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Hand pose estimation based on fish skeleton
CNN: application in gesture recognition
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Abstract. The modern world contains a significant number of applications based on computer vision, in which human-
computer interaction plays a crucial role, pose estimation of the hand is a crucial approach in the field of human-computer
interaction. However, previous approaches suffer from the inability to accurately measure position in real-world scenes,
difficulty in obtaining targets of different sizes, the structure of complex network, and the lack of applications. In recent years,
deep learning techniques have produced state-of-the-art outcomes but there are still challenges that need to be overcome to
fully exploit this technology. In this research, a fish skeleton CNN (FS-HandNet) is proposed for hand posture estimation
from a monocular RGB image. To obtain hand pose information, a fish skeleton network structure is used for the first
time. Particularly, bidirectional pyramid structures (BiPS) can effectively reduce the loss of feature information during
downsampling and can be used to extract features from targets of different sizes. It is more effective at solving problems
of different sizes. Then a distribution-aware coordinate representation is employed to adjust the position information of the
hand, and finally, a convex hull algorithm and hand pose information are applied to recognize multiple gestures. Extensive
studies on three publicly available hand position benchmarks demonstrate that our method performs nearly as well as the
state-of-the-art in hand pose estimation. Additionally, we have implemented hand pose estimation for the application of
gesture recognition.

Keywords: Hand pose estimation, FS-HandNet, distribution-aware coordinate representation, convex hull algorithm, the
application of gesture recognition

1. Introduction

As the development of computer technology has
accelerated, human-computer interaction has become
an increasingly important aspect of life. Particu-
larly under the background of epidemic situation,
human-computer interaction has become increas-
ingly important. In addition to human-computer
interaction (HCI), hand pose estimation and gesture
recognition [1–3] have applications in virtual real-
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ity (VR) and augmented reality (AR). During gesture
recognition, the finger curvature characteristic is uti-
lized based on the keypoint coordinates obtained by
hand pose estimation. It was found that hand pose
estimation is not only useful in gesture recogni-
tion but plays an important part in gesture tracking
[4]. The severe self-occlusion, flexible hand fin-
ger movements, appearance ambiguities, wide range
of perspectives, self-similarity of fingers, and other
factors make hand pose estimate a very difficult chal-
lenge even today.

In recently, the rapid development of deep learning
has made the technology increasingly significant in a
wide variety of fields. For example, product quality
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estimation [5]; battery state monitoring [6]; multi-
animal pose tracking [7]; palmprint recognition [8];
pose estimation [9], etc. Among them, deep learn-
ing have been used to make significant advancements
in the field of hand pose estimation. Especially, as
depth sensors have been developed, from a hardware-
based synchronization solution based on data gloves,
hand pose estimation technology has evolved into a
computer vision-based solution. Based on the type
of data, hand pose estimation from a single depth
image is separated from hand pose estimation from a
single RGB image. The increasing number of depth
image datasets has stimulated research into hand pose
estimation technology [10–13]. While depth sen-
sors have limited resolution and range, they are also
affected by ambient lighting [14]. Nonetheless, they
remain uncommon compared to RGB cameras. Hand
pose estimation based on a single RGB image is one
of the hottest topics in current research, some of the
reasons it is more representative of real-life applica-
tion scenarios [15–17]. In such works, research tends
to focus on the estimation of hand poses based on
RGB images. However, the current hand pose esti-
mation technique has the following disadvantages:

(1) As a result of the loss of excessive feature infor-
mation, obtaining targets of different sizes is
more difficult.

(2) The structure of complex networks and the lack
of applications.

(3) The inability to measure position accurately.

In view of these above problems, we propose a
hypothesis that effective gesture feature extraction
has an impact on hand pose estimation. Standard
coordinate encoding plays an important role in the
accuracy of keypoint location information. Accord-
ing to the above assumptions, a fish skeleton CNN
(FS-HandNet) is proposed for hand pose estima-
tion from a monocular RGB image. The proposed
framework is composed mainly of three parts: Fish
head using an efficient bidirectional pyramid struc-
ture(BiPS), which can effectively alleviate the loss of
feature information downsampling and small target
feature extraction; Fish body using high-resolution
retention with an asymmetric convolution struc-
ture(HRACS), its ability to maintain high resolution,
in addition, it is possible to improve the network’s
robustness to image flipping, and it can be enhanced
in its ability to extract features; Fish tail using a
simple deconvolution head structure(DcHS). The net-
work structure does not need to be complicated. To
obtain hand pose information, a fish skeleton net-

work structure is used first, then a distribution-aware
coordinate representation is employed to adjust the
position information of the hand, and finally, a con-
vex hull algorithm and hand pose information are
applied to recognize multiple gestures. We evaluate
the performance of FS-HandNet using three publicly
available hand pose benchmarks [18–20]. With exper-
imental verification, our method has achieved the best
performance. Among them, the ablation experiments
demonstrate our method’s ability to extract features
successfully while ensuring the accuracy of the loca-
tion information of keypoints. The main contributions
of this article are as follows:

