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Collaborative possibilistic fuzzy clustering
based on information bottleneck

Chen Duan∗ and Yongli Liu
School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, China

Abstract. In fuzzy clustering algorithms, the possibilistic fuzzy clustering algorithm has been widely used in many fields.
However, the traditional Euclidean distance cannot measure the similarity between samples well in high-dimensional data.
Moreover, if there is an overlap between clusters or a strong correlation between features, clustering accuracy will be easily
affected. To overcome the above problems, a collaborative possibilistic fuzzy clustering algorithm based on information
bottleneck is proposed in this paper. This algorithm retains the advantages of the original algorithm, on the one hand,
using mutual information loss as the similarity measure instead of Euclidean distance, which is conducive to reducing
subjective errors caused by arbitrary choices of similarity measures and improving the clustering accuracy; on the other
hand, the collaborative idea is introduced into the possibilistic fuzzy clustering based on information bottleneck, which can
form an accurate and complete representation of the data organization structure based on make full use of the correlation
between different feature subsets for collaborative clustering. To examine the clustering performance of this algorithm,
five algorithms were selected for comparison experiments on several datasets. Experimental results show that the proposed
algorithm outperforms the comparison algorithms in terms of clustering accuracy and collaborative validity.
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1. Introduction

Clustering is a typical unsupervised learning tech-
nique. If objects in the same clusters are more similar,
and ones in different clusters are more dissimilar,
the final clustering performance will be better. At
present, clustering has been widely used in many
fields [1–7] such as data mining, pattern recognition,
image segmentation, fuzzy network, bioinformatics,
etc. In order to make clustering widely available in
more fields, it can be applied to large-scale group
decision-making [8, 9]. Existing clustering algo-
rithms mainly include hard clustering [10, 11] and
fuzzy clustering [12–14]. The former has only two
membership degrees, 0 and 1, that is, each data object
is strictly divided into a certain cluster; The mem-
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bership of the latter can have any values within the
interval [0,1], that is, a data object can be classi-
fied into multiple clusters with different membership.
The representative algorithm of fuzzy clustering is
the Fuzzy C-Means (FCM) [15] algorithm, which
is famous for its simplicity and rapidity but criti-
cized for its sensitivity to the initial cluster centers
and noise data. In order to improve the robustness
of FCM, the possibilistic c-means (PCM) clustering
algorithm introduced in [16] relaxes the requirement
for fuzzy membership normalization, thus obtaining
a possibilistic partition, thereby reducing the impact
of noise data. However, PCM relies on initialization
conditions that may produce clustering overlap. To
overcome this shortcoming, membership and typical-
ity are introduced in [17], and constraints the sum of
typical values from all data points to one cluster is 1
(�N

j tij = 1), and the sum of fuzzy membership from

one data point to all clusters is 1 (�C
i uij = 1). This

algorithm, called fuzzy possibilistic c-means (FPCM)
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not only reduces the sensitivity to noise data but also
solves the problem of cluster coincidence that the
PCM algorithm may produce.

The possibilistic fuzzy c-means (PFCM) algorithm
[18] based on the FPCM algorithm, efficiently solved
the problem that FPCM is prone to produce small
typical values when facing large-scale datasets by
relaxing the row sum constraints on typical values,
and ensuring the generation of better cluster centers.
The PFCM algorithm adds weight coefficients a and b
for fuzzy membership and typicality, respectively, but
lacks a corresponding calculation method for weight
coefficients. The study [19] calculated the parame-
ters through the relative importance of data points
in the clustering process and assigned new parame-
ters to the membership and typicality, which is called
the weight possibilistic fuzzy c-means (WPFCM)
clustering algorithm. Since then, some scholars have
improved PFCM by changing the distance measure.
The Kernel possibilistic fuzzy c-means (KPFCM)
[20] introduces a kernel-based similarity measure
in the PFCM to map the input data points into a
high-dimensional feature space. KPFCM not only
handles linearly indistinguishable problems but also
keeps the clustering centers in the observation space,
which facilitates the description of the clustering
results. In [21], a generalized possibilistic fuzzy c-
means (GPFCM) clustering algorithm was proposed
by replacing the original European distance with a
distance function. The algorithm can effectively sup-
press noise data and accurately classify edge fuzzy
data. Using exponential distance instead of Euclidean
distance in PFCM, a possibilistic fuzzy Gath-Geva
(PFGG) clustering algorithm based on exponential
distance was proposed [22]. In this algorithm, the
exponential distance uses the fuzzy covariance matrix
and exponential function to automatically adjust the
distance measure, which facilitates accurate cluster-
ing of clusters with different shapes.

