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Fuzzy difference operators derived from
overlap functions
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Abstract. This paper introduces the concept of (O, N)-difference, for an overlap function O and a fuzzy negation N.
(O, N)-differences are weaker than fuzzy difference constructed from positive and continuous t-norms and fuzzy negations,
in the sense that (O, N)-differences do not necessarily satisfy certain properties, as the right neutrality principle, but only
weaker versions of these properties. This paper analyzes the main properties satisfied by (O, N)-differences, and provides a
characterization of (O, N)-difference.
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1. Introduction

Difference operator is one of the main operations
in classical set theory. The difference of two crisp sets
E and F , denoted by E � F , is given by

E � F = E ∩ Fc, (1)

where Fc is the complement of F . It was generalized
to fuzzy set theory.

Roberts [1] presented an anticommutative differ-
ence operator for fuzzy sets. Dubois and Prade [2]
introduced fuzzy set-theoretic differences and their
use in fuzzy arithmetics and analysis. De Baets and
De Meyer [3] introduced several difference operators
for fuzzy sets associated to the Frank t-norms. Fono et
al. [4] presented difference operations for fuzzy sets
based on fuzzy implications. Alsina and Trillas [5, 6]
formulated a collection of functional equations aris-
ing in modeling the concept of fuzzy difference and
studied the symmetric difference. Several symmetric
differences for fuzzy sets have been investigated in
[7, 8]. Zanotelli et al. [9] introduced the intuitionistic
fuzzy differences for intuitionistic fuzzy sets.
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Alsina and Trillas [5] defined the fuzzy difference
� : [0, 1]2 → [0, 1] as

a� b = T
(
a, N(b)

)
, (2)

where T is a t-norm and N is a fuzzy negation. Dai
and Cheng [10] studied the formula (2) in details
and introduced the noncommutative symmetric dif-
ference operators for fuzzy logics. They presented an
axiom set of fuzzy difference.

Note that t-norm requires the associativity prop-
erty. Fodor and Keresztfalvi [11] and Bustince et al.
[12, 13] pointed out that the associativity property
of the t-norm is not demanded in many applications.
Bustince et al. [12] introduced the concept of overlap
functions. Its dual concept is grouping functions [13].
Based on these two kinds of non-necessarily associa-
tive operators, several new concepts are introduced,
such as residual implications derived from overlap
functions [14], residual implications generated by
discrete overlap functions [15], (G, N)-implications
[16], binary relations induced from overlap and
grouping functions [17] and (IO, O)-fuzzy rough sets
based on overlap functions [18].

The aim of this work is to take a step forward
in considering non-necessarily associative operators
in the definition of fuzzy difference, introducing
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the concept of (O, N)-difference, by considering the
overlap functions O instead of t-norm T in formula
(2). This work provides new contributions related to
the study of fuzzy differences constructed over basic
operators. In this case, fuzzy difference is regarded as
a derived operator induced by two basic operators. In
this paper, overlap functions are regarded as the new
extension of basic set operator ∩ different from the
usual fuzzy operator t-norms. Thus the main ques-
tion is: which properties are preserved. We start with
the axiom set of fuzzy difference in [10]. Then we
analyze the properties and give a characterization of
(O, N)-difference. In particular, (O, N)-differences
are weaker than the differences of formula (2) for
positive and continuous t-norms, in the sense that
(O, N)-differences do not necessarily satisfy certain
properties, as the right neutrality property and identity
principle.

The remainder of this paper is organized in the
following way. In Section 2, we review necessary
concepts of t-norm, overlap function, fuzzy negation,
and Dai and Cheng’s definition of fuzzy difference.
In Section 3, we modify Dai and Cheng’s defini-
tion of fuzzy difference, and give an axiom set
of fuzzy difference and study their mutual inde-
pendency. In Section 4, we introduce the concept
of (O, N)-difference and present its properties. In
Section 5, We give a characterization of (O, N)-
difference. Conclusions are presented in Section 6.

