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Abstract. Ensemble clustering helps achieve fast clustering under abundant computing resources by constructing multiple
base clusterings. Compared with the standard single clustering algorithm, ensemble clustering integrates the advantages
of multiple clustering algorithms and has stronger robustness and applicability. Nevertheless, most ensemble clustering
algorithms treat each base clustering result equally and ignore the difference of clusters. If a cluster in a base clustering is
reliable/unreliable, it should play a critical/uncritical role in the ensemble process. Fuzzy-rough sets offer a high degree of
flexibility in enabling the vagueness and imprecision present in real-valued data. In this paper, a novel fuzzy-rough induced
spectral ensemble approach is proposed to improve the performance of clustering. Specifically, the significance of clusters is
differentiated, and the unacceptable degree and reliability of clusters formed in base clustering are induced based on fuzzy-
rough lower approximation. Based on defined cluster reliability, a new co-association matrix is generated to enhance the
effect of diverse base clusterings. Finally, a novel consensus spectral function is defined by the constructed adjacency matrix,
which can lead to significantly better results. Experimental results confirm that the proposed approach works effectively and
outperforms many state-of-the-art ensemble clustering algorithms and base clustering, which illustrates the superiority of the
novel algorithm.
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1. Introduction

Clustering is an unsupervised learning method
that usually refers to dividing existing unlabeled
instances into several clusters according to the simi-
larity between objects without any prior information,
making the instances in the same cluster have a higher
similarity and in different clusters have a more sub-
stantial discrepancy [9, 11, 43]. Ensemble clustering
utilises a consensus function to unify multiple types
of partitions of the same dataset into one clustering
result. It usually constructs a base clustering pool by
repeatedly running a single clustering approach or
executing multiple clustering algorithms. Then, the
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consensus function is built through voting methods,
hypergraph partitioning, or evidence accumulation
to obtain more optimal clustering results [18, 25].
Many existing ensemble clustering studies have con-
firmed that ensemble clustering can usually improve
the clustering result compared to a single clustering
algorithm [1, 14, 24].

1.1. Background

Existing established clustering algorithms are
mainly based on the theories of model, grid, density,
partition, and hierarchy [2, 8]. Different types of clus-
tering algorithms are good at solving diverse types,
distributions, and scales of data. In particular, with
the development of deep learning [27], the perfor-
mance of various clustering methods has been further
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improved. For example, in [28], a deep-learning fea-
ture extractor for time-series data is designed for
relation extraction, and the clustering effect achieved
significant improvement. Nonetheless, in view of the
unknown data distribution in actual problems, it is
difficult to determine which clustering algorithm can
get better clustering results. Conventional solutions
often try different methods and choose the algorithm
that performs best. Ensemble clustering is expected to
establish a general scheme to combine the advantages
of multiple clustering algorithms and form the opti-
mal clustering result. It is especially feasible under
the conditions of mature distributed computing tech-
nology, so as to adapt to unknown and complex data.

The related studies to ensemble clustering are
mainly divided into three categories: pair-wise co-
occurrence based, graph partitioning based, and
median partition based algorithms [18]. The first type
refers to constructing a co-occurrence matrix by find-
ing the times of all instances that occur in pairs
(assigned as a cluster) in base clusterings. The two
instances should be classified into the same cluster in
the final clustering based on co-occurrence [19]. The
similarity function constructed by the co-occurrence
matrix can be used in any similarity matrix based
clustering algorithm to acquire the final optimal
clustering result, such as hierarchical clustering and
spectral clustering [7, 30]. The idea of co-occurrence
matrix was first proposed in [5]. Correspondingly, a
method of evidence accumulation clustering (EAC)
based on this theory was proposed for the ensem-
ble clustering problem. Subsequent researches have
made various improvements, such as using the tech-
nique of normalised edges and matrix completion [29,
45]. In graph partitioning, the graph model and con-
sensus function are usually constructed to partition
the graph into multiple parts representing the final
cluster. The primary purpose of graph partitioning is
to achieve k-way min-cut partitioning, ensuring that
the similarity between subgraphs is as tiny as possible
[32]. Constructing a graph model is predominantly
based on instances (vertices in hypergraph) or clus-
ters (hyperedges in hypergraph) in base clustering.
For example, the cluster-based similarity partition-
ing algorithm (CSPA) considers the local piecewise
similarity and constructs a similarity graph as well
as a graph partitioning method to perform ensemble
clustering [23]. Compared with CSPA, the link-based
ensemble clustering constructs a dense graph with the
implied similarity between each instance and indi-
vidual cluster; the clustering possesses a significant
effect but needs too many computations [36]. The last

type (median partition based algorithms) transforms
ensemble clustering into an objective optimisation
problem, which finds a median partition most simi-
lar to each base clustering by solving the objective
function [17]. However, the issue is NP-hard [4].
Fortunately, some deconstructions, such as using
expectation maximisation (EM) [40] and weighted
consensus clustering (WCC) [33], have been pro-
posed to find approximate solutions. In addition to
the common types introduced above, ensemble algo-
rithms based on voting [21], mutual information [20],
finite mixture model [3] and other theories [22, 39]
are also meaningful research directions in the field of
ensemble clustering.

1.2. Motivations

Ensemble clustering is mainly divided into two
steps. One is to generate a base clustering pool, for
example, running the same clustering algorithm mul-
tiple times with different parameters, running various
clustering algorithms multiple times, and performing
clustering in subspaces. The other step is to select
a consensus function, mainly based on the theories
such as co-occurrence matrix, graph segmentation,
and information entropy. An overview of ensemble
clustering algorithms is depicted in Fig. 1.

In the numerous types of ensemble clustering solu-
tions, the pair-wise co-occurrence based algorithms
are pretty naive, easy to implement and have played
a massive role in ensemble clustering fields. Nev-
ertheless, these algorithms always treat all clusters
in the base clustering equally, ignoring the differ-
ence of the clusters [35]. Some attempts have been
used in cluster weighting to distinguish the effect
of different clusters, such as weighting schemes of
information entropy [14] and random walk [16]. The
authors used related theories to distinguish differ-
ent clusters and mine implicit relationships between
instances. Corresponding experiments proved that it
is effective to distinguish different clusters. However,
these approaches always try to complete the ensem-
ble clustering without the joining of features, but only
the labels of base clusterings, which may lose some
vital information implied in data features.

Compared with the algorithms considering base
clustering results only, effectively combining base
clustering and original features helps further improve
the performance of ensemble clustering. Fuzzy-rough
sets offer a high degree of flexibility in enabling the
vagueness and imprecision present in real-valued data
to be simultaneously modelled effectively [12, 38].
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Fig. 1. The outline of ensemble clustering.