• We propose a fish skeleton CNN model called
FS-HandNet that is composed mainly of three
parts: BiPS, HRACS, and DcHS.

• A distribution-aware coordinate representation
is employed to adjust the position information
of the hand.

• Using the affine transform of the image and ran-
dom blocking of squares(ATaRBS) to improve
the prediction performance.

• FS-HandNet is better than the other models on
three popular hand pose benchmarks.

• A convex hull algorithm and hand pose informa-
tion are applied to recognize multiple gestures.

2. Related work

Hand pose estimation. The primary focus of
skeleton-based gesture recognition is the examination
of distinct patterns derived from hand joint position.
Individually, skeleton data can be utilized for effi-
cient gesture recognition. Rastgoo [21] demonstrate
a complex deep learning-based pipeline architecture
employing multimodal capabilities for effective auto-
matic hand sign language recognition from RGB
videos. In order to project the hand skeleton fea-
tures, the model utilized a multi-view representation
of the features. Jiang [22] employ a skeleton-aware
multimodal SLR framework (SAM-SLR) to exploit
multi-modal data. This framework incorporates RGB
and depth modalities in addition to the skeleton-
based methods SL-GCN and SSTCN for providing
global information. And it requires no additional
effort to annotate skeletons using this approach.
Neverova [23] proposed a method to estimate hand
poses that combine raw depth input with an inter-
mediate representation. For reasoning about joint
location, this intermediate representation provides
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useful topological information. Smedt [24] intro-
duced a new skeleton-based method for 3D gesture
recognition. It extracts an effective descriptor based
on the hand’s geometric shape from the hand skeleton
joints returned by the Intel RealSense depth camera.
Using the SVM classification method for classifica-
tion. Shin [25] used the mediapipe tool for estimating
hand joints from RGB images. The support vec-
tor machine (SVM) and the light gradient boosting
machine (GBM) were used as classifiers.

Gesture recognition using the convex hull algo-
rithm. The convex hull for object detection is often
used in the recognition of objects, gestures, and
boundaries. Convex hulls and convexity defects are
used to recognize the hand as an input to the system.
Additionally, The functionality of the technology was
verified by testing it in three scenarios involving
variable lighting, background color, and indoor or
outdoor conditions [26]. The convex hull and convex-
ity defect algorithms have been successfully put into
Android phones, the research shows. Ganokratanaa
[27] proposed a method for recognizing gestures
using contour detection, the extraction of convex hull
features, and rule-based classification. As part of the
lingual description, six gestures are classified based
on vision-based gesture recognition. Using a seg-
mentation algorithm that combines depth and color
information, it is first necessary to segment the ges-
ture region. Afterward, the eigenvectors are extracted
by using the circularity of the static potential pro-
file, the convex hull points, the convex defect points,
and the 7Hu-moment features. Finally, static ges-
tures can be recognized using SVMs [28]. The HSV
color space skin color segmentation algorithm is used
to segment the skin color region, while the gesture
region is segmented based on its geometric features.
After the fingertips are detected using the convex hull
algorithm, the number of fingertips, inter-finger angle
features, and contour aspect ratio features are com-
bined to build a decision tree for classifying the 12
different gestures [29].

Video image processing was implemented with
a multi-modal and multi-processing process [21,
22]. Hand pose estimation is implemented using
the mediapipe tool [25]. Depth-based gesture image
processing is implemented [22–24]. [24, 25, 28]
implements image classification with SVM. [26,
28] used convexity defects and convexity hulls to
extract features, while [26] implemented a variety
of scenarios, and [28] segmented data before feature
extraction. [27, 29] only implements the recogni-
tion of specific gestures. In our algorithm, gesture

keypoints are obtained by applying a fish skeleton
network structure and using distribution-aware coor-
dinates to improve keypoint location accuracy. We
also implement multiple gesture recognition using
convex hulls and hand pose information.