2. Preliminaries

2.1. Basic notions

Dai and Cheng [10] studied the difference oper-
ators of fuzzy sets based on the formula (2), which
includes a t-norm and a fuzzy negation. Our approach
to the study of difference operators on fuzzy sets is
based on the formula a�O,N b = O(a, N(b)), which
includes an overlap function O and a fuzzy negation
N. In this part, we recall here some basic notions
of t-norm, overlap function, fuzzy negation and their
properties that will be frequently used.

Definition 1. [19]. A bivariate function T : [0, 1]2 →
[0, 1] is called a t-norm if it is commutative, asso-
ciative and non-decreasing in each argument and
T (1, a) = a for all a ∈ [0, 1].

A t-norm is positive if T (a, b) = 0 =⇒ a = 0 or
b = 0.

Definition 2. [12]. An overlap function is a mapping
O : [0, 1]2 → [0, 1] satisfying, the following proper-
ties: for all a, b, c ∈ [0, 1]:

(O1) O(a, b) = O(b, a);
(O2) O(a, b) = 0 if and only if ab = 0;
(O3) O(a, b) = 1 if and only if ab = 1;
(O4) O is non-decreasing;
(O5) O is continuous.

Example 1. [12, 20]. The following are some exam-
ples of overlap functions, for all a, b ∈ [0, 1],

• Onm(a, b) = min(a, b) max(a2, b2);
• Op(a, b) = apbp;
• Omp(a, b) = min(ap, bp);
• OMp(a, b) = 1 − max((1 − a)p, (1 − b)p);

• ODB(a, b) =
{

2ab
a+b

, if a + b /= 0,

0, if a + b = 0,

where p > 0.

Definition 3. [21]. A fuzzy negation is a decreasing
function N : [0, 1] → [0, 1] satisfying N(0) = 1 and
N(1) = 0.

A fuzzy negation N is called strong if

N(N(a)) = a, ∀a ∈ [0, 1].

A fuzzy negation N is called crisp, if

N(a) ∈ {0, 1}, ∀a ∈ [0, 1].

A fuzzy negation N is called non-vanishing if

N(a) = 0 ⇐⇒ a = 1.

A fuzzy negation N is called non-filling if

N(a) = 1 ⇐⇒ a = 0.

The negation operator N(a) = 1 − a is called the
standard negation operator.

2.2. Related work

As is well known, for a given universe X, P(X)
denotes the power set ofX, the difference operator� :
P(X) × P(X) → P(X) has the following properties:
for any E, F ∈ P(X),
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(P1) E � F /= F � E;
(P2) E � ∅ = E;
(P3) E � E = ∅;
(P4) ∅� E = ∅;
(P5) E � F ⊆ E;
(P6) E ⊆ F ⇐⇒ E � F = ∅;
(P7) X� E = Ec;
(P8) E � F = Fc

� Ec;
(P9) Ec

� F = Fc
� E;

(P10) E � Fc = F � Ec.

where Ec is the complement of E.
Dai and Cheng [10] defined the fuzzy difference
� : [0, 1]2 → [0, 1] as follows:

Definition 4. [10]. A fuzzy difference is a function�:
[0, 1]2 → [0, 1] satisfying, the following properties:
for all a, b, c ∈ [0, 1]:

(D1) If a ≤ b then a� c ≤ b� c;
(D2) If a ≤ b then c � a ≥ c � b;
(D3) 1� 0 = 1;
(D4) 0� 1 = 0;
(D5) 1� 1 = 0.

Unfortunately, the definition of fuzzy difference
with these axioms is insufficient. It does not con-
tain the law 0� 0 = 0. It comes from ∅� ∅ = ∅
which is also a basic property of classical difference.
The following example shows that this definition is
unreasonable.

Example 2. Consider the following function

F4(x, y) =
{

1, if y < 1,

0, if y = 1.

Actually, F4 satisfies all (D1)-(D5). However, it does
not satisfy 0� 0 = 0 since F4(0, 0) = 1.

3. Definition of fuzzy difference

We first modify Dai and Cheng’s definition of
fuzzy difference as follows:

Definition 5. A fuzzy difference is a function �:
[0, 1]2 → [0, 1] satisfying, the following properties:
for all a, b, c ∈ [0, 1]:

(FD1) If a ≤ b then a� c ≤ b� c;
(FD2) If a ≤ b then c � a ≥ c � b;
(FD3) 1� 0 = 1;

(FD4) 0� 0 = 0;
(FD5) 1� 1 = 0.

