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Abstract.
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the

years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets
and/or biomarkers. High throughput – omic technologies have provided a comprehensive understanding of the changes occurring
in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus
providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that
could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an
overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies
in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating
biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
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Duchenne muscular dystrophy (DMD) is a severe
muscle-wasting disease caused by genetic mutations
in the DMD gene encoding a structural protein
called dystrophin [1]. Mutations in the same gene
are responsible for the milder form of the dis-
ease, which is called Becker muscular dystrophy
(BMD) [2]. Protein truncating mutations cause the
Duchenne form of the disease characterized by com-
plete or almost complete absence of dystrophin,
while BMD patients have in frame mutations and
are partly protected from muscular degeneration by
reduced levels of (smaller or semi-functional) dys-
trophins [3, 4]. During the years following the gene
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discovery, research focus has been on the develop-
ment of potential therapies able to restore dystrophin
and the dystrophin associated glycoprotein complex
(dystrophin pre-mRNA splicing modulation with anti-
sense oligonucleotides, dystrophin mRNA ribosomal
read-through of non-sense mutations, gene therapy,
allogenic or genetically corrected autologous stem
cells, utrophin up-regulation and differential glycosy-
lation of �-dystroglycan) or to reduce the secondary
pathology caused by the absence of dystrophin (reduc-
ing oxidative stress or increasing muscle mass) [5–16].
These therapeutic strategies were optimized and proof
of concept was shown in cellular and animal mod-
els [17–30]. In fact the development of therapeutic
strategies was so fast that when the first clinical tri-
als were designed it was clear which mutation specific
drug was suitable for which patients, while it was not
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known which primary endpoint should be used. Fur-
thermore, lacking detailed knowledge on the natural
history of the disease and the outcome measures to be
used in clinical trials, it was difficult to power stud-
ies properly and to identify biomarkers for therapeutic
monitoring. Finally, while detailed knowledge was
available about general genotype-phenotype relation-
ships, studies linking different out-of-frame mutations
to variation observed in natural history studies using
outcome measures used in clinical trials were unavail-
able, nor was it known if and how genetic modifiers
influenced disease progression as measured by these
functional outcome measures [31]. Once the field real-
ized this, clinical researchers started to evaluate how
known and new functional scales could describe dis-
ease progression in patients with Duchenne [31–41].
These studies in natural history cohorts provided a
baseline for clinical trials, but meanwhile clinical trials
had already initiated. On occasion this made the inter-
pretation of results difficult as natural history studies
showed that individual differences in disease progres-
sion were due to genetic modifiers or differences in
the mutation site [42–47]. Importantly, natural history
studies also revealed that the progression of the dis-
ease over time was different depending on the age
group and the walking skills at baseline as measured
by the 6 minute walk test (6MWT) [48]. Molec-
ular researchers in parallel continued to investigate
the pathophysiological changes in patients’ muscle
biopsies and animal models by proteomic and gene
expression studies. Even though studies in muscle
biopsies have limitations such as the fact that they
do not reflect the condition of the entire muscle nor
of other muscles, this approach increased the under-
standing of which genes and proteins were driving
the pathology in Duchenne as well as in other muscu-
lar dystrophies, showing common characteristics that
could lead to a dystrophic phenotype [49]. Some of
these genes were then identified as modifiers of dis-
ease progression or prognostic biomarkers [44]. We
will however not discuss genetic modifiers as they
have been recently reviewed by Lamar et al. in the first
issue of this Journal [50]. The identification of mus-
cle biomarkers lead the way to the identification of
new therapeutic targets as well as biomarkers which
could be used as surrogate endpoints or secondary
endpoints. Even though the categorization of biomark-
ers is beyond the scope of this review we would like
to spend a few words on the term surrogate end-
point to avoid confusion. The term “biomarker” has
been defined by the Biomarkers Definitions Working
Group of the National Institutes of Health (NIH) as