A wide range of similarity measures enrich our
choices, but at the same time increase the subjectivity
in the selection process. To avoid this subjective error,
clustering algorithms based on information bottle-
necks have attracted much attention. The information
bottleneck theory approach, based on the joint prob-
ability distribution between data points and features,
uses the information loss generated in the process
of sample merging as a measurement standard to per-
form clustering, and achieves a good clustering effect.
At present, many clustering algorithms based on
information bottlenecks have been proposed [23–25]
and have solved some problems very well. In [23],

the bottleneck of bicorrelation multivariate informa-
tion is introduced into multi-view clustering (MVC),
thus solving the problem that MVC only learns the
correlation relationship between features or clusters,
and solving the problem of unsatisfactory clustering
performance. In [24], to cope with a large amount
of unlabeled and heterogeneous data, shared view
knowledge is transferred to multiple tasks enabling
automatic classification of human behavior in unla-
beled cross-perspective video collections, which can
improve the performance of each task. In [25], used
interactive information bottlenecks to deal with high-
dimensional co-occurrence data clustering problems,
and proposed an interactive information bottleneck
for high-dimensional co-occurrence data clustering.

Traditional clustering algorithms assume that dif-
ferent features are independent of each other, thus
ignoring the correlation between features, which
easily affects clustering accuracy. Collaborative clus-
tering utilizes the collaborative relationship between
different feature subsets for clustering, which is
conducive to forming a more complete and accu-
rate description of the data organization structure.
According to the correlation between different fea-
ture subsets, the collaborative fuzzy clustering (CFC)
algorithm [26] was proposed, which firstly performs
clustering based on independent subsets of the data,
and then collaboratively generates the final result by
exchanging information on the local partition matrix.
The study [27] introduced preprocessing method
into collaborative fuzzy clustering, and proposed a
collaborative fuzzy clustering data analysis method
based on a preprocessing-induced partition matrix.
The CFC algorithm has been widely used in many
fields [28–30], and has been applied to brain MRI
images intensity non-uniformity correction, super-
pixel satellite influence on surface coverage, and
overseas oil and gas exploration, respectively, and
achieved relatively better clustering results.

In order to make full use of the relation-
ship between different feature subsets and further
improve clustering accuracy, this paper proposed
a novel algorithm named collaborative possibilis-
tic fuzzy clustering based on information bottleneck
(ib-CPFCM). This algorithm uses the information
bottleneck theory to measure the “distance” between
the data points and the cluster centers. This the-
ory takes the mutual information loss generated
during merging clusters as the similarity measure,
and therefore is conducive to improving the clus-
tering accuracy. Besides the theory, the correlation
between different feature subsets is used to per-
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form collaborative clustering, and the corresponding
fuzzy membership matrix and typical value matrix
are obtained, which is easy to form a more complete
description of the dataset.

The rest of this paper is organized as follows:
Section 2 briefly introduces the PFCM algorithm,
information bottleneck theory, and collaborative clus-
tering algorithm. Section 3 introduces the proposed
ib-CPFCM algorithm in detail. Section 4 presents the
experimental preparation and experimental results.
The final section summarizes this paper and proposes
further research directions.

2. Related works

In this section, we briefly review the PFCM
algorithm, information bottleneck theory, and CFC
algorithm. Before that, the variables defined in this
paper and their mathematical descriptions are given
as Table 1.

2.1. PFCM

The PFCM algorithm not only improves FCM in
terms of robustness but also overcomes the clustering
coincidence problem of the PCM. Furthermore, by
relaxing the row sum constraints on typical values,
the problem of generating small typical values with
an increasing dataset is solved. The objective function

Table 1
Variables used in this paper

Variables Description

C, N Numbers of clusters, data points
M, P Numbers of feature attributes, feature

subsets
uij[ii], tij[ii], vi[ii] Fuzzy membership, typical values,

and cluster centers in the iith
feature subset

d2
ij Euclidean distance, measure the

distance between a data point and
a cluster

Dib(xj, vi) Mutual information loss
X[ii] iith feature subset
m, w, a, b User-defined parameters
� Threshold, iterative termination

criterion
rmax The maximum number of iterations
λ Lagrange multiplier
�[ii, kk] Collaboration coefficient
γi Conversion factor

of the PFCM algorithm is designed as follows:

JPFCM (X; U, T, V ) =
C∑

i=1

N∑
j=1

(
aum

ij + btwij

)
d2
ij

+
C∑

i=1

γi

N∑
j=1

(
1 − tij

)w
(1)

In Eq. (1), U = [uij]C×N and T = [tij]C×N are the
fuzzy membership matrix and typical value matrix,
respectively. V = {v1, v2, . . . , vc} is the cluster cen-
ter matrix, vi denotes the ith cluster center. N and
C are the numbers of data points and clusters. The
parameters a and b are constants, m and w are fuzzy
weighted parameters, and d2

ij is the Euclidean dis-

tance function. The calculation methods of d2
ij and

parameter γi are as follows:

d2
ij = ‖xj − vi‖2 (2)