3. Method

3.1. Overview

To estimate the 2D locations of K = 21 keypoints
of the hand from a single RGB image. A fish skele-
ton CNN(FS-HandNet) for hand pose estimation is
proposed. The 2D pixel coordinate of the k-th key-
point in image I is used to estimate the 2D hand
pose. The order of these keypoints is defined as fol-
lows [18]. The k-th keypoint is described using a
heatmap. According to [30], regressing a heatmap is
more advantageous than regressing pixel coordinates.

The fish skeleton structure can be divided into three
parts: The head of fish; the body of fish; the tail of
fish. Figure 1a depicts the overall architecture as a
diagram. We will introduce these parts in Section 3.2.

3.2. Fish skeleton CNN for hand pose estimation

The fish skeleton CNN(FS-HandNet) for hand
pose estimation is composed of three parts: Fish
head using an efficient bidirectional pyramid struc-
ture(BiPS); Fish body using high-resolution retention
with an asymmetric convolution structure(HRACS);
Fish tail using a simple deconvolution head struc-
ture(DcHS). Also, the three parts can work together
to achieve global optimization and improve the accu-
racy of estimating the position of a 2D hand. As
shown in Fig. 1b, the above series of operations define
the FS-HandNet.

3.2.1. Fish head using an efficient bidirectional
pyramid structure

In the fish head using an efficient bidirectional
pyramid structure(BiPS), there are two pyramidal
structures. Pyramidal convolution(PyConv) and fea-
ture pyramid structure(FPStru), which can effectively
alleviate the loss of feature information downsam-
pling, and small target feature extraction [31].

The PyConv model utilizes convolution operations
of 1 × 1, 3 × 3, 5 × 5, and 7 × 7, respectively. It
contains a pyramid with n levels of different types of
kernels. The perceptual fields of different convolution
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Fig. 1. Overview of the proposed a fish skeleton CNN for hand pose estimation. (a) The fish skeleton structure: The head of fish; the body of fish; the tail of fish. (b) A detailed view of FS-HandNet.
The three colored boxes represent BiPS, HRACS, and DcHS, respectively.
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kernels enable them to extract feature information
with different sizes effectively. It seeks to process
input at various kernel scales while minimizing com-
putational cost [31]. The convolution blocks of 1
× 1 are used to obtain 128 × 128 feature maps,
which maintain the input feature size and effectively
mitigate the loss of image information. Convolution
blocks of 3 × 3 and 5 × 5 are used to extract 64 × 64
feature maps, improving feature extraction. The con-
volution blocks of 7 × 7 are utilized to obtain 32 × 32
feature maps. The obtained feature maps of varying
sizes are fed into the HRACS’s three-way network
structure. In Fig. 1b, the BiPS section illustrates the
network structure. The BiPS can be formulated as:

F128×128 = δ (BN (f1(F ))) , (1)

F64×64 = δ (BN (f3(F ))) + δ (BN (f5(F ))) , (2)

F32×32 = δ (BN (f7(F ))) , (3)

Where fn(·) denotes a mapping function learned by n
× n convolutional layer, F denotes the input feature
map. BN(·) denotes batch normalization to alleviate
internal covariate shift [32], δ(·) is a ReLU activa-
tion function. Fs×s denote the intermediate features
resulting from the BiPS, and s × s denotes the output
size of the feature map.

3.2.2. Fish body using high-resolution retention
with an asymmetric convolution structure

An asymmetric convolution method and high-
resolution retention technique are used in this fish
body. Due to its ability to maintain high resolution,
the predicted heatmap is more accurate spatially than
one that recovers resolution by moving from low to
high. In addition, it is possible to improve the net-
work’s robustness to image flipping, and it can be
enhanced in its ability to extract features [33, 34].

The HRACS is divided into three main branches:
Its main stem branches use a structure similar to
that of a fish’s spine, which is maintained from head
to tail by fusing tiny spines. The principal stem
branches consist of a number of elements: Parallel
repeated multi-resolution fusions in conjunction with
multi-resolution convolutions. The multi-resolution
convolution process consists of parallel streams
with high-to-low resolution. The multi-resolution
convolution consists of four stages with parallel con-
volution streams. The resolutions are 1/4, 1/8, 1/16,

and 1/32, while the channel counts are C, 2C, 4C,
and 8C, respectively. Four residual units, each with 3
× 3 convolutions, make up these stages. After each
convolution comes batch normalization and nonlin-
ear activation ReLU. As a result, the resolutions for
a later stage consist of the previous stage’s resolu-
tions and an extra lower resolution. The repeated
multi-resolution fusions are mainly an alignment
and feature fusion operation for parallel resolution.
Specifically, upsampling and downsampling are used
for alignment, while 1 × 1 convolution is used for
channel consistency.