“a characteristic that is objectively measured and eval-
uated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic response to
a therapeutic intervention” [51]. This definition is
quite ample and may include many types of possible
biomarkers such as prognostic biomarkers, diagnostic
biomarkers and biomarkers for response to a therapeu-
tic agent. A surrogate endpoint is a “biomarker that
is intended to substitute a clinical endpoint. A surro-
gate endpoint is expected to predict clinical benefit
(or harm or lack of benefit or harm) based on epi-
demiologic, therapeutic, pathophysiologic, or other
scientific evidence”. Based on this definition it is clear
that all surrogate endpoints are biomarkers but not all
biomarkers can be surrogate endpoints. To qualify as
surrogate endpoint a biomarker should correlate to, or
predict clinical endpoints. As such, it is not sufficient
to know that the levels of the biomarker differ between
DMD patients and age-matched controls. Rather, natu-
ral history data of the biomarker should be available as
well as information on how the biomarker levels corre-
late with disease progression and functional endpoints.
Excellent papers further explaining the characteristics
that a biomarker should have to classify as surrogate
endpoint are available and we would like to refer the
reader to these papers [52–54]. For DMD patients, dys-
trophin restoration is an obvious pharmacodynamic
biomarker for DMD therapies aiming at dystrophin
restoration; dystrophin analysis has been covered in
depth in a review paper in the inaugural issue of this
Journal [55] and will therefore not be discussed here.

As it frequently happens in science, the identifi-
cation of candidate targets (in this case biomarkers
that could be suitable surrogate endpoints) is based
on the availability of enabling technologies. Several
complementary approaches have been used to iden-
tify nucleic acids, proteins, peptides, metabolites and
lipids that are able to discriminate between DMD
patients and healthy controls. Discovery has been
mostly driven by non-targeted high-throughput tech-
nologies even though several groups have identified
biomarkers based on a priori hypotheses. We will here
describe reported candidate biomarkers based on their
chemical nature.

NUCLEIC ACIDS

Thanks to the development of micro-arrays first
and next generation sequencing later, gene expres-
sion studies have been one of the major determinants
for understanding the pathophysiological changes in
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Duchenne patients’ cell lines and muscles as well
as in animal models [56–63]. The genes identified
in several independent studies belong to pathways
involved in energy production, muscle regeneration
and contraction, inflammation, calcium homeostasis,
fibrosis and macrophage infiltration. The TGF-� path-
way has been central in many reports and recently it
was shown that correct phasing of TGF-� signalling
is crucial for successful muscle regeneration. Some
genes belonging to the TGF-� and IGF-1 pathways
have been considered as therapeutic targets for DMD
(e.g. myostatin and Akt), others have led to the dis-
covery of genetic modifiers (e.g. SPP1 gene) and to
the identification of elevated gene products in circula-
tion (e.g. MMP-9). Interestingly some genes such as
Cd68 (macrophages marker), Lgals3 and Bgn showed
normalization towards control levels upon dystrophin
restoration in the mdx mouse, thus qualifying as can-
didates biomarkers for the evaluation of therapeutic
treatment [64]. It is important to mention that Cd68 and
Lgals3 also correlated with disease severity at 6 weeks
of age in 3 dystrophinopathy mouse models with dif-
ferent levels of utrophin expression [65]. Other studies
identified differential expression of miRNAs in mus-
cles of animal models and patients [66–70]. Among the
most reported miRNAs are miR-206 (linked to muscle
regeneration in DMD and in patients affected by amy-
otrophic lateral sclerosis [71]), miR-1 and miR-133
(highly expressed in skeletal muscle), miR-29c (linked
to fibrosis), miR-31 (targeting dystrophin), miR-378
(myofiber enriched miRNA), miR-499 and miR-208
(cardiac enriched miRNAs). Multiple research groups
investigated the potential of these and other miRNAs
to act as peripheral biomarkers and they evaluated the
presence of these miRNAs in sera of animal models and
patients [72–76]. While dystromiRs remain a good tool
to differentiate between cases and controls, not only for
DMD but also for other muscular dystrophies [68, 73],
the initial correlation with disease severity [72] has not
been confirmed in a larger study [77].