Fig. 2. The motivation of proposed method.

The idea of upper and lower approximation can well
depict the membership of instances to each category,
which is helpful for measuring the cluster reliability
in ensemble clustering. The motivation of the pro-
posed method is described in Fig. 2, and the solid
black arrow and blue box are used to illustrate the
difference with similar works, which means the join-
ing of original features while distinguishing different
cluster reliability.

1.3. Contributions

To distinguish the validity of different clusters and
combine the role of features, in this paper, the fuzzy-
rough lower approximation is used to induce cluster
reliability in all base clusterings. A novel fuzzy-rough
induced spectral ensemble clustering (FREC) algo-
rithm is proposed to enhance the performance of
pair-wise co-occurrence based ensemble clustering.
The contribution of the paper is threefold:

� Proposing the novel idea of cluster reliability
through the fuzzy-rough lower approximation
of each instance to enable the distinction of
diverse cluster significance during clustering;

� Developing a new adjacency matrix based on
cluster reliability to effectively enhance the

effect of diverse base clusterings and improve
the clustering performance;

� Establishing a consensus function and spectral
ensemble clustering algorithm with its superior-
ity confirmed through a comparative study and
analysis on various benchmark datasets.

The experiment compares eleven state-of-the-art
clustering algorithms on ten benchmark datasets, as
well as the parallel algorithm that ignores the dif-
ference of clusters in base clustering. The result
shows that FREC achieves a significant clustering
performance. As the ensemble size increases, FREC
achieves a superior effect.

The remainder of the paper is structured as follows.
The preliminaries of the rough set and fuzzy-rough
set are introduced in Section 2. The FREC algorithm
is introduced in detail in Section 3. In Section 4, the
experimental results are given and analysed. Finally,
a summary is presented in Section 5.

2. Preliminaries

This section reviews the mathematical concepts
concerning rough set and fuzzy-rough set, which are
relevant to the reliability of the cluster developed in
this paper.
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2.1. Rough set

The study on rough sets theory [13, 41, 49] pro-
vides a methodology that can be employed to extract
knowledge from a domain in a concise way: it is
able to minimise information loss whilst reducing the
amount of information involved. Central to rough set
theory is the concept of indiscernibility. Let (U, A) be
an information system, where U is a set of instances
and A is a set of attributes (features) such that a :
U→ Va for every a ∈ A. Va is the set of values
that attribute a may take. For each feature subset
P ⊆ A, an associated P-indistinguishable relation
can be determined:

IND(P) = {(x, y) ∈ U
2 | ∀a ∈ P, a(x) = a(y)}.

(1)
Obviously, IND(P) is an equivalence relation on

U. The partition of U determined by IND(P) is herein
denoted by U/P which can be defined such that

U/P = ⊗{U/a|a ∈ P}. (2)

where ⊗ is defined as follows for sets V and W :

V ⊗W = {X ∩ Y |X ∈ V, Y ∈ W, X ∩ Y /= ?} .
(3)

For any object x ∈ U, the equivalence class deter-
mined by IND(P), is denoted by [x]P . Let X ⊆ U. X
can be approximated using only the information con-
tained in P by constructing the P-lower and P-upper
approximations of X [48]:

PX = {x | [x]P ⊆ X}, (4)

PX = {x | [x]P ∩X /= ?}. (5)

The pair 〈PX, PX〉 is called a rough set. Informally,
the former depicts the set of those objects which can
be said with certainty to belong to the concept approx-
imated, and the latter is the set of objects which either
definitely or possibly belong to the concept approx-
imated. The difference between the upper and lower
approximations is the area known as the boundary
region that represents the area of uncertainty. If the
boundary region is empty, there is no uncertainty
regarding the concept which is being approximated
and all objects belong to the subset of objects of
interest with full certainty.

2.2. Fuzzy-rough set

Fuzzy-rough sets [6, 12, 38] encapsulate the related
but distinct concepts of vagueness (for fuzzy sets) and

indiscernibility (for rough sets), both of which occur
as a result of uncertainty in knowledge. Compared
to rough sets, fuzzy-rough sets offer a high degree
of flexibility in enabling the vagueness and impreci-
sion present in real-valued data to be simultaneously
modelled effectively. In fuzzy-rough sets, the fuzzy
lower and upper approximations to approximate a
fuzzy concept X can be defined as:

μRPX(x) = inf
y∈U

I(μRP (x, y), μX(y)), (6)

μRPX(x) = sup
y∈U

T (μRP (x, y), μX(y)). (7)

Here, I is a fuzzy implicator and T is a T -norm.
RP is a T -transitive fuzzy similarity relation induced
by the subset of features P :

μRP (x, y) = Ta∈P {μRa (x, y)}, (8)

where μRa (x, y) is the degree to which object x and y

are similar for feature a, and may be defined in many
ways, for example:

μRa (x, y) = exp(− (a(x)− a(y))2

2σa
2 ), (9)

μRa (x, y) =max(min(
(a(y)− (a(x)− σa))

(a(x)− (a(x)− σa))
,

((a(x)+ σa)− a(y))

((a(x)+ σa)− a(x))
), 0).

(10)

Same as their crisp parallels, μRPX(x) and μRPX(x)
indicate the degrees to which the object x must and
may belong to the approximated fuzzy concept X,
respectively.

3. Fuzzy-rough induced spectral ensemble
clustering

3.1. The unacceptable degree of clusters

The validity of a cluster can be well judged by
considering the unacceptable degree (UD) of clus-
ters in a base clustering. In multiple base clusterings,
if the assignment of a cluster in one base clustering
is consistently agreed by other base clusterings, this
cluster should play a more critical role in the final
consensus clustering. At the same time, if the assign-
ment of a cluster is constantly negated by other base
clusterings, the cluster should play a minor role.

For illustration purposes, some formalised descrip-
tions are first introduced below. Let U = {xi|i ∈
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1, 2, ..., n} be an instances set, xi is an instance which
contains d features. B = {βj|j ∈ 1, 2, ..., m} is a set
of base clusterings where βj = {βk

j |k ∈ 1, 2, ..., K}
indicates the instances set in the k-th cluster of the
j-th base clustering. The degree of xi belongs to βk

j

with the features set A can be calculated by the fuzzy
lower approximation μRAβk

j
(xi).