γi = K ×
∑N

j=1 um
ij d2

ij∑N
j=1 um

ij

(3)

where K is a constant, and the default value is 1.
The objective function of this algorithm is restricted
by the following: the fuzzy weighted parameters m,
w > 1; the parameters a, b, and γi > 0; the value range
of fuzzy membership uij and typical value tij in the
interval [0,1], and

∑C
i=1 uij = 1. Under the constraint

conditions, by minimizing the objective function, the
iterative equations of uij , tij , and vi can be calculated
as follows:

uij =

⎡
⎢⎣ C∑

k=1

(
d
(
xj, vi

)
d
(
xj, vk

)
)(2/m − 1

)⎤
⎥⎦

−1

(4)

tij = 1

1 +
(

b
γi

d2
(
xj, vi

))(1/w − 1
) (5)

vi =
∑N

j=1

(
aum

ij + btwij

)
xj∑N

j=1

(
aum

ij + btwij

) (6)

2.2. Information bottleneck theory

Information bottleneck applies the knowledge of
information theory to the clustering process, and the
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desired clustering is the process of minimizing infor-
mation loss in the cluster aggregation process. To
minimize the mutual information loss in the entire
clustering process, the greedy aggregation method is
usually adopted, and when merging two clusters, the
choice results in the smallest mutual information loss
in each step.

d(ci, cj) is used to represent the mutual informa-
tion loss generated by the cluster ci and cj during the
merging process, which is calculated as follows:

d
(
ci, cj

) = |ci|
N

DKL

(
f (y|ci) ‖f (y|ci ∪ cj

))

+
∣∣cj

∣∣
N

DKL

(
f
(
y|cj

) ‖f (y|ci ∪ cj

)) (7)

where N is the number of data points in the dataset.
|ci|, |cj|, and|ci ∪ cj| are the numbers of data points
in the clusters ci, cj , and the clusters after merging the
two, respectively. DKL(•‖•) is the Kullback-Leibler
(KL) distance [31], which is used to describe the dif-
ference between two probability distributions. The
KL distance DKL(f1‖f ) is estimated by the Monte-
Carlo [32] procedure, which can be approximately
expressed as follows:

D (f1‖f ) ∼= 1

M

M∑
t=1

log
f1 (yt)

f (yt)
(8)

Many existing pieces of literature have shown
[33–37] that, the clustering performance of clustering
algorithms using information bottleneck as a sim-
ilarity measure is obviously better than traditional
clustering algorithms, and it can better indicate the
correlation between data points and features.

2.3. CFC clustering algorithm

The CFC algorithm can utilize the collabora-
tion relationship between different feature subsets
for clustering. In this algorithm, the collaboration
between feature subsets is established through the
connection matrix, as shown in Fig. 1. Given an
unlabeled dataset X = {x1, x2, . . . , xN}, it is divided
into P feature subsets Xii = {X1, X2, . . . , XP }.
The objective function in CFC [26] is defined as
follows:

Fig. 1. Collaboration in clustering is represented by interaction
matrix between subsets.

QCFC [ii] =
C∑

i=1

N∑
j=1

u2
ij [ii] d2

ij [ii]

+
P∑

kk = 1

kk /= ii

α [ii, kk]
C∑

i=1

N∑
j=1

{
uij [ii] − uij [kk]

}2

×d2
ij [ii]

(9)
where uij[ii] is the fuzzy membership of the iith

feature subset, ii = 1, 2, . . . , P. �[ii, kk] represents the
collaboration coefficient and is a non-negative value.
d2
ij[ii] is the weighted Euclidean distance, which is

calculated as follows:

d2
ij [ii] =

M∑
k=1

(
xjk [ii] − vik [ii]

)2

σ2
k [ii]

(10)

where M is the number of feature attributes. �2
k[ii]

represents the variance of the kth feature attribute in
the iith dataset.