From (FD1) and (FD5), we have a� 1 ≤ 1� 1 =
0, ∀a ∈ [0, 1]. That is � satisfies the right boundary
condition

a� 1 = 0, ∀a ∈ [0, 1]. (3)

From (FD2) and (FD4), we have 0 = 0� 0 ≥ 0�
a, ∀a ∈ [0, 1]. Therefore, (D4) 0� 1 = 0 holds. That
is � satisfies the left boundary condition

0� a = 0, ∀a ∈ [0, 1]. (4)

Therefore, fuzzy difference� also satisfies the nor-
mality condition: 0� 0 = 0.

The following examples of functions in Table 1
show that (FD1)-(FD5) in Definition 5 are mutually
independent.

4. (O,N)-difference

Let O : [0, 1]2 → [0, 1] be an overlap function and
N : [0, 1] → [0, 1] be a fuzzy negation, and define
the function �O,N : [0, 1]2 → [0, 1], by

a�O,N b = O(a, N(b)), (5)

for all a, b ∈ [0, 1].
Obviously, the operation �O,N is noncommuta-

tive.

Proposition 1. The function�O,N : [0, 1]2 → [0, 1]
is a fuzzy difference, called (O, N)-difference.
Proof.

(i) �O,N satisfies (FD1) because O is non-
decreasing.

(ii) �O,N satisfies (FD2) because O is non-
decreasing and N is decreasing.

(iii) �O,N satisfies (FD3) because 1�O,N 0 =
O(1, N(0)) = O(1, 1) = 1

(iv) �O,N satisfies (FD4) because 0�O,N 1 =
O(0, N(1)) = O(0, 0) = 0.

(v) �O,N satisfies (FD5) because 1�O,N 1 =
O(1, N(1)) = O(1, 0) = 0. �

Example 3. Some examples of (O,N)-differences are
given according to their generators:

(i) The overlap function Onm(a, b) = min(a, b) ·
max(a2, b2) in Example 1 and the standard
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Table 1
The mutual independence of (FD1)-(FD5) in Definition 5

FD1 FD2 FD3 FD4 FD5

F1(a, b) = a ∧
(

(1 − a) ∨ (1 − b)
)

× √ √ √ √

F2(a, b) =
(

(1 − b) ∧ (a ∨ b)
) √ × √ √ √

F3(a, b) =
{

0, if a = 0,

1, if a > 0.

√ √ × √ √

F4(a, b) =
{

1, if b < 1,

0, if b = 1.

√ √ √ × √

F5(a, b) ≡ 0
√ √ √ √ ×

negation N(a) = 1 − a generate the following
(Onm, N)-difference;

a�Onm,N b

= Onm(a, N(b))

= min(a, 1 − b) max(a2, (1 − b)2).

(6)

(ii) The overlap function O2(a, b) = a2b2 in Exam-
ple 1 and the negation N1(a) = √

1 − a generate
the following (O2, N1)-difference;

a�O2,N1 b

= O2(a, N1(b))

= a2(
√

1 − b)2

= a2(1 − b).

(7)

(iii) The overlap function Om3(a, b) = min(a3, b3)
in Example 1 and the negation N2(a) = 1 − a2

generate the following (Om3, N2)-difference;

a�Om3,N2 b

= Om2(a, N2(b))

= min(a3, (1 − b2)3).

(8)

(iv) The overlap function OM2(a, b) =
1 − max((1 − a)2, (1 − b)2) in Example 1
and the standard negation N(a) = 1 − a

generate the following (OM2, N)-difference;

a�OM2,N b

= OM2(a, N(b))

= 1 − max((1 − a)2, b2).

(9)

(v) The overlap function ODB in Example 1 and the
standard negation N(a) = 1 − a generate the

following (ODB, N)-difference;

a�ODB,N b

= ODB(a, N(b))

= ODB(a, (1 − b))

=
{

0, if a = 0 and b = 1,

2a(1−b)
a+1−b

, otherwise.