Two other branches use asymmetric convolution
structures, and their input feature maps correspond
to the bottom and top of the feature pyramid, respec-
tively. In the top branch, four asymmetric convolution
blocks (ACBlock) are utilized, each consisting of
three parallel layers with kernel sizes of 3 × 3, 1 × 3,
and 3 × 1, respectively. In standard CNN, each layer
is followed by batch normalization, also known as a
branch, and the outputs of three branches are added
together to produce the output of ACBlock. Follow-
ing the ACBlock, maximum pooling operations are
connected to ensure subsequent alignment of feature
sizes [34]. To implement the feature size alignment
operation, a deconvolution algorithm is connected
after the second ACBlock similarly to the top branch.
The top and bottom branches can be formulated as:

Ftop(j) = MaxPj

(
f3×1,j (Fn) + f3×3,j (Fn) + f1×3,j (Fn)

)
(j = 1, 2, 3, 4; n = 128, 64, 32, 16),

(4)

{
Fdown(1) = f3×1 (F32) + f3×3 (F32) + f1×3 (F32) ,

Fdown(2) = TraC (f3×1 (F32) + f3×3 (F32) + f1×3 (F32)) ,

(5)

Fdown(k) = MaxPk

(
f3×1,k (Fm) + f3×3,k (Fm) + f1×3,k (Fm)

)
(k = 3, 4, 5; m = 64, 32, 16),

(6)

Where fa×b,j/k(·) denotes a mapping function learned
by a × b asymmetric convolutional, j/k denotes the
corresponding j or k layer, Fn/m indicates the size of
the input feature map is n × n/m × m. MaxPj/k(·)
denotes the maximum pooling corresponding to each
layer, TraC(·) is a deconvolution function. Ftop(j)
/Fdown(k) denote the intermediate features resulted
from the top and bottom branches.

The main stem branches are fused with the top and
bottom branches to obtain more information about



8034 M. Zhang et al. / Hand pose estimation based on fish skeleton CNN

Fig. 2. Gesture recognize using the convex hull algorithm and hand
pose information.

the characteristics. Four parallel branches of the main
stem branches have resolutions of 64 × 64, 32 × 32,
16 × 16, and 8 × 8. The branches with different
resolutions fuse the top and bottom branches cor-
responding to the irregular convolution respectively.
To achieve this, each main stem branch’s resolution
is matched by up-sampling or down-sampling oper-
ations after the top and bottom branch ACBlocks.
Finally, each resolution of the main stem branch is
fused. The HRACS is shown in Fig. 2. This HRACS
can be formulated as:

Ffuse(i,1) = Ftop(i) + Fhr(i,1) + Fdown(i+1) (i = 1, 2, 3, 4),
(7)

On = Fn,hr(1,4) ⊕ Tra Cn

(
Fhr(2,3)

)
⊕ Tra Cn

(
Fhr(3,2)

)
⊕ TraCn

(
Fhr(4,1)

)
,

(8)

Where Ftop(i), Fdown(i+1) and Fhr(i,1) is the interme-
diate features resulted from three main branches, i
denotes the corresponding layer. Fn,hr(a,b) indicates
the size of the main stem branches is n × n, hr(a,b)
denotes the bth module of the ath branch of the four
parallel branches of the main stem branches. TraCn(·)
is a deconvolution function, and n denotes the reso-
lutions of n × n. ⊕ refers to the concatenation of
feature maps. where Ffuse(i,1) denotes the intermedi-
ate features resulting from the fusion of three main
branches.

3.2.3. Fish tail using a simple deconvolution
head structure

The tail of fish uses a deconvolution head structure
as the upsampling method and does not use a skip
connection. The tail of fish is based on literature [35],

it proposes that the network structure does not need to
be complicated, and it is straightforward to get better
results capturing the main points, outputting a larger
heatmap.