PROTEINS AND PEPTIDES

Creatine kinase (CK) is an enzyme that is abundant in
muscle, which leaks into the bloodstream upon muscle
damage. As such serum CK activity has been used to
diagnose muscle damage and muscular dystrophy for
more than 50 years and for this special issue dedicated
to the launch of the John Walton Muscular Dystrophy
Research Centre we would like to cite a paper that
underlines the contribution of Lord Walton to these

findings, which paved the way to biomarker discoveries
in Duchenne over time [78]. Serum CK activity has
been extensively studied and even though CK activity
in serum has several limitations (such as seasonal
variation [79] and intra/inter individual variability
[80]), it remains still one of the first evidences that
could lead to a diagnosis of muscular dystrophy.
Reports in literature showed however that CK activity
is mainly useful as a diagnostic biomarker as it peaks
between 1 and 6 years of age and decreases with
age as the disease progresses [81]. This decrease
reflects the replacement of muscle tissue by fibrotic
and adipose tissues. Therefore, CK activity is of little
use for therapeutic monitoring, since lower CK levels
can mean both that the disease progressed further
(muscle quality further decreased) or that the muscle
quality improved (less leakage of CK). As for gene
expression studies, researchers initially focused their
attention on muscle tissue, with the intention to better
understand the pathophysiology and identify thera-
peutic targets and biomarker candidates. Proteomic
studies in the mdx mice, especially in the diaphragm
muscle, have provided a number of candidate proteins
that are elevated or reduced in dystrophic muscles.
Results showed alteration in nucleotide metabolism,
luminal and cytosolic calcium handling, glycolytic
enzymes, mitochondrial energy metabolism, oxidative
stress, cytoskeletal proteins and proteins present in
the extracellular matrix [82–87]. Experiments in aged
mdx mice provided further evidence that proteins of
the extracellular matrix are elevated with age and that
myofibrillarproteinsdecreasewithage[88,89].Further
comparison of heart muscle tissue between young and
old mdx mice helped to distinguish between differ-
ences due to aging and differences due to dystrophin
deficiency, highlighting again impaired mitochondrial
metabolism, contractile function and cell signalling
[90]. More studies in muscle of mdx-4cv mice showed
an increase in extracellular matrix and cytoskeletal
proteins and a reduction in contractile proteins [91].
Similar findings have been obtained in the canine
model of muscular dystrophy [92]. Interestingly stud-
ies of muscles that are relatively spared in Duchenne
patients and animal models, such as extra-ocular and
sartorius muscles, provided potential evidence that the
dystrophin paralog utrophin and muscle hypertrophy
could exert a protective effect on affected muscles
[93, 94]. Several studies exist where the obtained
knowledge was used to propose therapeutic targets,
but less effort has been put in trying to translate the
muscle findings to serum/plasma biomarkers. Studying
the serum proteome is still an analytical challenge



S52 A. Aartsma-Rus and P. Spitali / Omic Biomarkers in Duchenne

even with the newest technologies. The high dynamic
range and the presence of high abundant proteins has
so far reduced the successful identification of serum
biomarkersusingmassspectrometrybasedapproaches.
Nevertheless researchers have been able to identify
and replicate associations for a number of proteins
in the recent years using unbiased approaches such
as mass spectrometry and targeted approaches such
as antibody and aptamers based assays. Alagaratnam
et al. identified a peptide belonging to factor XIII as
serum discriminator between mdx and wild type mice
[95]; Colussi et al. reported increased fibrinogen and
glutathione peroxidase (GPX3) and reduced levels of
gelsolin and leukemia inhibitory factor receptor (LIFr)
[96]. Notably, GPX3 and LIFr normalized after treat-
ment with a histone deacetylase inhibitor, suggesting
these biomarkers might be used to monitor therapy.
Fibrinogen was also found in two other studies [97, 98]
and it has been linked to the formation of fibrotic tissue
in mice [99]. Nadarajah et al. reported serum MMP-9
levels to be elevated in DMD patients and to increase
with age [100]. This finding was later on confirmed by
an independent group [98]. Martin et al. found elevated
levels of fibronectin in DMD sera [101]. Ayoglu and
colleagues performed a comprehensive study using a
customized antibody array where hundreds of proteins
were quantified in sera and plasma of Duchenne and
Becker patients [49]. The most interesting candidates
were carbonic anhydrase 3, myosin light chain 3,
malate dehydrogenase 2, electron transfer flavoprotein
subunit alpha (mitochondrial) and beta and troponin
T. Hathout and co-workers identified other glycolytic
enzymes such as glycogen phosphorylase and fructose-
bisphosphate aldolase A, myofibrillar proteins such as
myomesin-3 and titin [98]. Titin has also been found in
DMD patients’ urine [102]. Recently an aptamer-based
study quantified 1125 proteins in serum of DMD
and healthy controls and replicated the findings in
an independent cohort: 44 proteins were found to be
differentially represented between DMD patients and
controls [103]. The authors classified the proteins into 4
groups among which the muscle derived proteins show
a CK like behaviour (elevated compared to controls,
but down-trending with age). These results show that
the muscle degeneration processes ongoing in patients’
muscles are indeed reflected in the circulation. Notably
the other 3 groups showed other characteristics that are
more interesting from a surrogate endpoint perspective.
They contained markers that are elevated or decreased
at all ages, or markers for which the levels are compa-
rable between young patients and controls, but levels
change in opposite direction with age (and presumably