(10)

See Figs. 1–5 which reflect the characteris-
tics of (Onm, N)-difference, (O2, N1)-difference,
(Om3, N2)-difference, (OM2, N)-difference and
(ODB, N)-difference respectively.

Proposition 2. The function� : [0, 1]2 → [0, 1] sat-
isfies (FD2), (FD3) and (FD5), then the function
N� : [0, 1] → [0, 1] defined by

N�(a) = 1� a, ∀a ∈ [0, 1], (11)

is a fuzzy negation.
The fuzzy negation N� defined by Equation (11)

is called the fuzzy negation induced by the fuzzy
difference �.

Classical difference have properties (P1)-(P10), in
the following, we define some properties for fuzzy
differences.

Definition 6. A fuzzy difference �: [0, 1]2 → [0, 1]
satisfies

(FD6) The right neutrality if and only if ∀a ∈
[0, 1], a� 0 = a.

(FD7) The identity principle if and only if ∀a ∈
[0, 1], a� a = 0.

(FD8) The left ordering property if and only if
∀a, b ∈ [0, 1], a ≤ b =⇒ a� b = 0.

(FD9) The ordering property if and only if
∀a, b ∈ [0, 1], a� b = 0 ⇐⇒ a ≤ b.

(FD10) The contrapositivity property for a fuzzy
negation N if and only if ∀a, b ∈ [0, 1],
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Fig. 1. Characteristics of (Onm, N)-difference and its contour line.

Fig. 2. Characteristics of (O2, N1)-difference and its contour line.

Fig. 3. Characteristics of (Om3, N2)-difference and its contour line.
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Fig. 4. Characteristics of (OM2, N)-difference and its contour line.

Fig. 5. Characteristics of (ODB, N)-difference and its contour line.

a� b = N(b)�N(a).
(FD11) The left contrapositivity property for a

fuzzy negation N if and only if ∀a, b ∈
[0, 1], N(a)� b = N(b)� a.

(FD12) The right contrapositivity property for a
fuzzy negation N if and only if ∀a, b ∈
[0, 1], a�N(b) = b�N(a).

(FD13) The strong corner conditions if and only
if

∀a, b ∈ [0, 1], a

� b = 0 ⇒ a = 0 or b = 1 (12)

∀a, b ∈ [0, 1], a� b = 1

⇒ a = 1 and b = 0 (13)

Proposition 3. Let O be an overlap function and N

be a fuzzy negation. Then �O,N holds that:

(i) �O,N satisfies (FD6) if and only if 1 is the
neutral element of O.

(ii) �O,N satisfies (FD7) if and only if the fuzzy
negation N is

N0(a) =
{

0, if a > 0,

1, if a = 0.
(14)

(iii) �O,N satisfies (FD8) if and only if the fuzzy
negation N = N0.

(iv) �O,N0 does not satisfy (FD9).
(v) If N is strong, then �O,N satisfies (FD10).
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(vi) If �O,N satisfies (FD10) for N and 1 is the
neutral element of O then N is strong.

(vii) �O,N satisfies (FD11) for N.
(viii) If �O,N satisfies (FD12) for N and 1 is the

neutral element of O then N is strong.
(ix) �O,N satisfies Equation (12) if and only if N

is non-vanishing.
(x) �O,N satisfies Equation (13) if and only if N

is non-filling.
(xi) �O,N satisfies (FD13) if and only if N is crisp.

Proof.

(i) (⇒) If�O,N satisfies (FD6), i.e., a�O,N 0 =
O(a, N(0)) = O(a, 1) = a, ∀a ∈ [0, 1], thus
1 is the neutral element of O. (⇐) The proof
is similar.

(ii) (⇒) Support N /= N0, then there exists
a ∈ (0, 1) such that N(a) /= N0(a) = 0.
By (FD7), 0 = a� a = O(a, N(a)). How-
ever, since N(a) /= 0 and a /= 0, by (O2),
O(a, N(a)) /= 0, which is a contradiction.

