treatment for DMD has increased the
lifespan of patients by 7 years since the 1980s
[15]. Current treatments of DMD include steroids,
surgery and assisted ventilation. Steroids, such as
prednisone and deflazacort, are administered at daily
doses of 0.75mg/kg and 0.9mg/kg respectively to
prolong ambulation in children with DMD [16-20].
Continuing steroid treatment into adulthood (after
the loss of ambulation) aims to achieve the benefits
of the treatment (respiratory muscle strength and
delay in scoliosis) with fewer side-effects (weight

gain and bone fragility), via an alternative dosing
regimens (e.g. alternate day, high-dose weekend, or
a 10-day “on” cycling with 10 or 20 days “off™) [20].
Surgery can be considered to correct for lower limb
contractures (joint, ankle and knee contractures) and
scoliosis [21]. Assisted ventilation has increased the
lifespan of DMD patients by 10 years or more [22].
Non-invasive ventilation forces air into the lungs and
is used to assist coughing, nocturnal hypoventilation
and later during daytime hypoventilation [21].
Non-invasive ventilation is usually preferred over
tracheostomy as it ensures a better quality of life
while prolonging survival [21, 23, 24].

Interestingly, dystrophin deficiency observed in
Becker muscular dystrophy (BMD) patients show
varying clinical symptoms, wherein many display
a much milder phenotype than DMD patients, and
some even display an asymptomatic phenotype
[25-27]. The reading frame theory, which is well sub-
stantiated, explains that milder phenotypes observed
in BMD are caused by in-frame mutations in the
DMD gene. These in-frame mutations maintain the
reading frame and result in the formation of truncated,
internally deleted dystrophin protein. The reading
frame theory explains the difference in phenotypes
between DMD and BMD patients in 92% of cases
[27]. However, in the remaining 8% of the cases,
patients display severe phenotypes with in-frame
deletions, duplications, and/or due to epigenetic and
environmental factors [28].

Here, we will discuss the developments in
therapeutic approaches and these include: Exon
skipping, gene replacement therapy, stem cell
therapy, utrophin up-regulation and read-through
therapy using pharmacological agents. Table 1 pro-
vides a brief description of therapeutic approaches
of DMD. Subsequently, we will focus specifically
on murine models: The merits and caveats of
each model and their applications in preclinical
research. The mouse models discussed here are
the standard mdx (with C57BL/10 background),
mdx on C57BL/6 background (C57BL/6-mdx),
mdx52, dystrophin/utrophin double-deficient (dko),
mdxP9€° Dimd-null, humanized DMD (hDMD), mdx
on DBA/2 background (DBA/2-mdx), Cmah-mdx,
and mdx/mTR¥C murine models.

Therapeutic approaches

Exon Skipping: Many consider exon skipping
using antisense oligonucleotide (AONs) as one of the
most promising therapeutic approaches [29—-32]. This
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Fig. 1. Dystrophin links actin cytoskeleton to the dystrophin glycoprotein complex. In normal muscles, the N-terminal domain of dystrophin
binds to actin. Dystrophin then, subsequently interacts with the components of DGC: It interact with neuronal nitric oxide synthase (nNOS)
at the region between exon 42 to exon 45, then, its cysteine rich domain binds to B-dystroglycan, and lastly, its C-terminal domain binds to

syntrophin and dystrobrevin.

Table 1

Overview of therapeutic approaches and its associated glossary of terms

Exon skipping therapy

Antisense oligonucleotides (AONs)

Gene replacement therapy

Stem cell therapy

Induced pluripotent stem cells (iPSC)

Utrophin upregulation therapy

Read-through therapy

Endonuclease-based gene repair

Antisense oligonucleotides are used to splice one or multiple exons in pre-mRNA to restore
the reading frame

Short synthetic nucleic acids that target specific sequences of pre-mRNA, modulating the
splicing pattern to allow for in-frame dystrophin mRNA. Some of the AONs developed are
2’-O-methyl phosphorothioate (2’OMePS), phosphorodiamidate morpholino oligomers
(PMOs), Vivo-morpholinos (vVPMOs) and peptide-linked PMOs (PPMOs). Each of these
AONS has different chemistries but the latter two have cell-penetrating moieties.

Provides a substitute for dystrophin in a dystrophin-null background by packaging a
truncated form of the dystrophin gene in vectors such as the non-pathogenic recombinant
adeno-associated virus (rAAV) vector.

Involves stem cell transplantation, proliferation and differentiation into muscle cells and
hence, contributes to increased muscle regeneration, preventing muscle wasting and
fibrosis.

Adult somatic cells that are genetically reprogrammed into an embryonic stem cell-like
pluripotent state and hence, can differentiate into myofibers and increase muscle
regeneration capacity.

Aims to increase levels of utrophin, a protein similar to dystrophin, in dystrophic muscles to
compensate for the absence of dystrophin. Pharmacological drugs, such as SMT C1100,
SMT022357 and Biglycan, are shown to increase utrophin levels.

Pharmacological agents, such as Ataluren (aka PTC124), are used to replace a premature
stop codon (nonsense mutation) with a new amino acid, allowing for continued translation
of dystrophin protein.