3. A collaborative possibilistic fuzzy
clustering based on information bottleneck

In this paper, based on collaborative clustering
and information bottleneck theory, a collaborative
possibilistic fuzzy clustering algorithm based on
information bottleneck (ib-CPFCM) is proposed. The
clustering performance of ib-CPFCM is outstanding
because the algorithm uses the mutual information
loss generated during merging clusters as a similar-
ity measure, which improves the clustering accuracy
in high-dimensional data. ib-CPFCM simultaneously
performs collaborative processing of multiple sub-
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sets of relevant features, which helps to form an
accurate and complete representation of the data orga-
nization structure. Given an unlabeled dataset X =
{Xii|Xii = X1, X2, . . . , XP }, the objective function
of ib-CPFCM can be expressed as:

Jib−CPFCM [ii] =
C∑

i=1

N∑
j=1

(
aum

ij [ii] + btwij [ii]
)

×Dib

(
xj, vi

)
[ii] +

C∑
i=1

γi

N∑
j=1

(
1 − tij [ii]

)w

+
P∑

kk = 1

kk /= ii

α [ii, kk]
C∑

i=1

N∑
j=1

{[
a
(
uij [ii] − uij [kk]

)]2

+ [b (tij [ii] − tij [kk]
)]2}

Dib

(
xj, vi

)
[ii]

(11)
where the first part is the objective function of

the possibilistic fuzzy clustering algorithm based
on information bottleneck, and the second part is
the collaborative relationship among feature subsets.
Xii = X1, X2, . . . , XP represents P feature subsets.
U[ii] = uij[ii]C×N and T [ii] = tij[ii]C×N are the
fuzzy membership matrix and typical value matrix
of the iith dataset, respectively. �[ii, kk] is the
collaboration coefficient, and the larger its value indi-
cates the stronger collaboration relationship between
two feature subsets. In addition, m and w > 1 are
fuzzy weighted parameters, and constants a, b > 0.
γi > 0 is the conversion factor, which is defined by
γi = �N

j=1u
m
ij Dib(xj, vi)/�N

j=1u
m
ij . Dib(xj, vi)[ii] is

the amount of mutual information loss generated
between data points and clusters during the clustering
process in the iith dataset, which is a measure of the
similarity between data points and clusters measure
function, whose equation is as follows:

Dib

(
xj, vi

)
[ii] = xjk [ii]

N
D
(
xjk [ii] ‖hk [ii]

)
+|c|

N
vik [ii] D (vik [ii] ‖hk [ii])

(12)
where xjk[ii] represents the kth attribute value of

data point xj in the iith dataset. |c| is the number
of data points in each cluster. D(xjk[ii]‖hk[ii]) and
D(vik[ii]‖hk[ii]) are the KL distances, which are esti-
mated using the Monte-Carlo [32] process and the KL
distances can be approximated expressed as follows:

D
(
xjk [ii] ‖hk [ii]

) ∼= 1

M

M[ii]∑
k=1

log
xjk [ii]

hk [ii]
(13)

D (vik [ii] ‖hk [ii]) ∼= 1

M

M[ii]∑
k=1

log
vik [ii]

hk [ii]
(14)

where M[ii] is the number of feature attributes in
the iith dataset, and hk[ii] is calculated as follows:

hk [ii] = 1

1 + |c|xjk [ii] + |c|
1 + |c|vik [ii] (15)

The clustering objective of the ib-CPFCM algo-
rithm is to minimize the objective function under
the premise of satisfying the constraint conditions.
Whereby the Lagrange multiplier method can be used
to construct the Lagrange equation as follows:

J
′
ib−CPFCM [ii] = Jib−CPFCM [ii]

−λ

(
C∑

i=1

uij [ii] − 1

)
(16)

Eq. (16) calculates the first order partial derivative
of each variable and makes it equal to 0, so that:

∂J
′
ib−CPFCM [ii]

∂λ
= −

(
C∑

s=1

usf [ii] − 1

)
= 0

(17)

∂J
′
ib−CPFCM [ii]

∂usf [ii]
= amum−1

sf [ii] Dib

(
xf , vs

)
[ii]

+2a

C∑
kk = 1

kk /= ii

α [ii, kk]
(
usf [ii] − usf [kk]

)

×Dib

(
xf , vs

)
[ii] − λ = 0

(18)

∂J
′
ib−CPFCM [ii]

∂tsf [ii]
= bwtw−1

sf [ii] Dib

(
xf , vs

)
[ii]

−wγs

(
1 − tsf [ii]

)w−1

+2b

C∑
kk = 1

kk /= ii

α [ii, kk]
(
tsf [ii] − tsf [kk]

)

×Dib

(
xf , vs

)
[ii] = 0

(19)
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∂J
′
ib−CPFCM [ii]

∂vsf [ii]
=

N∑
j=1

(
aum

sj [ii] + btwsj [ii]
)

×∂Dib

(
xj, vs

)
[ii]

∂vsf [ii]
+

C∑
kk = 1

kk /= ii

α [ii, kk]
N∑

j=1

{(
ausj [ii]

−ausj [kk]
)2 + (btsj [ii] − btsj [kk]

)2
}

×∂Dib

(
xj, vs

)
[ii]