Since for every fuzzy implicator I, there is
I(x, 1) = 1, μRAβk

j
(xi) can be simplified into:

μRAβk
j
(xi)

= inf
y∈U

I(μRA
(xi, y), μβk

j
(y))

=min{min
y∈βk

j

{
I

(
μRA

(xi, y) , 1
)}

,

min
y/∈βk

j

{
I

(
μRA

(xi, y) , 0
)}}

=min
y/∈βk

j

{
I

(
μRA

(xi, y) , 0
)}

. (11)

As proved in [31], if I belongs to S-implications,
QL-implications or R-implications which enjoys
contrapositive symmetry, it is that I(x, 0) = N (x),
where N is the strong negator to induce I. In partic-
ular, for the classical strong negation NC(x) = 1− x,
Equation (11) can be further modified to:

μRAβk
j
(xi) = min

y/∈βk
j

{
1− (μRA

(xi, y))
}

= 1−max
y/∈βk

j

{μRA
(xi, y)}. (12)

Equation (12) implies that the lower approximation
of xi to βk

j depends on the most similar instance in dif-
ferent clusters, which has a crucial role in ensemble
clustering. It indicates that the farther the two clus-
ters are, the greater the lower approximation of each
instance to the cluster to which it belongs. At the same
time, it means that the distinction between clusters is
more obvious, that is, the cluster allocation scheme
is more reasonable.

For different base clusterings, the assignment of
clusters is distinct, but the data location is fixed, that
is, multiple base clusterings are acting on the same
dataset. For a specific cluster in one base clustering,
the resulting assignment has two cases:

� Another base clustering approves this assign-
ment;

� Another base clustering denies this assignment.

In this paper, a novel concept of UD is proposed
to metric the cluster reliability. Here, two exemplar
artificial datasets D1 (shown in Fig. 3) and D2 (shown
in Fig. 4) are employed to illustrate the UD of the two
cases.

The first case is relatively simple, as shown in
Fig. 3, including two exemplar base clusterings β1
and β2 in D1. For a specifically given cluster (e.g.,
β1

1) in base clustering β1, considering the distribu-
tion of this cluster in another base clustering β2, an
obvious fact is that if the particular cluster in β1 is
a subset of one cluster in β2, the assignment of the
cluster (e.g. β1

1) can be considered to be fully admit-
ted by β2. At this point, the UD of the specific cluster
in β1 is 0, which means that the objects of the cluster
in β1 meeting the above condition can be divided into
one cluster in both base clustering β1 and β2.

For the three clusters (β1
1, β2

1, β3
1) of β1 shown in

Fig. 3(a), considering the base clustering β2, β1
1 is a

subset of β1
2, and both β2

1 and β3
1 are subsets of β2

2,
so the UD is 0 for all three clusters in β1. It is worth
noting that this relationship is not symmetric, that is,
the clusters in β1 are admitted by β2, which does not
mean that the clusters in β2 are admitted by β1.

Another situation is shown in Fig. 4. For a partic-
ular cluster in β3, if the cluster objects are split into
a plurality of clusters in another base clustering β4,
it can be considered that the specific cluster is not
admitted or accepted by β4. Here, β1

3 is split into β1
4

and β2
4 by β4, and β2

3 is split into β3
4 and β4

4 by β4,
which means β4 disagrees with the allocation of β1

3
and β2

3. Further, the UD can be well measured by the
lower approximation of cluster objects in β3 to the
base clustering β4.

More specifically, for a specific cluster in a base
clustering, considering its position distribution in
another base clustering, if the objects of this particular
cluster have a more significant lower approximation
to the cluster in which the objects relocate in another
base clustering, it indicates that the given cluster
prefers the allocation of another base clustering. At
the same time, it also means the extent of another
base clustering does not accept the assignment of the
given cluster.

Objects from βk
j may be located in one or multiple

clusters in another base clustering βl , such indeter-
minate clusters can be represented by

Rk
jl = {βs

l |βk
j ∩ βs

l /= ?, βs
l ∈ βl}, l /= j (13)

For the example cluster β1
3 in Fig. 4(a), the set R1

34
is {β1

4, β
2
4}. Based on the analysis above, the UD γk

jl
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Fig. 3. Two exemplar base clusterings β1 and β2 in dataset D1.

Fig. 4. Two exemplar base clusterings β3 and β4 in dataset D2.

of the cluster βk
j relative to another base clustering βl

can be defined as:

γk
jl =

⎧⎪⎪⎨
⎪⎪⎩

0, |Rk
jl| = 1,

1
|βk

j
|

∑
βs

l
∈Rk

jl

∑
xi∈βk

j
∩βs

l

μRAβs
l
(xi), |Rk

jl| > 1.

(14)
where |Rk

jl| indicates the number of the clusters in set

|Rk
jl|, and |βk

j | represents the number of the instances

in βk
j .

To illustrate the concepts involved, the objects of
the exemplar clusters β1

3 and β2
3 in Fig. 4(a) are given

in Table 1, the relocated clusters in β4 are recorded
in Table 2.

Take x1, x6, x11 and x16 as an example (located in
diverse clusters in β4), the respective lower approx-
imation of the above four objects to β4 are obtained
by using the Algebraic T -norm TP (a, b) = ab and the
fuzzy similarity function (9):

x1 ∈ β1
4 ⇒ μRAβ1

4
(x1) = 0.05,

x6 ∈ β2
4 ⇒ μRAβ2

4
(x6) = 0.05,

x11 ∈ β3
4 ⇒ μRAβ3

4
(x11) = 0.91,

x16 ∈ β4
4 ⇒ μRAβ4

4
(x16) = 0.94.

Through further calculations, the lower approxi-
mation of all objects in β3 to the base clustering β4
are shown in Table 3.

Then, the UD of β1
3 and β2

3 to base clustering β4 is
computed by Equation (14), there is

γ1
34= 0.05+ 0.05+ 0.07+ 0.06+ 0.10+ 0.05+ 0.11+ 0.10+ 0.19+ 0.07

10

= 0.09

γ2
34= 0.91+ 0.90+ 0.96+ 0.86+ 0.91+ 0.94+ 0.86+ 0.91+ 0.97+ 0.95

10

= 0.92
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Table 1
Two exemplar clusters in Fig. 4(a)

Cluster Sample x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

β1
3 x-axis 1.0 1.0 1.5 2.2 1.8 1.9 2.5 1.5 2.5 3.0

y-axis 4.5 4.8 4.1 3.4 3.5 4.7 4.7 5.5 5.5 3.8

Cluster Sample x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

β2
3 x-axis 5.8 5.1 5.5 6.2 6.5 8.2 9.0 8.7 8.5 9.0

y-axis 5.3 5.0 6.0 5.0 5.5 1.0 2.0 1.5 0.5 1.0

Table 2
Relocated cluster of the objects in β1

3 and β2
3

Sample (β1
3) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Relocated cluster β1
4 β2