DNA gene editing technique: Endonucleases used to create site-specific breaks in
double-stranded DNA, which initiates DNA repair and gene correction.
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approach focuses on restoring the reading frame of
dystrophin mRNA using AONs [33-35]. The quasi-
dystrophin produced after exon skipping must be
partially functional as it allows for milder pheno-
types, similar to those seen in BMD patients [36-38].
However, exon-skipping is not without limitations:
Dystrophin restoration induced by phosphorodiami-
date morpholino oligomer (PMO or morpholino)
AON exon-skipping lasts for only up to 8 weeks in
dystrophic dogs and repeated AON administration is
required to sustain its therapeutic effects, and issues
with low exon skipping efficiency [39]. To overcome
these limitations, developments in exon skipping
include multiple exon skipping and, the use of vari-
ous AON delivery systems to improve efficiency [40].
Using a cocktail of AONs allows for multiple (as
opposed to single) exon splicing, thereby potentially
increasing the applicability of the treatment to 90%
(instead of 60%) of DMD patients [29, 41]. Skip-
ping exon 45-55 can potentially treat 63% of DMD
patients with deletion mutation [36]. Tricyclo-DNA
(tcDNA), a new class of AON higher dystrophin lev-
els in diaphragm (50%) and heart (40%) and, 3—4 fold
higher skipping than 2’-O-methyl phosphorothioate
(2’0OMePS) and PMO at equimolar dosing regimens
in mdx treated mice [42]. Moreover, new generation
morpholinos such as octa-guanidine conjugated vivo-
morpholinos (vPMOs) and peptide-linked PMOs
(PPMOs), have a cell-penetration moiety and more
effective AON chemistries than unmodified mor-
pholinos [43]. Thereby, they are more efficiently
delivered into various tissues and have a higher
efficacy of dystrophin rescue [43]. Drisapersen, a
2’0OMePS exon-skipping drug (ClinicalTrials.gov:
NCT01254019), was unsuccessful at Phase III clin-
ical trial as it did not yield statistically significant
improvements in the 6 minute walking distance test
(6MWT) compared to placebo [44, 45]. According
to post-trail ad hoc analysis, drisapersen failure may
be due to variation in patients’ age (large number
of older participants), disease severity and standards
of care among different countries [46]. Limitations
in 6MWT arise when differences in age and height
(which affects stride length) of patients’ are observed.
According to Goemans et al., pooled analysis of two
phase II trials suggested that drisapersen can slow
down the disease when treated at younger ages and for
an extended time [46, 47]. Currently, drisapersen con-
tinues to be developed by BioMarin. While 2’OMePS
have ribose rings, a negative charge and are struc-
turally similar to RNA, morpholinos are more stable,
less toxic and have reduced off-target effects due to

their 6-membered ring (lack of similarity to RNA)
and neutral charge [48, 49]. Another clinical trial
led by Sarepta Therapeutics is investigating the effi-
cacy and safety of a PMO exon-skipping drug called
eteplirsen, in advanced stage DMD patients who
can undergo exon 51 skipping (ClinicalTrials.gov:
NCT02286947) [50].

Gene replacement: This therapy aims to restore
dystrophin expression by replacing the mutant DMD
gene with a synthetic substitute using recombinant
adeno-associated virus (AAV) vectors [S1-57]. AAV
is non-pathogenic, and infects non-dividing cells [33,
58]. However, the AAV vector cannot carry the whole
DMD gene due to its small packaging size [33, 59]. In
order to accommodate for the small packaging size of
the vector, less essential regions of the DMD gene are
removed to form micro-dystrophin, a truncated but
functional form of dystrophin [56, 59—63]. Interest
in AAV therapy arose from its transduction abil-
ity in quiescent satellite cells, persistent expression
of delivered transgenes and non-pathogenicity [56,
64-67]. While AAV vectors display low immuno-
genicity than other vectors, the host’s humoral and
cellular immune responses remain a major con-
cern [68]. Dystrophin epitopes from rare ‘revertant’
(truncated dystrophin-positive) fibers (RFs) could
sensitize autoreactive T cells and mount an immune
response against the transgene product [69]. How-
ever, the potential for an immune response can be
reduced by intramuscular administration, doses rang-
ing from 2E11 vg/kg to 1.8E12 vg/kg, pre-screening
against vector specific neutralizing antibodies and by
administering immunosuppressants [54, 70]. A Phase
I clinical trial was recently conducted using AAV2.5
vectors (rAAV2.5-CMV-minidystrophin; Clinical-
Trials.gov number: NCT00428935]. Each of the two-
dose (2.0E10 vg/kg and 1.0E11 vg/kg) cohort studies
of three subjects were administered in the biceps
of six DMD patients and was found to be safe and
well tolerated [67, 71]. Currently, a Phase I clinical
trial involves AAV1 vectors (rAAV1.CMV.huFS344;
ClinicalTrials.gov number: NCT02354781) which is
administered in quadriceps, tibialis anterior gluteal
muscles to six DMD patients at a total dose of 2.4E12
vglkg [72].

Stem cell therapy: Satellite cells are muscle stem
cells that allow for muscle regeneration after injury
and are located between the sarcolemma and basal
lamina of myofibers [73, 74]. Dystrophic mus-
cles undergo continuous cycles of degeneration and
regeneration in the dystrophic muscles eventually
reduces the ability of resident satellite cells to
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regenerate injured muscle [73]. This leads to the
loss of muscle mass and compensatory insertion of
fibrofatty tissue [73]. A limitation of gene replace-
ment and exon skipping therapies is that the stage
of the disease determines the effectiveness of the
treatment because fibrofatty tissue replaces mus-
cle cells with the progression of the disease [33,
75]. Ideally, stem cell therapy can overcome this
hurdle by allowing for increased muscle regen-
erative capacity in dystrophic muscles [33, 76].
However, the transplantation of satellite cells show
limited migration and self-renewal capacity. Stem
cell types such as mesoangioblasts and CD133%
cells are able to enter and self-renew satellite cell
niches, contribute to muscle regeneration and, unlike
satellite cells and myoblasts, they can be delivered
systemically [75, 77]. Mesoangioblasts are blood
vessel-associated stem cells, which can pass through
the walls of blood vessels and differentiate into
myofibers [78]. CD133™ cells are human-derived and
can differentiate into muscle stem cells [79]. Other
developments include, human induced pluripotent
stem cells (iPSCs), which are derived by reprogram-
ing adult somatic cells into a pluripotent state, and are
similar to embryonic stem cells in morphology and
gene expression [75, 80, 81]. The advantage of this
therapy includes the production of large numbers of
myogenic progenitors, the lack of ethical issues that
surrounded embryonic stem cells, and the potential
to devise patient-specific iPSCs, ideally preventing a
host’s immune response [33]. Another kind of stem
cells are mesenchymal cells, which are multipotent
and can give rise to many tissues including skele-
tal and cardiac [82]. Aside from their regenerative
properties and ability to be delivered systemically,
mesenchymal stem cells are most advantageous for
their anti-inflammatory properties [82]. Yet, stem cell
therapy comes with challenges such as immune and
inflammatory reactions, poor survival and limited
migration of injected cells [§3-87].