∂vsf [ii]
= 0

(20)
where s = 1, 2, . . . , C. f and j = 1, 2, . . . , N. Accord-

ing to Eqs. (17)–(20), the iterative formulas for the
fuzzy membership usf [ii], typicality tsf [ii], and clus-
ter center vsf [ii] of the ib-CPFCM algorithm are
deduced as follows:

usf [ii] = ϕsf [ii]

1 + ω [ii]

+ 1

∑C
l=1

(
Dib(xf ,vs)[ii]
Dib(xf ,vl)[ii]

)(1/m − 1
)

×
(

1 −
C∑

s=1

ϕsf [ii]

1 + ω [ii]

)
(21)

tsf [ii] = ϕsf [ii]

1 + ω [ii]
+ 1(

bDib(xf ,vs)[ii]
γi

)(1/w − 1
)

×
(

1 −
C∑

s=1

ϕsf [ii]

1 + ω [ii]

)

(22)
where ϕsf [ii] and ω[ii ] can be represented as:

ϕsf [ii] =
P∑

kk = 1

kk /= ii

α [ii, kk] usf [kk] (23)

ω [ii] =
P∑

kk = 1

kk /= ii

α [ii, kk] (24)

To simplify Eq. (20), Asf [ii], Bs[ii], Csf [ii], and
Ds[ii] are introduced, and the calculation method can

be represented as:

Asf [ii] =
N∑

j=1

(
um

sj [ii] + twsj [ii]
)

xsf [ii] (25)

Bs [ii] =
N∑

j=1

(
um

sj [ii] + twsj [ii]
)

(26)

Csf [ii] =
P∑

kk = 1

kk /= ii

α [ii, kk]
N∑

j=1

{(
usj [ii]

−usj [kk]
)2 + (tsj [ii] − tsj [kk]

)2
}

xsf [ii]

(27)

Ds [ii] =
P∑

kk = 1

kk /= ii

α [ii, kk]
N∑

j=1

{(
usj [ii]

−usj [kk]
)2 + (tsj [ii] − tsj [kk]

)2
}

(28)

Using Eqs. (20), (25), (26), (27), and (28), the
cluster center vsf [ii] is calculated as follows:

vsf [ii] = Asf [ii] + Csf [ii]

Bs [ii] + Ds [ii]
(29)

The clustering process of this algorithm mainly
includes two stages (as shown in Fig. 2):

(1) Possibilistic fuzzy clustering based on infor-
mation bottleneck

PFCM algorithm based on information bottleneck
clusters each feature subset, requiring the same num-
ber of data points for each feature subset, and the
feature attribute dimensions can be different.

(2) collaborative clustering algorithm
Set the collaboration coefficient �[ii, kk], and

perform collaborative optimization on the fuzzy
membership matrix, typical value matrix and cluster
centers matrix obtained in the first stage.

It should be noted that because each feature subset
is an independent cluster, the corresponding cluster
in u[ii] and t[ii] is usually inconsistent with the corre-
sponding cluster in u[kk] and t[kk], so it is necessary to
perform cluster matching processing on the clustering
results of each feature subset.

After the above theoretical analysis, algorithm 1
is the entire process of implementing the ib-CPFCM
algorithm:
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Fig. 2. Two stages of ib-CPFCM clustering algorithm.

Algorithm 1 ib-CPFCM: A Collaborative Possibilistic Fuzzy
Clustering Based On Information Bottleneck

Input: Dataset X = {X1, X2, . . . , XP },
C, N, M, P, m, w, a, b, α[ii, kk], ε, rmax

Output: fuzzy membership matrix U[ii], typical value matrix
U[ii], cluster center matrix V[ii]
No Collaboration Stage:
Each feature subset is clustered under the PFCM algorithm
based on information bottleneck
Collaboration Stage:

Repeat
Repeat for each feature subset Xii
r = r + 1
For ii = 1 : P
For f = 1 : N
For s = 1 : C
For k = 1 : M

Calculate Dib(xf , vs)[ii], by using (12)
Update usf [ii], by using (21)
Update tsf [ii], by using (22)
Update vs[ii], by using (29)

Until (|SSIGMA-SIGMA|<�)
End
Return (V, U, T ) = (Vr, Ur, T r)

4. Experiments

In order to evaluate the clustering effectiveness
of the ib-CPFCM algorithm, five algorithms were
selected for comparison experiments on nine datasets,
and their clustering results were compared based on
four evaluation indexes.

Table 2
Features of the dataset

Dataset No. of No. of No. of
objects features clusters

Iris 150 4 3
Wine 178 13 3
Wdbc 569 30 2
Ecoli 336 7 8
Sonar 208 60 2
Dermatology 366 34 6
Tae 151 5 3
Knowledge 403 5 4
Lymphography 148 18 4

4.1. Experimental preparation

Nine datasets were selected from the UCI
machine learning dataset (http://archive.ics.uci.
edu/ml/datasets.php) for the comparison experi-
ments, and the specific information of each dataset
is shown in Table 2.