resemble disease severity). Most of the markers in these
groups were not enriched in muscle. Since the patterns
vary between DMD and control individuals of different
ages, they may have the potential to monitor treatment
effect in clinical trials. However, longitudinal studies in
individual patients are needed to elucidate the natural
history of these markers and to assess whether these
markers are indeed candidate biomarkers to act as
surrogate endpoints, i.e. whether their levels correlate
or anticipate functional outcome measures used in
clinical trials. Notably, the co-linearity between age
and disease progression (assessed by e.g. 6MWT) may
make it difficult to interpret changes as age remains one
of the best predictors of disease progression. Finally,
studies are needed to understand how biomarkers
levels respond to therapeutic intervention, e.g. by
analysing serum samples of DMD patients partici-
pating to clinical trials. This process is laborious and
therefore in our opinion should focus on candidate
biomarkers that have been reported to be elevated
compared to healthy controls and rapidly increase
with age or the ones that are reduced compared to
controls and rapidly decreasing with age. Some exam-
ples of these are Metalloproteinase-9, ETFA/ETFB,
Adiponectin, Persephin, Prolyl endopeptidase FAP,
Osteomodulin, Proto–oncogene tyrosine–protein
kinase receptor Ret, Complement decay–accelerating
factor, Growth/differentiation factor 11, Gelsolin and
Tumor necrosis factor receptor superfamily member
19L [98, 100, 103].

METABOLITES AND LIPIDS

There is less evidence in literature of a muscular
metabolic signature in circulation in patients with
DMD. However early evidence was published in 1984
by Shapira and colleagues that a vitamin D metabolite
(24,25(OH)2D3) was less abundant in DMD patients’
sera compared to healthy controls [104]. The authors
stressed in the article how the findings were probably
related to muscle ATP and calcium homeostasis and in
those years the link between calcium metabolism, mus-
cle contraction and vitamin D was suggested [105]. It
took fifteen years before other groups could study in
more detail metabolic perturbations in vivo since in
those days animal models for DMD were barely avail-
able (the mdx mouse had just been published [106]).
McIntosh et al. described the association between tau-
rine levels in muscle and muscle regeneration [107].
Griffin et al. obtained metabolic profiles for skeletal
muscle, heart, cortex and cerebellum in dystrophic
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mice and identified taurine and creatine as strong
classifiers [108, 109]. The same group showed that
utrophin could partially restore the metabolic signa-
ture in diaphragm of dystrophic mice, showing the
potential of metabolic data to act as biomarker for
therapeutic treatment [110]. Franciotta and colleagues
tested whether creatinine concentration in 24 hours
urine could be used as an indirect measure of skele-
tal muscle mass in DMD patients but they could not
find a significant association [111]. Recently a large
study reported that a prostaglandin D2 metabolite was
elevated in the urine of DMD patients over controls
and that the concentration further increased in patients
above 8 years of age, making it a good candidate
biomarker also for patients who are in the declining
ambulatory phase [112]. In 2010 it was reported that
DMD patients have higher serum concentrations of
triglycerides, phospholipids, free cholesterol, choles-
terol esters and total cholesterol compared to healthy
controls and that the ratio between phospholipids and
cholesterol had the highest discriminant power [113].
Very recently Hörster and colleagues reported that the
L-arginine/nitric oxide pathway regulating endothelial
function is affected in DMD patients urine and plasma
and that treatment with corticosteroids reduced the
intensity of this signature [114].