Utrophin upregulating is another viable therapy
because utrophin is a protein very similar to dys-
trophin with 80% amino acid sequence homology
and takes the functional role of dystrophin during
foetal muscle development [88]. The advantage of
induced utrophin expression is that it could poten-
tially prevent an immune response against dystrophin
[89]. A drug called Biglycan, is a proteoglycan found
endogenously in mice and humans, which stabi-
lizes the muscle membrane by recruiting utrophin
to the sarcolemma [90]. SMT C1100 is another oral
drug that upregulates utrophin and reduces muscu-

lar dystrophy in mdx mice [91]. However, phase
la clinical trial showed low plasma levels of SMT
C1100 and, a phase 1b clinical trial (which was
recently completed) tested the safety and tolerability
of SMT C1100 at higher doses (however, the results
are not yet published) (ClinicalTrials.gov number:
NCT02056808) [91]. SMT022357 is a second gener-
ation drug with better metabolic and physiochemical
profile than SMT C1100 [92]. It shows increased
utrophin expression in cardiac, respiratory, and skele-
tal muscles in mdx mice and decreases necrosis and
fibrosis [92]. Utrophin upregulation cannot com-
pletely restore muscle function to normal, possibly
due to its inability to bind to neuronal nitric oxide
synthase (nNOS) and/or due its structural differences
to dystrophin [93]. Nevertheless, utrophin upregula-
tion improves muscle function and reduces muscular
dystrophy, and is applicable to all patients regardless
of their mutation type [93].

Read through therapy involves suppression of
nonsense mutations in DMD patients [94-96]. Gen-
tamicin, an antibiotic allows for read through of
premature termination codon (PTC) mutations, i.e.
nonsense mutation, by replacing a stop codon with a
new amino acid to continue translation [95, 97, 98].
However, it is not used clinically in DMD patients
due to serious dose limiting toxicities including a
hearing loss. PTC124 (also known as Ataluren) is
a drug that appears more potent than gentamicin in
restoring dystrophin expression although there exist
some controversies regarding its read through abil-
ity [99]. Ataluren is currently being investigated in a
phase III trial for its efficacy during a 6 minute walk
test in DMD patients with nonsense mutations (Clin-
icalTrials.gov number: NCTO01826487) [99, 100].
Generally, the applicability of read through therapies
is limited to around 10 —15% of DMD cases [101].

Endonuclease-based gene repair: Nuclease-
mediated genome editing creates site-specific double
stranded breaks in DNA [102, 103]. This cellular
DNA repair mechanisms, such as homologous
recombination (HR) or non-homologous end joining
(NHEJ) mechanisms, result in insertions or deletions
at break points that may lead to wild-type sequence
correction [104]. The four engineered endonucle-
ases recently developed include meganucleases,
zinc-finger nucleases, transcription activator-like
effector nucleases (TALEN) and, clustered reg-
ularly interspaced short palindromic repeat/Cas9
(CRISPR/Cas9) [102, 104-106]. This therapy is able
to restore the normal reading frame of the dystrophin
gene, delete a nonsense codon and knockout a
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gene [103]. This therapy recently emerged in DMD
studies, allowing permanent gene correction (by
precise modifications at the target locus), and hence,
overcomes the hurdle of transient mRNA correction
(which calls for continuous drug administration)
associated in AON-exon skipping and pharmacolog-
ical read through therapies [106]. The advantage of
this therapy is that it creates precise modifications at
the target locus, and hence, yields a specific protein
product with predictable functionality [105].

MURINE MODELS OF DMD

To name a few, among the many different animal
models of DMD, are zebrafish, dog and pig models.
Homozygous sap mutant zebrafish have a nonsense
mutation at the N-terminal domain of sapje (sap)
locus (an orthologue of DMD locus), resulting in the
loss of dystrophin, muscle degeneration and, exten-
sive fibrosis and inflammation [107]. The zebrafish
model is useful for screening small-molecule drugs
and visualizing molecular processes in vivo as the
embryos and larvae are translucent [107]. How-
ever, these non-mammalian zebrafish models are
phylogenetically far apart from humans. The com-
monly studied, Golden Retriever muscular dystrophy
(GRMD) dog model harbours a mutation in intron 6,
leading to a premature stop codon in exon 8, and are
more similar to DMD patients in disease severity than
mouse models [108-110]. Beagle-based canine X-
linked muscular dystrophy (CXMD) dogs are crossed
to GRMD to contain the same mutation but are
smaller and easier to handle than GRMD [111].
However, dogs with identical mutations can show
large differences in dystrophic phenotype, which can
blur end points and confound data interpretation
[112-115]. Pigs are more similar in anatomy, phys-
iology, and genetics to humans than dogs and mice,
but the newly developed pig models are not yet used
in preclinical studies. Transgenic pig with a mutation
in DMD exon 52 show symptoms similar to DMD
patients, such as, elevated serum creatine levels, lack
of functional dystrophin, and progressive fibrosis
[111, 116, 117]. However, it also displays upregula-
tion of utrophin (dystrophin homologue) as observed
in mouse models [116, 117]. While the spontaneous
substitution of arginine to tryptophan, in exon 41
results in dystrophinopathy, the affected pigs display
a BMD-like (and not a DMD) phenotype [118, 119].

Murine models are often used to lay the ground-
work for DMD studies including the pathogenesis of
DMD and, the efficacy and toxicity of therapeutics

[6]. However, murine models also have limitations
such as lack of host immune responses to thera-
peutic agents (e.g.: Vector capsids) and, small size
(compromising the ability to produce and deliver
scaled-up amount of vectors to large volumes of
muscles) [120]. Nevertheless, murine models are
valuable animal models for research as they can be
bred and genetically engineered with relative ease,
and they are less expensive than other large animal
models such as dogs and pigs. Many mouse models
such as hDMD, Cmah-mdyx, mdx/mTRXC and DBA/2
background have been recently developed. Table 2
provides a brief summary of the dystrophic features
of murine models discussed in this review paper.