There were five comparison algorithms in our
experiments, namely FCM, PFCM, WPFCM, PFGG,
and CFC. The experimental process simulated the
clustering situation under different data conditions.
The value of parameters a and b are taken as 1,
threshold �=0.00001, maximum iterations rmax =
100, collaboration coefficient �[1, 2] = �[2, 1] = 0.02,
and m = 2 in the CFC algorithm. In order to make
clustering more convenient and accurate, PFGG first

http://archive.ics.uci.edu/ml/datasets.php
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used principal component analysis (PCA) [38] to
preprocess the datasets such as Wine, Wdbc, Ecoli,
Sonar, Dermatology, Tae, Knowledge, and reduced
their features to 6, 3, 5, 7, 4, 3, and 3 dimensions,
respectively. In the following table, p1, p2, and p3 are
used to represent the best clustering effect obtained
in the first, second, and third horizontal distributions,
respectively.

Table 3 shows three different horizontal distri-
butions of each dataset to test the clustering effect
of the algorithm under different horizontal distribu-
tions. The dataset on each horizontal distribution is
divided into two feature subsets according to the fea-
tures. The square bracket part represents the data
site, and the numbers in the square bracket repre-
sent the feature value of the data point. For example,
{[0, 1, 2], [1, 2, 3]} represents that there are two fea-
ture subsets in the horizontal distribution, the first of
which consists of attributes 0, 1, and 2, and the second
of which includes attributes 1, 2, and 3. Table 4 shows

the optimal value of each algorithm’s parameter in
each dataset, and its value range is (1,5].

4.2. Evaluation index

To quantify the clustering results and facili-
tate comparative analysis, four evaluation indexes
were selected in our experiments, namely Accuracy
(ACC), F-measure, Adjusted Rand Index (ARI), and
Partition Coefficient (PC). The first two indexes were
used to evaluate the accuracy of clustering algo-
rithms, and the latter two ones were used to evaluate
the effectiveness of collaborative clustering algo-
rithms. These indexes are defined as follows:

(1) Accuracy

ACC =
All predictions correctly number of Samples

The total number of Samples
(30)

Table 3
Horizontal distribution of datasets

Dataset Feature subset

Iris P1{[0, 1, 2], [1, 2, 3]}
P2{[0, 2], [1, 3]}
P3{[0, 1], [2, 3]}

Wine P1{[0, 1, 2, 3, 4, 5, 6, 7, 8, 12], [7, 8, 9, 10, 11]}
P2{[0, 2, 4, 6, 8, 10, 12], [1, 3, 5, 7, 9, 11]}
P3{[0, 1, 4, 5, 8, 9, 12], [2, 3, 6, 7, 10, 11]}

Wdbc P1{[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 22, 23, 24], [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29]}
P2{[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28], [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]}
P3{[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]}

Ecoli P1{[0, 1, 2], [0, 3, 4, 5, 6]}
P2{[0, 1, 3, 6], [0, 2, 4, 5, 6]}
P3{[0, 1, 2, 3], [0, 1, 3, 4, 5, 6]}

Sonar P1{[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44], [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]}
P2{[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39],

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]}
P3{[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]}
Dermatology P1{[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 33], [0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32]}
P2{[0, 1, 2, 3, 4, 5, 6, 7, 30, 31, 32, 33], [1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29]}
P3{[0, 1, 2, 3, 4, 5, 26, 27, 28, 29, 30, 31, 32, 33], [2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25]}
Tae P1{[0, 1, 2], [1, 2, 3, 4]}

P2{[0, 3, 4], [1, 2]}
P3{[0, 2], [1, 3, 4]}

Knowledge P1{[0, 1, 2], [3, 4]}
P2{[2, 3], [0, 1, 4]}
P3{[0, 1, 2], [0, 4]}

Lymphography P1{[0, 2, 4, 6, 8, 10, 12, 14, 16], [1, 3, 5, 7, 9, 11, 13, 15, 17]}
P2{[0, 1, 2, 3, 4, 5, 6, 7, 8], [9, 10, 11, 12, 13, 14, 15, 16, 17]}
P3{[0, 1, 2, 6, 7, 8, 11, 12, 13], [3, 4, 5, 9, 10, 14, 15, 16, 17]}
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Table 4
Optimal parameters of each algorithm on each dataset