First, On perform feature fusion using 1 × 1 con-
volution and then input into the deconvolution head
structure that defaults to the following: Utilization
of deconvolutional layers with batch normalization
and ReLU activation. Each layer contains 256 filters,
each with a 4 × 4 kernel. Finally, for all k key-
points, a 1 x 1 convolutional layer is added to generate
predicted heatmaps [H1...Hk]. Using Mean Squared
Error(MSE), the average loss of posture estimation
is computed by comparing the predicted and targeted
heatmaps (MSE). To generate a targeted heatmap for
joint k, a 2D Gaussian centered on the kth joint’s
ground truth location is applied. The loss function
for hand posture estimation can be obtained as:

Loss = 1

N

21∑
i=1

(Ti − Hi)
2 (9)

Where i is the corresponding hand keypoint, N
denotes the total number of hand keypoint. Ti is the
targeted heatmaps, Hi is the predicted heatmaps.

3.3. Distribution-aware coordinate
representation for hand pose estimation

Based on the performance of the model, the
standard coordinate decoding method is designed
empirically [36]. The highest activation in the
projected heatmap does not match the precise loca-
tion of the joint in the original coordinate space,
but rather to its approximate location. Using the
Distribution-Aware Coordinate Representation of
Keypoint (DARK) approach [37], we offer a prin-
cipled method for shifting estimations and then
evaluate more precise hand position estimations. The
method investigates the distribution structure of the
anticipated heatmap to deduce the highest activation
underlying the heatmap. There are a total of three
steps in a sequence:

Heatmap distribution modulation- Due to the
assumption of Gaussian distribution in the coor-
dinate decoding method. When compared to the
training heatmap data, the predictive heatmaps do not
have an ideal Gaussian structure, presenting multi-
ple peaks phenomena near the maximum activation
[37]. It could hinder the performance of the decod-
ing process. It tackles this problem by changing the
distribution of heat maps beforehand.



M. Zhang et al. / Hand pose estimation based on fish skeleton CNN 8035

For smoothing out the effects of multiple peaks in
the heatmap H, we utilize a Gaussian kernel K with
the same variance as the training data, formally as:

H ′ = K � H, (10)

Where � identifies the convolution procedure. Using
the following modification, we scale H̃ so that its
maximum activation equals that of H while keeping
the magnitude of the original heatmap:

H̃ = H ′ − min
(
H ′)

max (H ′) − min (H ′)
× max(H), (11)

The max(·) and min(·) functions return the highest
and lowest values in the matrix they are given. 

Distribution-aware joint localisation by taylor
expansion at sub-pixel accuracy- Obtaining accu-
rate location information at the subpixel level, we
assume that the predicted heatmap follows the same
2D Gaussian distribution as the real heatmap [37]. It
represents the predicted heatmap as:

h(x; y, �)

= 1

(2π) | � | 1
2

exp

(
−1

2
(x − y)T�−1(x − y)

)
,

(12)

Where x represents a pixel in the expected heatmap, y
is the Gaussian mean (center) of the joint location to
be approximated. Covariance � is a diagonal matrix,
identical to the coordinate encoding:

� =
[

σ2 0

0 σ2

]
, (13)

Where σ is the same for both directions and represents
the standard deviation.

To simplify inference, we logarithmize h while
preserving the original site of greatest activation:

G(x; y, �) = ln(h) = − ln(2π) − 1

2
ln(|�|)

−1

2
(x − y)T�−1(x − y),

(14)

y is the objective of our estimation. It is well
known that the first derivative at point y meets these
conditions: 

G′(x)|x=y = ∂GT

∂x
|x=y= −�−1(x − y)|x=y = 0,

(15)

We use taylor’s theorem to explore this condition. The
activation G(y) at the maximum activation m in the

expected heatmap is estimated using a Taylor series
(up to the quadratic term).

G(y) =G(m) + G′(m)(y − m) + 1

2
(y − m)T

G′′(m)(y − m), (16)

Where G′′(m) is the second derivative of G evaluated
at m, formally defined as:

G′′(m) = G′′(x) |x=m= −�−1, (17)

m should represent an approximating coarse joint
forecast to approximate x.

Combining Equations (15), (16), and (17), we ulti-
mately obtain:

y = m − (
G′′(m)

)−1
G′(m), (18)

Where G′′(m) and G′(m) can be estimated efficiently
from the heatmap.

Recovery of the coordinate system’s original
resolution- Using Eq. (19), when we get y, we can
guess the coordinate in the original image space. 

p̄ = λp, (19)

Where λ is the ratio of resolution reduction.