4

Sample (β2
3) x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Relocated cluster β3
4 β4

4

Table 3
Lower approximation of β1

3 and β2
3 to the base clustering β4

Cluster Relocation x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

β1
3 β1

4 0.05 0.05 0.07 0.06 0.10 - - - - -
β2

4 - - - - - 0.05 0.11 0.10 0.19 0.07

Cluster Relocation x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

β2
3 β3

4 0.91 0.90 0.96 0.86 0.91 - - - - -
β4

4 - - - - - 0.94 0.86 0.91 0.97 0.95

Considering the ground distribution of β1
3 and β2

3
in Fig. 4, apparently, the allocation scheme of β1

3 is
more reasonable, with a lower UD of 0.09. While β2

3
groups the objects with an enormous difference, the
UD is 0.92. The result shows that the UD acquired is
consistent with the actual situation of the clusters.

Further, the global UD γk
j of a cluster in βj to the

remaining m− 1 base clustering can be calculated as
follows:

γk
j =

1

m− 1

∑
l /= j

γk
jl, l = 1, 2, ..., m. (15)

The unacceptable degree computing (UDC) algo-
rithm is outlined in Algorithm 1. Given the inputs U

and m, the first step is to initialise the set � empty
and generate m base clusterings by any constructed
method, such as repeating k-means m times and using
diverse results from multiple clustering algorithms
[34]. The loop in Lines 3 to 14 traverses each clus-
ter in all base clusterings and computes the UD.
Specifically, βk

j represents the current cluster to cal-
culate UD, and βl indicates any cluster in the base
clusterings set except βj . Mean(·) defines an aver-
age process, and all computed UD is stored in �.
Finally, in Line 15, the � is returned for subsequent
calculations.

3.2. Defining the co-association matrix

The co-association matrix is obtained by summing
and averaging a series of co-occurrence matrices, and
it represents the frequency with which two objects
co-occur in multiple base clusterings. Each base clus-
tering βj produces a separate co-occurrence matrix,
which can be expressed as

Oj = {oj
ih}n×n, (16)

where o
j
ih represents whether xi and xh co-occur in

βj . Let Cj(xi) indicate the serial number of the cluster

to which xi belongs in the j-th base clustering, oj
ih can

be denoted by

o
j
ih =

⎧⎨
⎩

1, Cj(xi) = Cj(xh),

0, Cj(xi) /= Cj(xh).
(17)

Further, the co-association matrix can be expressed
as

A = {aih}n×n, (18)

where aih is calculated by

aih = 1

m

m∑
j=1

o
j
ih. (19)
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Fig. 5. Matrices O3, O4 and A of the example in Fig. 4.

Fig. 6. Redefined Matrices Õ3, Õ4 and Ã of the example in Fig. 4.

Given the exemplar clusters in Fig. 4 and corre-
sponding coordinates in Table 1, the matrices O3, O4
and A are recorded in Fig. 5. Take x1 and x6 as an
example (marked as a blue box) :

C3(x1) = C3(x6) ⇒ o3
16 = 1, o3

61 = 1,

C4(x1) /= C4(x6) ⇒ o4
16 = 0, o4

61 = 0.

Then, the elements a16 and a61 of A are calculated
by

o3
16 = 1, o4

16 = 0 ⇒ a16 = (1+ 0)/2 = 0.5,

o3
61 = 1, o4

61 = 0 ⇒ a61 = (1+ 0)/2 = 0.5.

A higher UD for a cluster indicates that other base
clusterings are more likely to disapprove of the clus-
ter’s allocation scheme. At this point, the role of the
cluster should be weakened. Otherwise, the function
of the cluster should be reinforced. Therefore, the
reliability of a cluster can be described as a decreas-
ing function of the UD. In this paper, the reliability
of the k-th cluster in βj is defined as

μk
j = 1− γk

j . (20)

Similar to Equations (16), (17), (18) and (19),
the redefined co-occurrence matrix Õj and co-

association matrix Ã are expressed as

Õj = {õj
ih}n×n, (21)

Ã = {ãih}n×n, (22)

where

õ
j
ih =

⎧⎨
⎩

μk
j, Cj(xi) = Cj(xh),

0, Cj(xi) /= Cj(xh).
(23)

ãih = 1

m

m∑
j=1

õ
j
ih. (24)

Again, for the example of x1 and x6,

C3(x1) = C3(x6) ⇒ õ3
16 = 0.91, õ3

61 = 0.91,

C4(x1) /= C4(x6) ⇒ õ4
16 = 0, õ4

61 = 0.

Then, the elements ã16 and ã61 of Ã are computed
by

õ3
16 = 0.91

õ4
16 = 0

}
⇒ ã16 = (0.91+ 0)/2 = 0.46,
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Algorithm 1 Unacceptable Degree Computing
(UDC)
UDC (U, m)
Input:

U, input space containing n objects,
m, number of base clusterings.

Output:
�, set of unacceptable degree of all clusters,
B, set of base clusterings.

1: Initialise: � = ?.
2: B← Generate m base clustering.
3: foreach βj in B do
4: foreach βk

j in βj do
5: S = ?

6: foreach βl in {B − βj} do
7: Rk

jl← Equation (13)

8: γk
jl← Equation (14)

9: S = S ∪ γk
jl

10: end
11: γk

j =Mean(S)

12: � = � ∪ γk
j

13: end
14: end
15: return �, B

õ3
61 = 0.91

õ4
61 = 0

}
⇒ ã61 = (0.91+ 0)/2 = 0.46.

The matrices Õ3, Õ4 and Ãof the exemplar clusters
in Fig. 4 are recalculated and shown in Fig. 6.

The co-association matrix construction (CMC)
algorithm is detailed in Algorithm 2. Firstly, the ini-
tialised step is performed. Lines 2 to 17 represent
the overall process, including the main loop to iden-
tify the co-occurrence and co-association matrices.
Note that all matrices are calculated only for upper
triangular due to the symmetry. In Line 15, the lower
triangular matrix of Ã directly takes the values from
the existing result in Line 14, which can signifi-
cantly diminish unnecessary calculations. The final
co-association matrix Ã is output in Line 18.

3.3. Consensus function

A mapping from a set of clusterings to a single final
clustering is called a consensus function. Consider-
ing the superior performance of spectral clustering
in complex shapes and cross data, in this paper, the
optimised co-association matrix is used in the spectral
method to acquire the consensus result.