Dataset Algorithm
FCM PFCM WPFCM PFGG CFC ib-CPFCM

P1,P2,P3 P1 P2 P3

Iris m=2 m=2,w=2 m=3,w=3 m=4,w=2 – m=2,w=3 m=2.5,w=3 m=2,w=3
Wine m=3 m=2.5,w=3 m=3,w=2 m=2.5,w=1.5 – m=4,w=3 m=1.5,w=4 m=2,w=3
Wdbc m=3.5 m=3.5,w=4 m=3,w=3 m=5,w=1.1 – m=4,w=1.5 m=2.7,w=5 m=3.5,w=4
Ecoli m=2 m=2,w=2 m=2,w=3 m=3,w=2 – m=2,w=4 m=2.5,w=3 m=2,w=3
Sonar m=2 m=1.8,w=2.5 m=3,w=3 m=3,w=2 – m=2,w=3 m=3,w=2 m=5,w=1.1
Dermatology m=2.5 m=2.5,w=3 m=3,w=3 m=3,w=2 – m=1.2,w=2 m=1.2,w=1.5 m=1.5,w=1.2
Tae m=2 m=1.7,w=2 m=3,w=2.5 m=3.5,w=2 – m=2.5,w=3 m=2,w=3 m=2.5,w=3
Knowledge m=2.1 m=1.5,w=2 m=1.5,w=2.5 m=2,w=2 – m=2,w=3 m=1.5,w=3 m=2.5,w=3
Lymphography m=3 m=2,w=4 m=2.5,w=4.5 m=2,w=2 – m=3,w=2.5 m=4.5,w=3 m=3,w=4

(2) F-measure

F − measure = 2 ∗ P ∗ R

P + R
(31)

(3) Adjusted Rand Index

ARI = RI − E [RI]

max (RI) − E [RI]
(32)

(4) Partition Coefficient

PC = 1

N

C∑
i=1

N∑
j=1

u2
ij (33)

where P and R represent the precision rate and
recall rate, respectively, and F-measure is the har-
monic average of P and R. RI is the Rand index. The
PC value in the collaborative clustering is the average
of the PCs of each data site. The closer the values of
the above four evaluation indexes are to 1, the better
the clustering effect is.

4.3. Experimental results

Tables 5 to 8 show the ACC, F-measure, ARI, and
PC indicators corresponding to the clustering results
of each algorithm on the nine UCI datasets. The clus-
tering results in terms of accuracy on the nine UCI
datasets are shown in Table 5. It can be seen from
this table that in each horizontal distribution, the
clustering accuracy of our ib-CPFCM algorithm is
better than that of the FCM, PFCM, WPFCM, PFGG,
and CFC. For example, it will increase by 5.06%
under the second horizontal distribution of the Wine
dataset, 5.29% higher in the first horizontal distribu-
tion of the Sonar dataset, it is 10.38%, and 10.66%
improvement under the first and third horizontal dis-
tributions of the Dermatology dataset, respectively,
in the third horizontal distribution of the Knowledge

dataset it is increased by 11.42%, and 5.41% under the
second horizontal distribution of the Lymphography
dataset, the improved range of clustering accuracy on
other datasets are distributed in the interval [0.67%,
3.97%]. From the above analysis, we can see that the
ib-CPFCM algorithm has significant improvement in
the clustering accuracy in most of the datasets with
different horizontal distributions, which is a good
indication of the ib-CPFCM algorithm has good clus-
tering performance. In turn, it highlights the use of
information bottleneck theory to measure the “dis-
tance” between data points and cluster centers, which
is beneficial to improving clustering accuracy.

As can be seen from Table 6, ib-CPFCM and all
comparison algorithms can get better F-measure, and
the clustering results of ib-CPFCM are not worse
than any comparison algorithm. For the UCI dataset,
the F-measure value of ib-CPFCM is only lower
than PFGG on the Tae dataset but better than other
comparison algorithms. Under the second horizon-
tal distribution of the Iris dataset, ib-CPFCM slightly
outperforms all comparison algorithms. For the Wine
dataset, ib-CPFCM achieved the best F-measure. For
the remaining UCI datasets, ib-CPFCM obtained
better results than all comparison algorithms, espe-
cially on the Wine, Dermatology, and Lymphography
datasets, with F-measure values 6%–7% higher than
the comparison algorithms. In summary, ib-CPFCM
has strong robustness.