Mdx on C57BL/10 background

Features of mdx mice: Mdx, a commonly used
classic mouse model, harbors a spontaneous point
mutation at exon 23 of the Dmd gene, leading to the
loss of dystrophin. Mdx arose from an inbred strain
of C57BL/10. Mdx pathogenesis involves increase in
creatine kinase levels, muscle degeneration, variation
of fiber size, and centrally nucleated fibers (CNFs)
indicative of muscle regeneration [6, 121]. While
young mdx mice display mild cardiomyopathy, older
mdx mice (especially female mice between ages 20 to
22 months) show severe dilated cardiomyopathy, fre-
quent premature ventricular contractions, and cardiac
fibrosis [122, 123]. Mdx has a much milder phenotype
and normal lifespan compared to DMD patients: It
does not exhibit impaired regeneration, accumulation
of fibrofatty tissue, reduced myofiber number, except
for in the diaphragm [124, 125]. The mild phenotype
of mdx mice can be explained by (1) high regener-
ative capacity: The satellite cell pools of C57BL/10
were able to renew themselves even after 50 cycles
of severe degeneration-regeneration (2) upregulation
of utrophin, a dystrophin homologue, throughout
their lifespan (unlike DMD patients), attenuating the
effects of dystrophin deficiency [126].

Involvement in therapeutic approaches: The mdx
(C57BL/10 background, C57BL/10-mdx) mouse is
the most widely used model of DMD [127, 128]. In
an effort to reduce the mild dystrophic phenotype
of mdx mice, high dose irradiation of mdx muscles
were employed to block muscle regeneration [129,
130]. For instance, one study irradiated hind limb
muscles of mdx mice which prevented the expan-
sion of revertant fibers (RFs), and showed that RF
expansion depends on muscle regeneration [131].
Another study genetically labelled (LacZ reporter)
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Table 2
Mutation types and phenotypic features of murine models of Duchenne muscular dystrophy
Murine models Molecular Mutation Phenotype References
mdx (C57BL/10 Spontaneous point mutation Skeletal muscle degeneration-regeneration, necrosis, little fibrosis, utrophin ~ (121)
genetic in exon 23 of the Dmd gene. upregulation and, greater regenerative capacity than DMD patients.
background)
mdx (C57BL/6 Spontaneous point mutation Similar to C57BL/10-mdx, used for comparative studies, greatest (135)
genetic in exon 23 of the Dmd gene. regenerative capacity than other inbred strains of mdx.
background)
Mdx2cv Intron 42 point mutation C57BL/6 background and the chemically induced mutation creates a new (137)
splice acceptor site.
Mdx3cv Intron 65 point mutation C57BL/6 background and the chemically induced mutation creates a new (137)
splice acceptor site.
Mdx4cv Nonsense mutation at exon 53C57BL/6 background and harbours a chemically induced nonsense 137)
mutation.
Mdx5cv Point mutation at exon 10 of C57BL/6 background and the chemically induced mutation causes a new (137)
Dmd splice site in exon 10.
mdx52 (C57BL/6 Deletion mutation in exon 52 Variation in myofiber size, skeletal muscles are hypertrophic, muscle (140)
genetic of the Dmd gene degeneration-regeneration cycles, necrosis, lower RFs than
background) C57BL/6-mdx
dko Double deficient of the Dmd Severe and progressive muscle wasting, weight loss after weaning, (150)
and Utr genes abnormal breathing rhythms, early onset of joint contractures, short life
span and kyphosis by 20 weeks
mdxBoeo Insertion of ROSA 3-geo Loss of most dystrophin isoforms (including Dp71), cardiac hypertrophy, (159)
gene trap vector in exon 63  abnormally dilated esophagus. (Note: The cysteine rich and C-terminal
domains are lost in these mice)
Dmd-null Deletion of the entire Produced by Cre-loxP technology. Lacks revertant fibers and all dystrophin  (162)
dystrophin gene isoforms. Displays muscle hypertrophy, behavioural abnormality and
infertility.
hDMD Knock-in of the complete ~ No dystrophic phenotype (163)
human DMD gene in
chromosome 5 of mouse
genome.
mdx (DBA/2 genetic Spontaneous point mutation Lower muscle mass, greater fibrosis and fatty tissue accumulation, and (138)
background) in exon 23 of the Dmd gene. lower regenerative capacity of satellite cells than C57BL/10-mdx mice.
Cmah-mdx Deletion mutation in the Nearly 50% mortality at 11 months of age, loss of ambulation by 8 months, (174)
(C57BL/10 genetic ~ Cmah gene and greater fibrosis than mdx (C57BL/10) mice in skeletal muscles like
background) spontaneous point mutation diaphragm and quadriceps, and necrosis in the heart by 3 months
in exon 23 of the Dmd gene
mdx/mTRXO Exon 23 point mutation and Severe dystrophic phenotype: Impaired self-renewal capacity, severe (181)

deletion of RNA
component TERC (mTR)
of telomerase

muscle wasting, accumulation of fibrosis and calcium deposits, increase
creatine kinase levels, kyphosis, dilated cardiomyopathy, heart failure
and shortened lifespan (12 months).