Algorithm 2 Co-Association Matrix Construction
(CMC)
CMC (U, �, B)
Input:

U, input space containing n objects,
�, set of unacceptable degree of all clusters,
B, set of base clusterings.

Output: Ã, co-association matrix.

1: Initialise: Ã = {ãih}n×n(ãih = 1), Õj =
{õj

ih}n×n(õj
ih = 0).

2: foreach i = 1 to n do
3: foreach h = i+ 1 to n do
4: Q = ?

5: foreach βj in B do
6: if Cj(xi) /= Cj(xh) then õ

j
ih = 0

7: else
8: k = Cj(xi)
9: μk

j = 1− γk
j

10: õ
j
ih = μk

j

11: end
12: Q =Q ∪ õ

j
ih

13: end
14: ãih =Mean(Q)
15: ãhi = ãih

16: end
17: end
18: return Ã

Given a graph model G = (V , L), where V indicates
the vertexes set and L represents the links set. Its
adjacency matrix can be constructed in various ways,
such as considering the neighbours or defining the
distance threshold. Let the objects in U be the vertexes
in the graph, the adjacency matrix can be expressed as
Ã. It means that if aih is 0, there is no edge connection
between xi and xh. Otherwise, the edge exists and the
similarity is aih. From this, the diagonal matrix D can
be expressed by

D = {dih}n×n, (25)

where

dih =
⎧⎨
⎩

0, i /= h,∑n
q=1 ãiq, i = h.

(26)

The Laplacian matrix L of the graph G can be
further defined as

L = D− Ã. (27)
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Normalisation makes the diagonal entries of the
Laplacian matrix to be all units and scales off-
diagonal entries correspondingly. In this case, the
normalised Laplacian matrix Lnor is defined as

Lnor = D−
1
2 LD−

1
2 . (28)

The components of the eigenvectors corresponding
to the smallest eigenvalues of the graph Laplacian can
be used for meaningful clustering [42]. In Equation
(28), the eigenvectors corresponding to the first K

smallest eigenvalues of Lnor will be used in an inde-
pendent clustering algorithm, generally k-means, due
to its speed and efficiency.

As summarised in Algorithm 3, D and Lnor are
computed sequentially in Lines 2 to 6. EV(·) in Line 7
represents a function that generates the first K eigen-
vectors, and k-means(·) in Line 8 indicates a fast
clustering algorithm detailed in [34]. Finally, in Line
9, R is used to return the consensus clustering result.

Algorithm 3 Consensus Spectral Clustering (CSC)

CSC (Ã, K)
Input:

Ã, co-association matrix,
K, number of clusters.

Output: R, consensus result.

1: Initialise: D = {dih}n×n (dih = 0).
2: foreach i = 1 to n do
3: dii =

∑n
q=1 ãiq

4: end
5: L = D− Ã

6: Lnor = D−
1
2 LD−

1
2

7: F ← EV(Lnor)
8: R← k-means(F, K)
9: return R

3.4. Fuzzy-rough induced spectral ensemble
clustering

According to the description of the above three
subsections, the overall fuzzy-rough induced spec-
tral ensemble clustering is depicted in Algorithm 4.
Given a dataset U, the number of base clusterings m

and the actual clusters number K. Algorithm 1 is first
executed to generate the UD set � of all clusters and
the set of base clusterings B in Line 1. Further, the
result returned by Algorithm 1 is combined with the
dataset U as the parameters of Algorithm 2 to calcu-
late the co-association matrix Ã. Finally, the matrix

Ã is used in the consensus spectral clustering (CSC)
to generate the final clustering result R.

Algorithm 4 Fuzzy-Rough Induced Spectral Ensem-
ble Clustering (FREC)
FREC (U, m, K)
Input:

U, input space containing n objects,
m, number of base clusterings,
K, number of clusters.

Output: R, consensus result.

1: �, B = UDC(U, m) //Algorithm 1
2: Ã = CMC(U, �, B) //Algorithm 2
3: R = CSC(Ã, K) //Algorithm 3
4: return R

4. Experimental evaluation

This section presents the experimental evaluation
of FREC and other algorithms on ten popular datasets
contained in UCI1 repository. For convenience,
datasets Cardiotocography, Image Segmentation,
and Steel Plates Faults are represented by abbre-
viations Cardio, IS, and SPF, respectively. After
introducing the experimental setup, the results and
discussion are divided into five parts. Section 4.2
analyses the tendency of clustering effect as the
number of ensembles increases. To test the impact
of cluster reliability induced by fuzzy-rough lower
approximation, Section 4.3 compares the effect of
FREC and the original parallel algorithm EAC on all
benchmark datasets. Besides, the average result of
100 base clusterings is also used to compare and val-
idate the ensemble performance. In Sections 4.4 and
4.5, a detailed analysis of FREC and other state-of-
the-art clustering algorithms is reported. Finally, the
time complexity of the proposed method and running
time of each algorithm are analysed in Section 4.6.

4.1. Experimental setup

In the experimental investigation, all datasets are
normalised first. Homogeneity score (HS) and nor-
malised mutual info (NMI) are used to evaluate the
performance of the separate clustering method [10,
15]. The base clustering pool B in Algorithm 1 is
generated by running the k-means method 100 times,

1https://archive.ics.uci.edu/ml/datasets.php
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Table 4
Benchmark datasets used for evaluation

Datasets Attributes Class Size

Heart 13 2 270
Cleveland 13 5 297
Dermatology 34 6 358
Movement 90 15 360
Appendicitis 7 2 106
Led7digit 7 10 500
Mammographic 5 2 830
Cardio 21 10 2126
IS 19 7 2130
SPF 27 7 1941

where the K is randomly selected from the interval
[2,
√

n], in line with [14]. In Section 4.2, the ensem-
ble size increases sequentially from 10 to 100 with a
step size of 10. Meanwhile, each ensemble algorithm
of a specific size is run 100 times, and the results are
averaged. Considering the excellent results of ensem-
ble clustering at larger ensemble number, ensemble
size is set to 100 for all ensemble methods in Sections
4.3 and 4.4. At the same time, for a fair comparison,
the different algorithms are run 100 times to get the
average results.