(⇐) If N = N0, then

a�O,N0 a

= O(a, N0(a)) by Equation(5)

=
{

O(a, 0), if a > 0,

O(0, 1), if a = 0.
by Equation(14)

= 0. By (O2).

(iii) (⇒) If �O,N satisfies (FD8) then �O,N sat-
isfies (FD7), and thus N = N0.

(⇐) Consider a ≤ b. If b = 1, then
a�O,N0 1 = O(a, N0(1)) = O(a, 0) = 0
by (O2). If a = 0, then 0�O,N0 b =
O(0, N0(b)) = 0 by (O2). If b /= 1 and
a /= 0, then a�O,N0 b = O(a, N0(b)) =
O(a, 0) = 0 by (O2).

(iv) 0.6�O,N0 0.5 = O(0.6, N0(0.5)) =
O(0.6, 0) = 0 by (O2), this means that
�O,N0 does not satisfy (FD9).

(v) If N is strong, then

a�O,N b

= O(a, N(b)) by Equation(5)

= O(N(N(a)), N(b)) (N is strong)

= O(N(b), N(N(a))) by (O1)

= N(b)�O,N N(a). by Equation(5).

Thus �O,N satisfies (FD10) for N.
(vi) If �O,N satisfies (FD10) for N, then

a�O,N b = N(b)�O,N N(a). By taking
b = 0, then a�O,N 0 = 1�O,N N(a), i.e.,
O(a, 1) = O(1, N(N(a))). Since 1 is the
neutral element of O, we have N(N(a)) = a.
Thus N is strong.

(vii) By (O1), O(N(a), N(b)) = O(N(b), N(a)),
∀a, b ∈ [0, 1]. That is N(a)�O,N b =
N(b)�O,N a, ∀a, b ∈ [0, 1]. Thus �O,N

(FD11) for N.
(viii) If �O,N satisfies (FD12) for N, then

a�O,N N(b) = b�O,N N(a). By taking b =
0, then we have N(a)�O,N 0 = 1�O,N a,
i.e., O(N(a), 1) = O(1, N(N(a))). Since 1 is
the neutral element of O, we have N(N(a)) =
a. Thus N is strong.

(ix) (⇒) If �O,N satisfies Equation (12), then

N(a) = 0

⇐⇒ O(1, N(a)) = 0 by (O3)

⇐⇒ 1�O,N a = 0 by Equation(5)

⇐⇒ b = 1 by Equation(12).

(⇐) If N is non-vanishing, then

a�O,N b = 0

⇐⇒ O(a, N(b)) = 0 by Equation(5)

⇐⇒ a = 1 or N(b) = 1 by (O2)

⇐⇒ a = 1 or b = 0 (N is non − vanishing).

(x) (⇒) If �O,N satisfies Equation (13), then

N(a) = 1

⇐⇒ O(1, N(a)) = 1 by (O3))

⇐⇒ 1�O,N a = 1 by Equation(5)

⇐⇒ b = 0 by Equation(13).
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(⇐) If N is non-filling, then

a�O,N b = 1

⇐⇒ O(a, N(b)) = 1 by Equation(5)

⇐⇒ a = 1 and N(b) = 1 by (O3)

⇐⇒ a = 1 and b = 0 (N is non − filling).

(xi) It follows from (ix) and (x). �

5. Characterizations of (O,N)-differences

Towards presenting characterizations of some
classed (O,N)-differences we consider the method of
obtaining overlap functions from fuzzy differences
and fuzzy negations.

Proposition 4. Let � be a fuzzy difference and N

be a fuzzy negation, and define the function O�,N :
[0, 1]2 → [0, 1] by

O�,N (a, b) = a�N(b), ∀a, b ∈ [0, 1]. (15)

Then

(i) O�,N (a, 0) = O�,N (0, a) = 0, ∀a ∈ [0, 1].
(ii) O�,N is increasing in both variables, i.e.,

O�,N satisfies (O4).
(iii) O�,N is commutative, i.e., it satisfies (O1) if

and only if � satisfies (FD12) for N.
(iv) If both � and N are continuous, then O�,N

is continuous, i.e., O�,N satisfies (O5).
(v) If N is crisp, then O�,N satisfies (O2) and

(O3).