myofibers which were then transplanted in irradi-
ated hindlimb muscles of mdx mice, resulting in self
renewal of satellite stem cell pools [132]. Mdx mice
on various immunodeficient backgrounds, such as
mdx-null and recombinase-activating gene (Rag)2-/y
chain-/C5- mice (which is required for V(D) rear-
rangement), were created to evaluate gene and cell
therapies, without the compounding effects of an
immune response [120]. Meng et al. reported that
the efficiency of transplanting human muscle stem
cells (pericytes and CD133 + cells) into mouse mus-
cles depends on the environment and the mouse strain
[133]. They reported that there were more myofibers
and satellite cells of donor origin in (Rag)2-/vy chain-
/C5- mice than mdx-nude mice and, that cryoinjured
muscles provided a more permissive environment

for transplantation than irradiated muscles [133].
Mdx mice have also been used in developing phar-
macological treatments of DMD, such as VBPI5.
VBP15, a synthetic corticosteroid oral drug, inhibits
NF-«B and doesn’t lead to side effects associated
with currently used steroids (e.g. prednisolone) since
it doesn’t stimulate glucocorticoid-responsive ele-
ment (GRE) transactivation [134]. Mdx mice treated
with VBP15 (15 mg/kg) showed increase force in
extensor digitorum longus (EDL) muscles by 12%
and 16% in the two preclinical trials, while pred-
nisolone showed no increase in force [134]. For
maximal force exerted by forelimb muscles of mdx
mice, VBP15 showed increase in force while pred-
nisolone showed a decrease compared to non-treated
mdx mice likely because the mdx mice treated with
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prednisolone displayed growth retardation [134].
Aside for improvements in muscle strength, VBP15
(15mg/kg) treated mice showed a 38% reduc-
tion in inflammatory foci compared to non-treated
[134]. VBP15 in currently undergoing a random-
ized, double-blinded and placebo-controlled phase
1 clinical trial in healthy adults, to evaluate the
safety of VBP15 after a single dose and after 14
daily doses of VBP15 (ClinicalTrials.gov Identifier:
NCT02415439). Arginine pyruvate is another phar-
macological drug and was shown to protect mdx mice
against cardiac hypertrophy by 25%, ventricular dila-
tion by 20%, and kyphosis by 94% [128].

Mdx mice on C57BL/6 background

Features of C57BL/6-mdx mice: Mdx on C57BL/6
background (C57BL/6-mdx) is a novel murine model
that is valuable in comparative studies, involving
the use of mouse models such as mdx52 [135]. The
C57BL/10 genetic background of mdx mice poses
as a barrier to analyze and compare the phenotype
of other mouse models such as mdx52 (which pos-
sesses a C57BL/6 genetic background). C57BL/10
inbred strain is akin to and shares a common origin
with C57BL/6 but differs in allelic variants at H9,
Igh2 and Lv loci [136]. C57BL/6 genetic background
was employed in mdx*®", mdx>®", mdx*" and mdx>",
which were created by treating the mice with chemi-
cal mutagens (ethylnitrosourea (ENU)) (see Table 2)
[137] Mdx*® and mdx>¢” mice both harbor a point
mutation at the splice acceptor site in intron 42 and
in intron 65, respectively. Mdx*” mice harbor a non-
sense mutation in exon 53. A point mutation in mdx”¢"
mice causes a new splice site in exon 10 [67]. The dif-
ferent mutation locations in these mdx strains relative
to the seven different promoters in the Dmd gene leads
to a wide array of dystrophin isoforms and hence,
these mutants might be useful in studies involving
dystrophin function and expression [67]. Aside from
being useful in comparative studies involving mouse
models with similar genetic background, C57BL/6-
mdx mice cannot recapitulate the DMD phenotype
any better than mdx mice.

Involvement in therapeutic approaches: There are
not many therapeutic studies that involve the use
of C57BL/6-mdx mice. Wang et al. reported that
induced pluripotent stem cells (iPSCs) from mus-
cle fibroblasts of 14 month C57BL/6-mdx mice
(14m-MuF-iPSCs), showed lower proliferation and
reprogramming activity than younger C57BL/6-mdx
mice [135]. They also showed that the inhibition of

TGF-B and BMP signalling stabilized the 14m-MuF-
iPSCs, which differentiated into skeletal muscles
as efficiently as iPSCs from younger C57BL/6-mdx
mice [135]. Fukada et al. report that C57BL/6 strain
has the best self-renewal capacity among four inbred
strains of mdx mice: C57BL/6, DBA/2, BALB/c, and
C3H/HeN [138]. C57BL/6-mdx mice are observed to
have a significantly higher count of RFs than mdx52
at all age groups (2, 6, 12 and 18 months) examined
[139]. Since the background of these murine model
were identical, the results suggest that age, the type
and the location of the mutation in the Dmd gene
influences the expression and expansion of RFs in
skeletal muscles [139].

Mdx52 mice

Features of mdx52: Mdx52 mice, developed in
1997 by Araki and colleagues, contain a deletion of
exon 52 of the Dmd gene, resulting in the absence
of full-length dystrophin [140]. These mice exhibit
muscle necrosis, regeneration and hypertrophy, and
more importantly, lacks the expression of two of the
four shorter dystrophin isoforms, Dp140 and Dp260
(Fig. 3) [140]. Since the mouse models of that time
(except for mdx>*") expressed all dystrophin iso-
forms, mdx52 was developed to study how deficiency
in these isoforms influences the disease phenotype.
While mdx52 mice display skeletal muscle pathol-
ogy similar to mdx mice, the location of its deletion
mutation, advantageously corresponds, to the hot spot
region (exons 45-55) of mutations in DMD patients.
Approximately 70% of DMD deletion mutations are
located in this central region [141, 142]. Addition-
ally, absence of Dp260 isoform in mdx52 mice causes
abnormal electroretinograms (ERG) similar to DMD
and BMD patients, who lack Dp260 due to muta-
tions in exon 44-53 [143, 144]. Figure 2A shows
that mdx52 mice have lower RF expansion (low RFs
numbers within a single cluster) than age-matched
mdx mice (which amounts to a 58% lower RF expan-
sion at 12 months of age as reported by Echigoya
et al., 2013) [139]. Hence, it is thought to be a bet-
ter mouse model at evaluating dystrophin restoring
therapies because naturally existing RF might prevent
accurate assessment of a therapeutic efficacy.