Ten state-of-the-art ensemble clustering algo-
rithms, namely, locally weighted evidence accu-
mulation (LWEA) [14], locally weighted graph
partitioning (LWGP) [14], probability trajectory
accumulation (PTA) [16], probability trajectory
based graph partitioning (PTGP) [16], ensemble
clustering by propagating cluster-wise similarities
with hierarchical consensus function (ECPCS-HC)
[18], ensemble clustering by propagating cluster-
wise similarities with meta-cluster-based consensus
function (ECPCS-MC) [18], evidence accumulation
clustering (EAC) [5], weighted evidence accumula-
tion clustering (WEAC) [15], graph partitioning with
multi-granularity link analysis (GPMGLA) [15], and
spectral ensemble clustering (SEC) [26] are selected
to compare the ensemble performance of FREC.
Moreover, two other non-ensemble state-of-the-art
clustering methods, deep temporal clustering repre-
sentation (DTCR) [37] and robust temporal feature
network (RTFN) [50] are also used to compare the
performance of the newly proposed method. For
FREC, Łukasiewicz t-norm and Equation (9) are used
to calculate the fuzzy similarity. As for other com-
pared algorithms, there is no extra parameter for EAC,
and the specific parameters of the remaining methods
are set according to the recommendations or opti-
mal values given in the corresponding papers. More
specifically, the core settings are listed as follows.

− LWEA, LWGP: θ = 0.4;
− PTA, PTGP: K = √N/2, T = √N/2 where N

indicates the number of the graph nodes;
− ECPCSHC, ECPCSMC: t = 20;
− WEAC, GPMGLA: α = 0.5, β = 2;
− SEC: μ = 1;
− DTCR: m1 = 100, m2 = 50, m3 = 50, λ =

1e− 1, lr = 1e− 4;
− RTFN: CNN channel = 128, kernel size =

11,

lrate(0) = 0.01, drate = 0.1.

4.2. The influence of ensemble size

Figures 7 and 8 show the experimental results for
different ensemble sizes, including two indexes of
HS and NMI on ten benchmark datasets. The vari-
ous contrastive algorithms use different colours, lines
and markers, as the legend details. Apparently, for the
proposed FREC, as the ensemble size increases, the
results on nearly all datasets deliver an upward trend
regardless of the evaluation criteria, which is in line
with the objective of ensemble methods. More specif-
ically, considering HS, FREC shows significantly
superior performance on datasets Heart, Appendictis,
Led7digit and Mammographic, i.e. no matter how
large the ensemble size is, FREC can invariably
outperform the other ten ensemble techniques. For
Dermatology and SPF, if the ensemble size is less
than 40, the effect of FREC is slightly lower than that
of GPMGLA and LWEA, respectively, but exceeds
that of the other nine methods. If the ensemble size
is more significant than 40, the proposed method per-
forms superiorly, outperforming all different ways.
While Cleveland, Cardio, and IS are not optimal in
all ensemble sizes, FREC can always exceed most
comparison approaches and always shows the best or
second best performance if the ensemble size is max-
imum. Finally, for Movement, as the ensemble size
increases, the performance of FREC tends to stabilise
rapidly, and there is no apparent transformation trend.
However, it can still surpass almost all contrastive
algorithms.

While using the evaluation index NMI, the results
are resemblance. For Heart, Appendictis, Led7digit
and Mammographic, FREC can accomplish best val-
ues at any ensemble size, and the performance grows
and stabilises as the ensemble size boosts. Regarding
Cardio, although FREC is slightly lower than some
methods if the ensemble size is less than 90, FREC
still performs satisfactorily if the ensemble size is
the largest, which ranks third. The curves of FREC
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Fig. 7. HS results with the ensemble size.
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Fig. 8. NMI results with the increased ensemble size.
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Fig. 9. NMI results of FREC versus the parallel EAC and base clustering.

may be slightly lower for the remaining datasets than
individual algorithms at a particular ensemble size.
Still, FREC can consistently achieve better results,
especially at the largest ensemble size.

4.3. Comparison to the parallel EAC and base
clustering

The algorithm EAC, which means the original co-
association based ensemble scheme that does not
consider cluster reliability, always conducts poorly
in both HS and NMI. As exampled in Fig. 7(b), 7(d),
7(h) and 7(iFor the three clusters), EAC conveys the
worst effect regardless of the ensemble size by com-
paring the other ten ensemble algorithms. To more
comprehensively recognise the effect of using the
cluster reliability induced by fuzzy-rough set, this
part compares FREC and the parallel EAC in detail
in the form of a histogram.

Since all ensemble strategies primarily achieve
more satisfactory results at larger ensemble sizes,
FREC and EAC use the pool containing 100 base
clusterings. Moreover, both algorithms are run 100
times to acquire the average results. In addition, the
algorithms in the base clustering pool (k-means) are
also averaged to compare the ensemble performance.

Without overloading similar results, the NMI is
used to report the experiment evaluation. As shown in
Fig. 9, FREC consistently achieves a better clustering
effect relative to the parallel EAC and base clustering
on all datasets. Especially for Heart, Dermatology,
Movement and Mammographic, FREC reports the
best clustering results while achieving a satisfactory
improvement, illustrating the advantage which con-
siders the cluster reliability and the superiority of
FREC.

4.4. Comparison to other clustering algorithms

In order to comprehensively evaluate the per-
formance of the proposed algorithm, experimental

comparisons are carried out against the other eleven
state-of-the-art methods. The results are summarised
in Tables 5 and 6. Note that the results of EAC have
been analysed in Section 4.3 and will not be repeated
in this part.

Recall reported results, ensemble algorithms
always work best using more ensemble size. Thus,
all comparison ensemble methods employ the results
with an ensemble size of 100, and the average and
best results for each dataset are shown in columns
Ave and Best, respectively. To describe the experi-
mental results more obviously, the best results are
highlighted in bold. Moreover, the second best results
are highlighted with an underline to make the infor-
mation in the table easier to follow.

Considering the metric HS, FREC achieves opti-
mal average performance relative to the other
eleven algorithms in most datasets, including Heart,
Dermatology, Movement, Leg7digit and SPF. As for
the results in column Best, although a bit inferior
to one or two approaches occasionally, FREC is the
best or second best in most cases. For the remaining
datasets, the average performance of FREC is slightly
lower than individual algorithms. Still, FREC shows a
satisfactory clustering effect compared with the other
techniques.

Now, take an observation of the evaluation NMI,
the clustering result is highly analogous to HS. For
datasets Heart, Cleveland, Dermatology, Movement,
Appendicitis, Leg7digit, Mammographic and SPF,
the proposed method can consistently surpass most
contrasting approaches. For dataset IS, consistent
with the HS, FREC is slightly inferior to PTA, ranking
second in all ensemble methods. The main differ-
ence from HS is the dataset Cardio. FREC is slightly
lower than WEAC and GPMLGA by 0.008 and
0.015, respectively. Nevertheless, compared with the
remaining algorithms, FREC still shows excellent
performance.