3.4. Gesture recognition using the convex hull
algorithm and hand pose information

As a gesture, the fingertips of different fingers have
a particular distance from the palm, and the gesture
can be determined by analyzing this relationship.
The situation is analyzed using mathematical mod-
els of the convex hull. To form a convex polygon,
the gesture keypoints (0,1,2,3,6,10,14,19,18,17) are
connected by the convex hull algorithm. The convex
hull of the detected hand is depicted by the blue line
in Fig. 2. The fingertips correspond to the keypoints
(4,8,12,16,20). It is possible to recognize gestures by
determining that the fingertip is within the convex
hull.

Whether the vertical coordinate Ty of the point
under test is within the range of the vertical coor-
dinates of the two adjacent points tested in this loop.

vy(i) < Ty < vy(j), (20)

vy(i/j) is the y-coordinates of the polygon’s vertices,
i/j denotes the two adjacent points. Whether the
fingertip to be measured is under the line between
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points i,j.

Tx <

(
vx(j) − vx(i)

)(
vy(j) − vy(i)

) × (
Ty − vy(i)

) + vx(i), (21)

vx(i/j) and vy(i/j) represent the x- and y-coordinates of
the vertices of the polygon, respectively. Tx and Ty

are the x- and y-coordinate of the fingertip [38].
If both of these conditions are satisfied simultane-

ously, we determine that the fingertips are inside a
convex hull.

4. Experiments

4.1. Dataset and evaluation metrics

In this research, we assess our method using three
publically accessible datasets: The OneHand 10k
dataset [18] (OneHand 10k), the CMU Panoptic Hand
dataset [19] (Panoptic), and the Rendered Hand Pose
Dataset [20] (RHD). OneHand 10k online collection
has issues relating to occlusion, light variation, and
shadowed backgrounds. OneHand 10k is a real-world
dataset comprised of 11703 images containing the
ground truth coordinates of 21 hand joint sites. The
dataset is divided into 10,000 training samples and
1,703 testing samples. With 480 VGA cameras, 30+
HD cameras, and 10 Kinnect sensors, CMU’s Panop-
tic collected the dataset. The Panoptic dataset is made
up of 14,817 pictures of people. These pictures have
been randomly split into two groups: training (80%),
and testing (20%). There are 21 key points annotated
with 2D labels for each image. RHD is a synthetic
dataset including 41258 images for training and 2728
for testing. This dataset is difficult to examine due to
the numerous viewpoint alterations and low image
quality.

Four common metrics are used to evaluate the per-
formance of 2D hand position estimation: (i) AUC:
AUC provides a measure of a learner’s strengths and
weaknesses, indicating the likelihood that the posi-
tive predicted case will rank ahead of the negative
predicted case. The area under the PCK curve for
various error thresholds [39]. (ii) EPE: The overall
pixel-average error rate is obtained by using endpoint
error (EPE), which is the average of the Euclidean dis-
tance between predicted and true values [20]. (iii-iv)
GFLOPs and #Params: GFLOPs and #Params indi-
cate the complexity of the network, according to its
design and the GPU and CPU that are being uti-
lized. In computing, GFLOPs refer to the number

of floating-point operations, which can be thought
of as the amount of computation. #Params measure
the number of parameters in the model. They are
used to determine the complexity of an algorithm or
model. Evaluation metrics mainly include AUC, EPE,
GFLOPs, and #Params. Our goal is to improve AUC
by increasing them and to decrease EPE, GFLOPs,
and #Params by decreasing them.

4.2. Implementation details

Our method is implemented in Pytorch framework.
The networks are trained with 32-element mini-
batches and a 5 × 10−4 learning rate using the Adam
optimizer [40]. In this paper, We set the epoch as 200.
The OneHand10K, Panoptic, and RHD datasets are
used to train the FS-HandNet, which is trained end-
to-end. The image is scaled to 256 × 256 pixels. For
training and testing, all experiments are conducted on
a single server with GPU.

4.3. Data augmentation

To enhance the robustness of the algorithms, data
enhancement strategies are implemented. We used
strategies of data enhancement mainly include: Ran-
dom shift of the box center, random image flip,
random scaling & rotating [41], affine transform of
the image [42], random blocking of squares, and
Normalize.