Involvement in Therapeutic Approaches: Exon 51
skipping is the most common target for single exon
skipping therapies and is applicable to 13% of all
DMD patients [34, 38]. Skipping exon 51 using
PMOs restored bodywide expression of in-frame dys-
trophin (20%—-30% of normal levels) in mdx52 mice
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Fig. 2. Histology concerning RF expression and CNFs observed in dystrophic mice models of mdx, mdx52 and/or mdx-DBA/2) (A) Mdx52
mice show lower number of RFs in a single cluster than mdx52 mice at 12 months of age. Echigoya et al., 2013 showed that mdx52 has a 58%
lower RF expansion than age-matched mdx mice of 12 months. The tibialis anterior (TA) muscles of mdx and mdx52 were immunostained
with a rabbit polyclonal antibody against C-terminal domain (position at 3,661-3,677 amino acids; Abcam, Bristol, UK). Bars =50 pm. (B)
Hematoxylin and eosin stained images for TA muscles of mdx, mdx52 and mdx-DBA/2 mice at 2 months of age. Arrows indicate centrally

nucleated fibers. Bars =100 pm.

along with improved muscle function [145]. Exon
51 skipping induced by intramuscular PMO injec-
tion in mdx52 mice was recently shown to have the
highest percentage of dystrophin positive fibers at 5
weeks of age, when muscle regeneration was very
active [146]. PMO uptake into muscle cells of mdx52
seems effective during myogenic differentiation to
myotube formation; specifically PMO and 2’OMePS
were most efficiently delivered in dystrophic muscles
at early stages of C2C12 myotube formation [146].

Multiple exon skipping of exons 4555 in whole
body skeletal muscles using vPMOs restored dys-
trophin expression up to 15% and ameliorated
skeletal muscle pathology in mdx52 mice [145, 147].
This multiple exon skipping therapy is theoretically
applicable to 63% of DMD patients with out-of-frame
deletion mutations [34, 38]. In addition, this spe-
cific mutation is associated with exceptionally mild
BMD patients or asymptomatic individuals [148,
149]. Mdx52 is a valuable model for evaluating exon
skipping therapies as its deletion mutation is asso-
ciated with the hot spot region of the human DMD
gene.

Dko mice

Features of dko mice: Dko is a double deficient
mouse model that lacks dystrophin and utrophin
[150]. Dko was developed to reflect the absence of
utrophin protein observed in adult DMD patients,
and thereby devise a more severe phenotype than
mdx mouse model. Dystrophic features of dko
mutants include severe and progressive muscle wast-
ing, weight loss after weaning, abnormal breathing
rhythms, early onset of joint contractures and kypho-
sis leading to slack posture and premature death
between 4 to 20 weeks [150, 151]. Although res-
piratory failure appears to be the primary cause of
death in dko mutants, cardiomyopathy and swallow-
ing difficulties due to weak tongue muscles might be
contributing factors [150, 151]. However, since dko
mice die prematurely (mostly around 10 weeks), they
are hard to generate and maintain [152]. Dko mice
have more severe dystrophic phenotype than mdx
because they lack compensatory utrophin expression
that is present in mdx mice [150, 151]. Recent stud-
ies suggest that as little as 5% dystrophin expression
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Fig. 3. The promoters and isoforms of the dystrophin gene, and the location of mutations in murine models. (A) The location of different
promoters (brain (B), muscle (M), Purkinje (P), retinal (R), brain-3 (B3), Schwann cell (S), and general (G)) of the dystrophin gene is
displayed alongside with the location of mutations observed in some murine models (and also illustrates the insertion of the ROSABgeo in
3’ end of exon 63 in mdxP9¢°). Yellow rectangles represent exons. (B) The promoters of Dp427 results in “full-length” dystrophin protein
(consisting of the N-terminal actin-binding domain, rod domain, WW domain, cysteine rich domain (Cys) and C-terminal domain (CT)).

The remaining promoters lead to shortened dystrophin isoforms.

levels can extend the lifespan of dko mice [153, 154].
Clinical symptoms such as waddling gait, kyphosis
and short life span observed in dko mice are simi-
lar to those observed in DMD patients [150, 151].
Dko mice also express higher levels of immunopro-
teasome than mdx and display severe atrophy [155].
Mdx (C57BL/10 background) and utrophin-deficient
(C57BL/6 background) mice were crossed multi-
ple times to obtain dko mice with hybrid genetic
background [150]. It might be more useful to mate
C57BL/6-mdx with utrophin-deficient mice to rule
out differences in genetic background.

Involvement in Therapeutic Approaches: Dko
mutants have been used in gene therapies testing,
such as exon skipping, and gene replacement using
virus vectors. PPMO targeting exon 23 restored dys-
trophin expression in almost all skeletal muscles and
restored expression of dystrophin associated protein
such as glycosylated dystroglycan and neuronal nitric
synthase in all age groups of dko mutants [156]. It
was found that early treatment of PPMO (i.e. during
20-29 days of age) restored dystrophin expression in
almost all skeletal muscles of dko mice and resulted in
delayed disease progression, prevented severe kypho-
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sis and eye infection, and increased life span of dko
mutants [156]. However, treatment of PPMO at an
advanced stage of the disease had little effect on dko
mice even in the presence of high levels of dystrophin
[156]. The likely reasons for this finding in later
stage are severe loss of muscle fibres and its replace-
ment by fibrotic tissue, along with severe kyphosis
[156]. Utrophin upregulation therapy is advantageous
in immune response evasion against dystrophin. Dko
mutants were also used to test the efficacy of utrophin
minigene delivery using adenovirus vectors [157].
Utrophin minigene was found in nearly 95% of
muscle fibers 30 days after injection along with a
significant reduction in necrosis and an 85% reduc-
tion of centrally nucleated fibers (likely due reduced
degeneration) was observed in TA muscles com-
pared to non-treated dko mice [157]. Recently, small
nuclear RNAs (U7snRNA) along with AONs were
packaged into AAV vector (scAAV9-U7ex23) and
intravenously injected into dko mice [158]. This
approach of using small nuclear RNA in antisense
mediated-exon skipping therapy was employed to
overcome hurdles such as, low efficacy in cardiac
muscles, poor uptake and rapid clearance of the drug
[158]. Treated dko mice displayed increased dys-
trophin levels (among 45% to 95%) in all muscles
including cardiac muscle, improved muscle function,
and increased lifespan (50.2 weeks compared to 10.2
weeks in non-treated dko mice) [158].