In general, the average and best results of FREC
are equal in most cases, which means that the FREC is
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Table 5
HS results of FREC versus other ensemble algorithms

Dataset Heart Cleveland Dermatology Movement Appendicitis

Algorithm Ave Best Ave Best Ave Best Ave Best Ave Best

LWEA 0.192 v 0.192 0.244 v 0.244 0.858 v 0.858 0.546 v 0.546 0.041 v 0.041
LWGP 0.214 v 0.214 0.260 v 0.260 0.851 v 0.851 0.580 v 0.594 0.244 v 0.245
PTA 0.001 v 0.001 0.217 v 0.217 0.603 v 0.603 0.564 v 0.564 0.041 v 0.041
PTGP 0.001 v 0.001 0.220 v 0.220 0.603 v 0.603 0.567 v 0.573 0.041 v 0.041
ECPCSHC 0.001 v 0.001 0.241 v 0.241 0.859 v 0.859 0.521 v 0.521 0.198 v 0.198
ECPCSMC 0.243 v 0.243 0.250 v 0.250 0.912 v 0.912 0.581 v 0.584 0.180 v 0.180
WEAC 0.198 v 0.198 0.243 v 0.243 0.858 v 0.858 0.562 v 0.562 0.136 v 0.136
GPMGLA 0.235 v 0.235 0.256 v 0.256 0.907 v 0.907 0.590 v 0.590 0.180 v 0.180
SEC 0.224 v 0.380 0.227 v 0.227 0.732 v 0.923 0.520 v 0.584 0.122 v 0.154
DTCR 0.288 v 0.288 0.250 v 0.260 0.851 v 0.851 0.460 v 0.460 0.298 * 0.298
RTFN 0.375 v 0.375 0.270 * 0.270 0.880 v 0.923 0.558 v 0.558 0.248 v 0.248
FREC 0.380 0.380 0.261 0.261 0.926 0.926 0.591 0.591 0.253 0.253

Summary (11/0/0) (10/0/1) (11/0/0) (11/0/0) (10/0/1)

Dataset Led7digit Mammographic Cardio IS SPF

Algorithm Ave Best Ave Best Ave Best Ave Best Ave Best

LWEA 0.532 v 0.532 0.005 v 0.005 0.363 v 0.363 0.556 v 0.556 0.334 v 0.334
LWGP 0.565 v 0.566 0.005 v 0.005 0.368 v 0.382 0.560 v 0.610 0.328 v 0.357
PTA 0.474 v 0.474 0.005 v 0.005 0.330 v 0.330 0.643 * 0.643 0.285 v 0.285
PTGP 0.477 v 0.507 0.005 v 0.005 0.332 v 0.363 0.603 v 0.633 0.303 v 0.341
ECPCSHC 0.429 v 0.429 0.005 v 0.005 0.357 v 0.357 0.521 v 0.521 0.264 v 0.264
ECPCSMC 0.544 v 0.545 0.001 v 0.001 0.352 v 0.356 0.519 v 0.519 0.301 v 0.301
WEAC 0.532 v 0.532 0.237 v 0.237 0.368 v 0.368 0.524 v 0.524 0.330 v 0.330
GPMGLA 0.566 v 0.566 0.001 v 0.001 0.375 v 0.375 0.519 v 0.519 0.296 v 0.296
SEC 0.477 v 0.554 0.098 v 0.289 0.304 v 0.364 0.452 v 0.629 0.275 v 0.376
DTCR 0.500 v 0.500 0.300 * 0.300 0.330 v 0.330 0.535 v 0.535 0.260 v 0.260
RTFN 0.575 v 0.575 0.290 v 0.290 0.380 * 0.380 0.593 v 0.593 0.351 v 0.351
FREC 0.609 0.609 0.292 0.292 0.379 0.380 0.613 0.613 0.362 0.380

Summary (11/0/0) (10/0/1) (10/0/1) (10/0/1) (11/0/0)

relatively stable and the results are less serendipitous.
At the same time, regardless of the average or best
results, FREC always achieves the most significant
or second best effect, which illustrates the rationality
of the research in this paper.

4.5. Statistical analysis

Paired t-test is used throughout the present exper-
imental studies to show any statistically significant
differences between different approaches. This helps
ensure that the results are not obtained by chance.
The t-test results are summarised at the end of each
table, counting the number of statistically better(v),
equivalent(space) or worse(*) cases for FREC in
comparison to each algorithm. In all experiments
reported, the threshold of significance is set to 0.05.
For example, in Table 6, (11/0/0) in the column Heart
indicates that the clustering performance returned by
FREC performs better than other ensemble meth-
ods in eleven cases, equivalently well in no case,
and worse than other approaches in no case. It can

be clearly seen that whether the evaluation index is
HS or NMI, the statistical results of FREC are better
than other methods in most cases, especially for the
HS indicator, FREC can surpass all other algorithms
on more than half of the datasets. Statistical analysis
experiments show that in 100 repeated experiments,
the overall performance of FREC is relatively stable,
which is better than most algorithms.

4.6. Time complexity analysis

As shown in Algorithm 4, the computing cost of
the proposed FREC mainly includes three parts: (1)
For UDC, this function mainly consists of three loops
with a time complexity of O(mk(k − 1)). In particu-
lar, each instance needs to traverse to find the lower
approximation when calculating UD in the inner loop,
and this process will consume O(n2); (2) As for
CMC, this part mainly calculates the upper triangular
matrix of Ã, and the time complexity is O(n2k); (3)
Finally, CSC computes the eigenvectors of adjacency
matrix and performs fast clustering, with a time com-
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Table 6
NMI results of FREC versus other ensemble algorithms

Dataset Heart Cleveland Dermatology Movement Appendicitis

Algorithm Ave Best Ave Best Ave Best Ave Best Ave Best

LWEA 0.192 v 0.192 0.221 v 0.221 0.875 v 0.875 0.581 v 0.581 0.041 v 0.041
LWGP 0.214 v 0.214 0.232 v 0.232 0.867 v 0.867 0.590 v 0.611 0.220 v 0.221
PTA 0.001 v 0.001 0.194 v 0.194 0.648 v 0.648 0.578 v 0.578 0.041 v 0.041
PTGP 0.001 v 0.001 0.197 v 0.197 0.648 v 0.648 0.581 v 0.589 0.041 v 0.041
ECPCSHC 0.001 v 0.001 0.217 v 0.217 0.912 v 0.912 0.564 v 0.564 0.185 v 0.185
ECPCSMC 0.242 v 0.242 0.224 v 0.224 0.912 v 0.912 0.593 v 0.594 0.157 v 0.157
WEAC 0.199 v 0.199 0.219 v 0.219 0.877 v 0.877 0.594 v 0.594 0.130 v 0.130
GPMGLA 0.234 v 0.234 0.229 v 0.229 0.906 v 0.906 0.597 v 0.597 0.157 v 0.157
SEC 0.231 v 0.389 0.216 v 0.295 0.758 v 0.923 0.547 v 0.606 0.127 v 0.369
DTCR 0.287 v 0.287 0.227 v 0.231 0.905 v 0.905 0.460 v 0.460 0.294 * 0.294
RTFN 0.382 v 0.382 0.245 * 0.245 0.869 v 0.923 0.584 v 0.584 0.241 v 0.241
FREC 0.389 0.389 0.234 0.234 0.925 0.925 0.598 0.598 0.247 0.247