Proof.

(i) By Equation (3), O�,N (a, 0) = a�N(0) =
a� 1 = 0. By Equation (4), O�,N (0, a) =
0�N(a) = 0.

(ii) O�,N satisfied (O4) is a direct consequence
of the (FD1),(FD2) and the monotonicity of
N.

(iii) ⇒) If O�,N (a, b) = O�,N (b, a), then a�

N(b) = b�N(a) by Equation (15). Thus
�O,N satisfies (FD12).

(iv) O�,N satisfies (O4) is a direct consequence
of the continuity of � and N.

(⇐) If � satisfies (FD12) for N,
then O�,N (a, b) = a�N(b) = b�N(a) =
O�,N (b, a).

(v)

O�,N (a, b) = 0

⇐⇒ a�N(b) = 0 by Equation(15)

⇐⇒ a = 0 or N(b) = 1 by ByEquation(12)

⇐⇒ a = 0 or b = 0 (N is crisp).

O�,N (a, b) = 1

⇐⇒ a�N(b) = 1 by Equation(15)

⇐⇒ a = 1 and N(b) = 0 by ByEquation(12)

⇐⇒ a = 1 and b = 1 (N is crisp).

�

Corollary 1. Consider a continuous bivariate func-
tion � : [0, 1]2 → [0, 1] and let N be a continuous
crisp fuzzy negation, if� satisfies (FD1), (FD13) and
(FD10) for N, then O�,N is a overlap function.

Corollary 2. If a continuous bivariate function � :
[0, 1]2 → [0, 1] satisfies (FD1), (FD13) and (FD10)
for N�, then � is a fuzzy difference.

Proof. Since� is continuous, then N� is continuous.
By Proposition 3(xi), since � satisfies (FD13), then
N� is crisp. Therefore, by the above corollary, O�,N�

is an overlap function. Then

a�O�,N� ,N� b

= O�,N�(a, N�(b)) by Equation(5)

= O�,N�(N�(b), a) by (O1)

= N�(b)�N�(a) by Equation(15)).

= a� b by (FD10).

Thus by Proposition 1, � = �O�,N� ,N� is a fuzzy
difference. �

Proposition 5. If �O,N is a (O, N)-difference with
a strong fuzzy negation, then it is continuous and
satisfies (FD1), (FD13) and (FD10) for N�O,N

.

Proof. See Propositions 1 and 3. �
From above results, we have the following char-

acterization of (O, N)-difference when N is a strong
fuzzy negation.
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Corollary 3. Let N be a strong fuzzy negation, for
a function � : [0, 1]2 → [0, 1], the following state-
ments are equivalent:

(i) � = �O,N is a (O, N)-difference for some
overlap function O.

(ii) � is continuous and satisfies (FD1), (FD13)
and (FD10) for N�.

6. Conclusions

In this paper, we improved the concept of differ-
ence operator in [10] and showed that the axioms from
our new concept are mutually independent. Then we
introduced the concept of (O, N)-difference based on
the notions of an overlap function O and a fuzzy
negation N, together with the characterization of
such fuzzy differences and an analysis of the related
properties. (O, N)-difference is weaker than (T, N)-
difference constructed from a positive and continuous
t-norm T . This means that (O, N)-difference does not
necessarily satisfy certain properties. For example,
(T, N)-difference satisfies the right neutrality prop-
erty and identity principle which are not satisfied by
(O, N)-difference (see Lemmas 1 and 2 in [10]). The
(O, N)-differences are more flexible, since they do
not necessarily satisfy right neutrality property and
identity principle (see Proposition 3).

It was observed that there are types of overlap
functions, such as Archimedean overlap functions,
overlap functions and interval-valued overlap func-
tions. Naturally, other kinds of fuzzy differences
based on these overlap functions are possible topics
for future consideration. In [10], (T, N)-differences
are used in constructions of pseudo-metrics which
have many potential applications. In the future, we
will employ the proposed fuzzy differences in some
applications, such as decision-making and fuzzy
inference systems.
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