M9

Features of mdxP9¢°: MdxP9¢° contains an inser-
tion of a gene trap vector (ROSABgeo) in exon 63
of the Dmd gene, resulting in the loss of cysteine
rich and C-terminal domains (as illustrated in Fig-
ure 3A) [159]. This mouse model was developed
by Wertz & Fuchtbauer in 1998 [159]. And unlike
the spontaneous and ethylnitrosourea (ENU)-induced
mutant mice of that time, mdxP9¢° had all isoforms
mutated and could detect the Dmd gene expression
early in embryogenesis and in adult organs (such as
the brain, liver, eye, pancreas and lung) by staining
for B-galactosidase (LacZ reporter) [159]. MdxB9eo
mice display a loss of dystrophin isoforms (includ-
ing Dp71), abnormally dilated esophagus, cardiac
hypertrophy, and other typical dystrophic features
such as muscle degeneration, cellular infiltration,
and regenerated fibers with centrally located nuclei
[159]. Full-length dystrophin was absent in skele-
tal muscles, however, trace amounts of PCR product
reflecting wild-type mRNA was detected in the brain

[159]. Krasowska et al. used mdxP9¢° and inhibitory
synaptic markers (such as neuroligin2 and vesicular
GABA transporter) to show that cognitive impair-
ments in DMD patients might be due to aberrant
clustering of receptors at inhibitory synapses in the
hippocampus [160].

Dmd-null

Features of Dmd-null mice: Dimd-null mice contain
a deletion of the entire Dmd gene on mouse chromo-
some X using a Cre-loxP recombination technique
[161]. Dmd-null mice were developed to prevent the
expression of all dystrophin isoforms (Fig. 3B illus-
trates dystrophin isoforms) [161]. While mdxP9e°
may express dystrophin isoforms, Dmd-null mice
can express neither revertant fibers nor any of the
isoforms as its alternative splicing (exon skipping)
ability is lost due to the deletion of the entire gene
[162]. Dmd-null mice display muscle hypertrophy,
behavioural abnormality, infertility and other dys-
trophic features similar to mdx mice [161]. These
mice are useful in transgenic studies that investigate
the function of dystrophin isoforms [161].

hDMD mice

Features of hDMD: Humanized DMD mouse
model (B6.DBA2.129-hDMD'®/'® has been engi-
neered to carry the complete human DMD gene in
chromosome 5 of the mouse genome (wild type)
[163, 164]. This is not a disease model as it allows
for the expression of full-length human dystrophin
protein as well as intrinsic murine dystrophin. ‘t
Hoen and colleagues designed the humanized DMD
model (hDMD) to assess the efficacy and safety of
human specific AONs in vivo for sequence specific
therapies such as exon-skipping [163]. The hDMD
mouse model might provide further insight into gene
regulation, genomic stability, and frequency of muta-
tions and recombination in the DMD gene [163]. The
hDMD mouse model might potentially be engineered
in future to carry mutations in the human DMD gene
in a dystrophin-deficient, mdx background [163].

Involvement in Therapeutic Approaches: The
hDMD murine model is advantageous to test
sequence specific therapies such as exon skipping.
Optimization of human specific AONs could only
be previously conducted in vitro. hDMD mice are
very useful as it allows for preclinical testing and
optimization of human specific AONSs in vivo [165,
166]. Goyenvalle et al. employed the hDMD mouse
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model to evaluate the in vivo efficacy of 11 different
U7 small-nuclear RNA in the splicing of exon 45-55
[167]. Their constructs, which were packaged in an
AAV vector, could achieve an efficient multi-exon
skipping of at least 3 exons in the DMD gene [167].
On the other hand, crossing hDMD mice with mdx
or dko mouse models rescued the dystrophic pheno-
type as human dystrophin compensated for the lack
of dystrophin in the mice [164]. Histological results
showed normal fiber size, absence of CNFs and lack
of fibrosis [164]. Ongoing experiments aim to induce
deletions in the human DMD gene of the hDMD/mdx
mouse. This would have great value in preclinical in
vivo studies of muscle function, dystrophin expres-
sion and the overall success of a particular AON
treatment.

Mdx on DBA/2 background

Features of DBA/2-mdx mice: Mdx on DBA/2
background (DBA/2, DBA/2-mdx) has a more severe
dystrophic phenotype than mdx (C57BL/10 back-
ground) and shares more histopathological features
with DMD patients. Fukada and colleagues devel-
oped the DBA/2-mdx mouse model which is available
in Jackson laboratory and Central Institute for
Experimental Animals (CIEA) Japan. The DBA/2
inbred strain is considered a challenging breeder
and possesses many mutated genes: They are highly
susceptible to hearing loss (Cdh23%"), eye abnor-
malities reflective of glaucoma (GpnmbR™%X and
Tyrpls®), extremely intolerant to alcohol and mor-
phine (KIrd1PBA?7) [168, 169]. Unlike C57BL/6
strain, DBA/2 strain is susceptible to audiogenic
seizures and resistant atherosclerotic aortic lesions
[170-172]. Moreover, DBA/2 mice also display
shorter life spans, more pronounced weight loss
with age (sarcopenia) and significantly lower self-
renewal efficiency of satellite cells than that of
C57BL/6 [138]. Unlike mdx mice, mdx on a DBA/2
background show reduced muscle mass, increased
fibrosis, and fatty tissue accumulation and reduced
regeneration potential of satellite cells, resulting in
prominent muscle weakness [138]. Figure 2B shows
that DBA/2-mdx mice show a lower percentage of
CNFs than mdx and mdx52 mice at 2 months (a
33% reduction of CNFs was shown from unpublished
data). The self-renewal ability of satellite cells might
explain the difference in phenotypes between mdx
and DBA/2-mdx mice [61, 92].