Summary (11/0/0) (10/0/1) (11/0/0) (11/0/0) (10/0/1)

Dataset Led7digit Mammographic Cardio IS SPF

Algorithm Ave Best Ave Best Ave Best Ave Best Ave Best

LWEA 0.567 v 0.567 0.007 v 0.007 0.353 v 0.353 0.571 v 0.571 0.333 v 0.333
LWGP 0.573 v 0.577 0.007 v 0.007 0.357 0.369 0.584 v 0.617 0.326 v 0.349
PTA 0.486 v 0.486 0.007 v 0.007 0.318 v 0.318 0.669 * 0.669 0.300 v 0.300
PTGP 0.497 v 0.524 0.007 v 0.007 0.316 v 0.343 0.618 v 0.650 0.294 v 0.336
ECPCSHC 0.487 v 0.487 0.007 v 0.007 0.355 v 0.355 0.566 v 0.566 0.305 v 0.305
ECPCSMC 0.559 v 0.560 0.002 v 0.002 0.353 v 0.356 0.562 v 0.562 0.314 v 0.314
WEAC 0.556 v 0.556 0.237 v 0.237 0.366 * 0.366 0.571 v 0.571 0.334 v 0.334
GPMGLA 0.572 v 0.572 0.002 v 0.002 0.373 * 0.373 0.563 v 0.563 0.311 v 0.311
SEC 0.526 v 0.585 0.104 v 0.292 0.303 v 0.354 0.505 v 0.660 0.275 v 0.363
DTCR 0.480 v 0.480 0.300 * 0.300 0.310 v 0.310 0.555 v 0.555 0.210 v 0.210
RTFN 0.584 v 0.585 0.292 v 0.292 0.361 * 0.361 0.575 v 0.575 0.339 v 0.339
FREC 0.610 0.610 0.295 0.295 0.358 0.359 0.643 0.643 0.342 0.361

Summary (11/0/0) (10/0/1) (7/1/3) (10/0/1) (11/0/0)

plexity of O(ndk). Thus, the total cost of FREC is
O(mk(k − 1)+ n2 + ndk).

To compare the running time gap with other meth-
ods, the running time (seconds) of each algorithm
is reported in Table 7. The experimental CPU used
is i7-12700, and the memory is 24G. It can be seen
that after considering the data features, the running
time of FREC is significantly higher than that of other
comparison methods. Especially as the number of
instances continues to increase, the time of FREC
increases significantly. In comparison, methods such
as LWEA, SEC, and RTFN have achieved bet-
ter running time. The above implementation shows
that the time efficiency of FREC is relatively poor,
which requires further optimisation in subsequent
work.

5. Conclusion

This paper explores the role of considering clus-
ter reliability using fuzzy-rough set in co-occurrence

based ensemble clustering, and guides a fuzzy-rough
ensemble approach. The experimental results indi-
cate that the reliability induced by fuzzy-rough lower
approximation is effective and can be reasonably
employed in the task of ensemble clustering. Com-
pared with other ensemble algorithms that ignore
attributes and only employ base clustering results,
FREC demonstrates the advantage of viewing feature
information. Meanwhile, compared with the parallel
version and base clustering, FREC shows its superi-
ority again.

Nonetheless, from the time experiment, the effi-
ciency of FREC is relatively slow. This is mainly
due to the high time complexity of the algorithm.
For large sample datasets, it will take a lot of time to
calculate the lower approximation for each object.
In future work, the idea of KD-tree [44] can be
introduced to improve the running speed of the algo-
rithm further. In addition, in Equation (23), if the two
instances do not belong to the same cluster, it may
not be a better choice to assign the adjacency matrix
to 0 directly. Further mining the implicit connection



G. Yue et al. / Fuzzy-Rough induced spectral ensemble clustering 1773

Table 7
Time complexity comparison of different algorithms (seconds)

Dataset LWEA LWGP PTA PTGP ECPCSHC ECPCSMC WEAC GPMGLA SEC DTCR RTFN FREC

Heart 0.01 0.12 0.02 0.06 0.18 0.21 0.01 1.65 0.01 36.36 1.34 18.76
Cleveland 0.01 0.18 0.02 0.05 0.22 0.25 0.01 2.54 0.01 38.52 1.47 19.50
Dermatology 0.01 0.11 0.01 0.06 0.24 0.31 0.01 3.47 0.01 227.09 1.49 19.59
Movement 0.01 0.11 0.02 0.06 0.20 0.23 0.01 2.43 0.01 437.69 1.63 22.41
Appendicitis 0.01 0.12 0.01 0.05 0.05 0.06 0.01 0.36 0.01 15.51 0.18 4.34
Led7digit 0.01 0.13 0.01 0.05 0.37 0.35 0.06 4.81 0.01 28.61 2.64 36.49
Mammographic 0.01 0.31 0.01 0.04 0.76 0.72 0.16 12.80 0.01 38.08 2.81 76.43
Cardio 0.01 0.54 0.01 0.10 3.37 2.57 1.45 55.96 0.01 368.16 4.52 404.51
IS 0.01 0.56 0.01 0.06 3.84 3.27 1.60 72.76 0.01 352.29 4.48 398.55
SPF 0.01 0.39 0.01 0.06 2.76 2.21 1.13 52.29 0.01 428.80 4.36 407.69

between instances of different clusters helps improve
the clustering performance.

Whilst promising, further work remains. The per-
formance of the ensemble strategy and multi-density
cluster designs is worth further exploration. In addi-
tion, the implied relationship of the objects in the
same base clustering but the different clusters is a
valuable route of investigation. Moreover, a more
comprehensive comparison of ensemble methods
over diverse datasets from the real-world domains,
such as mammographic risk assessment [46, 47]
would construct the foundation for a broader series
of issues for future research.
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