WHAT IS MISSING

Very little effort has been put in the integration of
the many datasets available. There are only a cou-
ple of examples in literature where metabolomic and
proteomic data have been combined and in these
studies taurine could be linked to oxidative phosphory-
lation and mitochondrial metabolism [115, 116]. More
effort should be put in the integration of datasets to
have a complete understanding of the pathophysiol-
ogy and to identify molecular targets which can serve
as biomarkers [117]. Evidence from other fields shows
how important it is to integrate datasets to have a good
understanding of the biology, plan interventions and
facilitate therapy [118]. Datasets should be available
in public repositories and bioinformatic tools should
be developed to enable the comparison of different
datasets, for example at the pathway level. The inte-
gration of different datasets on such a higher level
would reduce the number of pathways, ontologies or
concepts to be tested thus reducing the number of tests
and increasing power to identify significant pathways
and molecules that can serve as therapeutic targets
or biomarkers. This is particularly important for rare

diseases such as DMD because of the low numbers
of samples available. Once pathways and molecular
candidates are identified, they should be replicated
in large cohorts to identify biomarkers that can pre-
dict or correlate to clinical endpoints. The association
of a biomarker with clinical endpoints is a key point
to enable the translation of a candidate biomarker
into a surrogate endpoint. To date there are no sur-
rogate endpoints for DMD but natural history studies
and placebo arms of clinical trials represent a unique
opportunity because longitudinal samples are avail-
able and biomarker data could be associated with
known and newly developed clinical endpoints. These
and other studies should also try to understand how
confounders such as age, progression, biological and
environmental co-factors and physical activity affect
the robustness, sensitivity and specificity of individ-
ual biomarkers. The analysis of biomarkers in trials
for corticosteroid use (such as the FOR-DMD trial -
http://for-dmd.org) would also enable to quantify the
effect of different steroid regimens on biomarker lev-
els. Furthermore, when biomarkers respond to steroid
treatment, this is important knowledge because most
of the current therapies are tested in trials on top
of prednisone or deflazacort treatment. Biomarkers
should be also linked to specific aspects of the dis-
ease such as the amount of fibrofatty infiltration in
muscle and cardiac function. These aspects can be
evaluated by magnetic resonance imaging, which in
itself is also a promising candidate biomarker for DMD
[119, 120]. The possibility to closely monitor heart
function with circulating biomarkers is needed not
only for DMD patients, but also in Becker patients
where severity of skeletal muscle involvement is not
a predictor of cardiac involvement. Some candidates
have already been identified with the identification
of cardiac specific dystrophin binders [121]. Last but
not least a link between dystrophin levels (in case
of dystrophin restoring drugs) and clinical outcome
needs to be established to make dystrophin not only a
pharmacodynamic biomarker but also a surrogate end-
point. So far this association has only been studied in
Becker patients and in patients with an exclusive heart
involvement [122, 123]. The high variability in func-
tional performance and the wide age range of Becker
patients combined with the small sample size have so
far hampered a complete understanding of this rela-
tion [55]. For other drugs (e.g utrophin up-regulation),
the target levels (utrophin or the dystrophin associ-
ated glycoprotein complex levels) should be reliably
quantified to consider these readouts as pharmacody-
namic biomarkers. The available assays were not set up

http://for-dmd.org
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to consistently quantify these outcomes (e.g. distribu-
tion and quantification of utrophin along the myofibers
membrane) since standards of quantification are not
available and the available assays have been mainly
designed for research purposes. Standard operating
procedures should be developed and the quantified
levels should be connected to clinical performance to
consider the readouts surrogate endpoints.

CONCLUSIONS

Enabling technologies have driven the discovery of
deregulated pathways in DMD. These studies have
produced lists of candidate therapeutic targets and
biomarkers. During the last 5 years many candidates
have been evaluated for their potential to serve as non-
invasive biomarkers by measuring their concentration
in body fluids. The potential of these candidates as
surrogate endpoints needs to be evaluated in ad hoc
studies where molecular and clinical outcomes can be
compared. The availability of surrogate endpoints has
the potential to facilitate regulatory approval of medic-
inal compounds for patients affected by Duchenne
muscular dystrophy.
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