Involvement in therapeutic approaches: DBA/2-
mdx is a very new murine model and hence, there

are not many therapeutic studies involving its use.
Imatinib, a tyrosine kinase inhibitor, blocks the
expression of PDGFRa (tyrosine kinase receptors)
in skeletal muscle mesenchymal progenitors and
reduces fibrosis in DBA/2-mdx mice [173]. Addi-
tionally, the therapeutic dose of imatinib does not
influence the proliferation of myoblasts in vitro and
its use may be promising for stem cell therapies [173].

Cmah-mdx mice

Features of Cmah-mdx: Cmah-mdx mice, devel-
oped by Chandrasekharan and colleagues, harbor two
mutations: A deletion mutation in the Cmah gene
(Cmah™!47%y and a nonsense mutation in exon 23
of the Dmd gene (Dmd™*) [174]. The CMAH gene
is required for the expression of N-acetylneuraminic
acid (Neu5Ac), a type of sialic acid that is incorpo-
rated in glycan structures such as glycoproteins and
glycolipids [175, 176]. Mice lacking only the Cmah
gene display impairments in humoral immune func-
tion, coordination, hearing and wound healing [177,
178]. While the Cmah gene is expressed in mice, it is
naturally inactive in humans [179]. Knocking-out the
Cmah allele eliminates Neu5Ac in all cells of the mdx
mice and humanizes the glycan structures in mice
[178, 180]. Chandrasekharan et al. reports that chang-
ing the sialylation in mdx mice, brought about by the
Cmah gene deletion, enhances the disease severity in
the mice [174]. In contrast to mdx mice, Cmah-mdx
mice showed increased mortality, loss of ambulation,
and increased cardiac and skeletal impairment at an
earlier age and/or to a greater extent [174]. At 11
months of age, nearly 50% of the Cmah mice died
[174]. In comparison to mdx, Cmah-mdx mice at 8
months showed a 70% reduction in constant speed
(5 rpm) rotarod test (loss of ambulation), and a reduc-
tion in peak force by 88% and 66% for diaphragm
and cardiac trabeculae, respectively [174]. Cmah-
mdx mice also had increased fibrosis in the quadriceps
at 6 weeks of age, increased regions of necrosis in
the heart at 3 months of age and, increased fibrosis
in the diaphragm relative to mdx mice at 6 months
of age [174]. Chandrasekharan et al. discussed two
mechanisms that leads to the accelerated and more
severe dystrophic phenotypes in Cmah-mdx mice:
1) diminished function of dystrophin-glycoprotein
complex including reduced binding of extracellu-
lar matrix proteins to a—dystroglycan and reduced
utrophin upregulation, 2) increased activation of com-
plement (C5b-9) driven by increased expression of
antibodies specific to dietary Neu5Gc, a foreign gly-
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can in Cmah-deficient mice [174]. Currently, there
are no published therapeutic approaches involving
Cmah-mdx mice, a mouse model recently developed
in 2010.

mdx/mTRKC

Features of mdx/mTRX? mice: mdx/mTRX? was
generated by crossing mdx*" mice with mice con-
taining deletion in the RNA component TERC
(mTR) of telomerase [181]. Telomerase is an
enzyme that maintains the length of telomeres,
which are DNA repeats that protect chromosomes
from aberrant recombination, fusion and degradation
[181]. Mdx/mTREO was developed, as many studies
showed that DMD patients progressively loose mus-
cle regenerative capacity with age and, that telomere
shortening increases with age in DMD patients and
correlates with reduced regeneration [181]. Unlike
mdx mice, mdx/mTREC (with dystrophin deficiency
and telomerase dysfunction) show a more severe
dystrophic phenotype as seen in humans: impaired
self-renewal capacity of stem cells, muscle wast-
ing, accumulation of fibrosis and calcium deposits,
increased creatine kinase levels, kyphosis, dilated
cardiomyopathy, heart failure and shortened lifespan
of around 12 months [181]. Mourkioti et al. suggest
that dystrophin deficiency coupled with oxidative
stress and metabolic demands of cardiac muscles
leads to accelerated telomere shortening and progres-
sive cardiomyopathy [182].

CONCLUSIONS

Although murine models differ in some respects
to the clinical manifestations of DMD in humans,
they are still valuable for basic and cost effec-
tive investigations involving pathogenesis, and in
preclinical trials. Developments in murine models
of DMD are essential for overcoming limitations
of existing murine models such as mdx and for
higher success in clinical trials. Modifications to
mdx mice are useful for reducing the discrepan-
cies in dystrophic phenotypes between mice and
humans. For instance, inducing secondary mutations
(e.g. Cmah-deficient mdx mice) that have important
cellular effects (e.g. altering the form of glycosy-
lation) or, modifying the genetic background (e.g.
DBA/2-mdx mice), leads to increased severity of
dystrophic phenotype observed in mdx (C57BL/10
genetic background) mice. Genetic background influ-
ences phenotype: DBA/2 inbred strain has a much

lower regenerative capacity of satellite cells than
C57BL/10 and C57BL/6 inbred strains, and DBA/2
inbred strain is shown to display reduced muscle
weight and myofiber numbers than C57BL/6 inbred
strain. Mdx52 mice are similar to and have the
same genetic background as C57BL/6-mdx mice, but
provide an added value, since it carries a deletion
mutation corresponding to the hot spot region (exons
45-55) of the DMD gene. DBA/2-mdx, mdx/mTRXO
and dko mouse models provide a more severe dys-
trophic phenotype than mdx. MdxP9¢° and Dmd-null
mice lack dystrophin isoforms (including Dp71) and
revertant fiber expression, and hence, may be useful
in assessing the efficacy of dystrophin amelioration in
preclinical trials. The hDMD mouse model is useful
for optimizing human specific sequences of AONs in
pre-clinical trials. Overall, developments in murine
models greatly help in their contributions to the ther-
apeutic approaches for DMD in preclinical trials.
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