To ensure rotational invariance, the collected
dataset is transformed using affine transformations.
According to geometry, an affine transformation is a
linear transformation and a translation that converts
one vector space to another. Due to the partial occlu-
sion of the gesture, we propose the random blocking
of squares to effectively alleviate the existing defi-
ciencies. A gesture detection box with labels is used
as a filled area for random squares, and a fixed size
square is continuously filled into the area so that the
gesture area can be simulated for masking operations.
It makes the model more robust in this way.

4.4. Performance comparison

4.4.1. Experiment results
We analyze our proposed FS-HandNet using three

publicly available datasets: OneHand 10k, Panoptic,
and RHD. Our proposed FS-HandNet is compared
to DeepPose, the CPM baseline, Mobilev2, and the
MSPN. It is common to use these methods for pose
estimation. Quantitative and qualitative comparisons
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Table 1
Detailed numerical evaluations of AUC, EPE, GFLOPs, and #Params using the

OneHand 10k test data

Method AUC↑ EPE↓ GFLOPs↓ #Params(M)↓
DeepPose [43] 0.483 34.48 5.38 23.59
CPM [44] 0.525 29.56 85.4 31.62
Mobilev2 [45] 0.530 30.34 2.12 9.57
MSPN [46] 0.546 27.28 21.72 83.4
Ours 0.572 23.87 23.39 16.95

were the primary focus of the experiments.
1) Comparison of OneHand10K: The purpose of

our comparison of OneHand10K is to demonstrate
that the proposed method behaves better than the
four types of pose estimation methods. We use the
commonly used evaluation metrics the area under
the curve(AUC) [39], the endpoint error(EPE) [20],
GFLOPs, and #Params to evaluate our method.
Table 1 summarizes the detailed numerical results.
Our model behaves better than four types of pose esti-
mation methods, this is especially evident in the AUC
and EPE indicators. In terms of #Params metrics, our
method is second only to the Mobilev2 methods in
terms of performance, and comprehensive analysis
will reveal that we achieve better results with our
approach. Figure 3 illustrates the contrast of perfor-
mance.

2) Comparison of Panoptic: The Panoptic is used
to test our method. It has 11853 training images and
2964 testing images. The input image is resized to
256 × 256 on the Panoptic [47]. We evaluate our
method using the area under the curve(AUC) [39],
the endpoint error(EPE) [20], GFLOPs, and #Params
metric. Table 2 provides a summary of the numerical
results. On the Panoptic dataset, our model exhibits
a substantial improvement in AUC and EPE over the
CPM baseline. As a combined analysis of GFLOPs
and #Params metrics display results, our approach
is second only to the Mobilev2 methods. Figure 4
demonstrates the performance of FS-HandNet, Deep-
Pose, the CPM baseline, Mobilev2, and MSPN.

Figure 4 visualizes the predictive results of FS-
HandNet, the DeepPose, the baseline of CPM, the
Mobilev2, and the MSPN on the Panoptic test data.
An analysis of the left and right hand pose estimation
problem for the same image that illustrates the effec-
tiveness of our method from another perspective. Our
model significantly reduces ambiguity in inferences
and reinforces structure consistency.

3) Comparison of RHD: We have implemented
our method on the RHD which is a synthetic dataset
containing 41258 training images and 2728 testing

images. Considering the RHD dataset is larger than
both OneHand10K and Panoptic, we achieve bet-
ter results when estimating hand gestures from the
RHD dataset. Table 3 analyzes the RHD dataset per-
formance of several network designs, Our method
behaves better than four types of pose estimation
methods, this is especially evident in the AUC and
EPE indicators. Our method is second only to the
Mobilev2 in terms of #Params metrics, and an in-
depth analysis of our performance will reveal that our
approach achieves better results. As shown in Fig. 5,
there is a comparison of performance.

4.4.2. Ablation study
In this section, we conducted an ablation research

on the OneHand 10k dataset to examine the following
three aspects: 1) the influence of the bidirec-
tional pyramid structure (BiPS); 2) the influence of
the Distribution-Aware coordinate Representation of
Keypoints (DARK) [37] to hand pose estimation. 3)
The impact of the affine transform of the image and
random blocking of squares(ATaRBS) to enhance the
robustness of the algorithms. To do this, we did the
ablation study by comparing the following FSNet
variations.

FSNet Baseline: In this experiment, we only
retain the basic structural model. removing the BiPS,
DARK, and ATaRBS from FS-HandNet.

FSNet+BiPS: We only keep the FSNet baseline
and BiPS from the FS-HandNet. removing the DARK
and ATaRBS from FS-HandNet.

FSNet+BiPS+ATaRBS: Only keep the FSNet
baseline and BiPS, jointly the affine transform of the
image and random blocking of squares(ATaRBS) to
enhance the robustness of the algorithms. the DARK
is removed.

Table 4 displays the quantitative comparison find-
ings of various versions on the OneHand 10k test set.
It can be observed that the FSNet + BiPS outperforms
the FSNet Baseline, which means that joint the Bidi-
rectional Pyramid Structure(BiPS) can effectively
improve the performance. Using the affine trans-
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Fig. 3. Comparison results on OneHand 10k dataset. (a) DeepPose [43], (b) CPM [44], (c) Mobilev2 [45], (d) MSPN [46], (e) Our method.

Table 2
Detailed numerical evaluations of AUC, EPE, GFLOPs, and #Params based on

Panoptic testing data

Method AUC↑ EPE↓ GFLOPs↓ #Params(M)↓
DeepPose [43] 0.686 9.35 5.38 23.59
CPM [44] 0.699 9.60 85.4 31.62
Mobilev2 [45] 0.698 9.55 2.12 9.57
MSPN [46] 0.685 10.16 21.72 83.4
Ours 0.747 7.56 23.39 16.95
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Fig. 4. Comparison results on Panoptic dataset. (a) DeepPose [43], (b) CPM [44], (c) Mobilev2 [45], (d) MSPN [46], (e) Our method.

Table 3
Detailed numerical results of AUC, EPE, GFLOPs and #Params evaluated on the

RHD testing data

Method AUC↑ EPE↓ GFLOPs↓ #Params(M)↓
DeepPose [43] 0.865 3.30 5.38 23.59
CPM [44] 0.880 2.86 85.4 31.62
Mobilev2 [45] 0.882 2.79 2.12 9.57
MSPN [46] 0.898 2.31 21.72 83.4
Ours 0.908 2.04 23.39 16.95

form of the image and random blocking of squares
(ATaRBS) gets even better results, so the best perfor-
mance is achieved by our suggested method.

4.5. Applying hand pose estimation for gesture
recognition

Hand pose estimate can be used in the ges-
ture recognition process, and the gesture recognition
results can be obtained by analyzing the coordinates
of each keypoint, which can be obtained by using
the hand pose estimation algorithm. Figure 6 depicts
the application of hand pose estimation to gesture
recognition.

The gesture recognition task is usually performed
using image classification methods, which require
only a few samples to achieve satisfactory results.
However, adding new gestures later requires recol-
lecting and retraining samples according to current

common methods. Hand pose estimation algorithms
can address the shortcomings of classification algo-
rithms for gesture recognition. However, hand pose
estimation algorithms also have weak performance in
gesture recognition tasks, due to its low recognition
accuracy and complicated modeling.

5. Conclusion and future work

In conclusion, this article developed a fish skele-
ton CNN for hand pose estimation from single color
images, referred to as “FS-HandNet”. To obtain hand
pose information, the FS-HandNet is used for the first
time, then a distribution-aware coordinate represen-
tation is employed to adjust the position information
of the hand, and finally, a convex hull algorithm
and hand pose information are applied to recog-
nize multiple gestures. In addition, to improve the
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Fig. 5. Comparison results on RHD dataset. (a) DeepPose [43], (b) CPM [44], (c) Mobilev2 [45], (d) MSPN [46], (e) Our method.

Table 4
The hand pose estimation ablation study’s numbers showed how the different types

of ablation worked on the OneHand 10k testing data

Method AUC↑ EPE↓ GFLOPs↓ #Params(M)↓
FSNet Baseline 0.552 26.91 22.75 16.49
FSNet+BiPS 0.561 25.73 23.39 16.95
FSNet+BiPS+ATaRBS 0.565 25.05 23.39 16.95
Ours 0.572 23.87 23.39 16.95

Fig. 6. Hand pose estimation is applied to gesture recognition.
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resilience of the algorithms, we applied an efficient
data augmentation method. We analyze the perfor-
mance of FS-HandNet using three publicly available
hand posture benchmarks. The experimental results
demonstrate that our proposed strategy is superior
and progressive. Future work includes improving the
hand position information for gesture recognition and
designing a lightweight model for hand pose estima-
tion.
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