Table 7 shows the ARI values of all cluster-
ing algorithms. It can be seen that on the Iris,
Wine, Wdbc, Sonar, Tae, Knowledge, and Lym-
phography datasets, the ARI values are improved
by 5.23%, 1.66%, 5.23%; 3.91%, 10.57%, 8.12%;
7.82%, 4.22%, 4.21%; 7.15%, 1.12%, 0.39%; 1.04%,
0.58, 0.93%; 6.03%, 3.44%, 10.24%; 3.6%, 9.29%,
3.97%, respectively, under the first, second, and third
horizontal distributions. On the Ecoli and Derma-
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Table 5
Clustering accuracy on UCI dataset (ACC) (%)

Dataset Algorithm
FCM PFCM WPFCM PFGG CFC ib-CPFCM

P1 P2 P3 P1 P2 P3

Iris 89.33 91.33 92.00 94.66 94.66 92.66 94.66 96.66P1 95.33P2 96.66P3

Wine 69.10 70.78 72.47 80.33 74.15 71.34 74.71 83.14P1 85.39P2 84.26P3

Wdbc 85.94 86.81 87.52 89.45 86.46 85.76 86.46 91.91P1 90.86P2 90.86P3

Ecoli 53.57 59.52 62.79 65.77 55.95 53.57 54.76 68.15P1 67.55P2 68.45P3

Sonar 51.44 54.32 56.73 56.25 63.94 54.80 60.09 69.23P1 58.17P2 63.94P3

Dermatology 29.50 33.33 34.15 60.65 58.19 62.29 54.37 71.03P1 66.12P2 71.31P3

Tae 37.74 38.41 39.73 41.72 39.07 40.39 39.73 44.37P1 44.37P2 43.04P3

Knowledge 48.88 50.12 51.61 56.07 59.30 50.12 48.63 63.02P1 57.56P2 67.49P3

Lymphography 60.81 67.56 70.94 58.78 57.43 58.10 49.32 72.29P1 76.35P2 72.29P3

Table 6
F-measure on UCI dataset (%)

Dataset Algorithm
FCM PFCM WPFCM PFGG CFC ib-CPFCM

P1 P2 P3 P1 P2 P3

Iris 81.95 84.66 85.63 90.07 90.03 86.39 90.00 93.53P1 91.14P2 93.53P3

Wine 57.27 58.06 60.30 67.44 61.23 56.45 60.42 70.32P1 74.31P2 72.27P3

Wdbc 79.32 80.26 80.93 81.79 79.88 79.14 79.88 86.35P1 84.99P2 85.03P3

Ecoli 47.28 53.70 59.07 69.21 48.79 44.81 47.18 71.53P1 69.97P2 73.00P3

Sonar 49.75 50.09 50.81 52.41P2 59.46P1 52.23 58.62P3 57.94 51.55 53.24
Dermatology 21.87 31.66 29.87 62.55 61.30 64.72 54.02 68.33P1 65.31P2 69.14P3

Tae 35.06 32.77 37.08 43.10P1P2P3 35.67 34.68 34.93 38.90 35.62 35.86
Knowledge 51.59 51.43 40.57 44.30 52.89 46.54 47.99 58.20P1 52.69P2 56.22P3

Lymphography 52.86 56.39 58.85 49.57 49.84 54.73 48.46 61.74P1 65.04P2 61.62P3

tology datasets, the values are improved by 1.48%,
8.28%, and 3.41%, 9.24% under the first and third
horizontal distributions, respectively, while in the
second horizontal distribution, the former is 0.57%
lower than the PFGG algorithm and the latter is 1.92%
lower than the CFC algorithm. Therefore, we can con-
clude that the ib-CPFCM algorithm is higher than the
comparison algorithms on other datasets, except that
ARI is slightly lower than PFGG and CFC algorithms
in the second horizontal distribution of Ecoli and Der-
matology datasets. It can also be concluded that the
ARI values of the ib-CPFCM algorithm are different
under different horizontal distributions of the same
dataset. From the above analysis, we can also know
that the ARI of the Dermatology dataset is signifi-
cantly improved under the first and third horizontal
distributions, but decreased in the second horizon-
tal distribution, which indicates that the number of
feature subsets and different feature combinations in
each feature subset in this algorithm will affect the
final clustering results.

It can be seen from Table 8 that all algorithms
can obtain better PC values, and the PC values of
the ib-CPFCM algorithm on the nine UCI datasets

are outperforms those of the comparison algorithms.
For example, its PC values are 0.898, 0.801, and
0.888 under the three horizontal distributions in Iris;
0.835, 0.681, and 0.791 under the three horizontal
distributions in Tae; 0.568, 0.668, and 0.6778 in the
three horizontal distributions in Ecoli. It can be seen
that the clustering results of ib-CPFCM in different
feature subsets of the same collaboration coefficient
�[ii, kk] are different. The PC values achieved the
best results under the first horizontal distribution
of the Lymphography dataset, which was 30.45%
higher than PFGG. In the Knowledge dataset, the PC
value improved slightly. For the Dermatology dataset,
13.79%, 14.74%, and 14.16% were improved over the
comparison algorithm under the three-level distribu-
tions, respectively. The results show that it is easy
to form a more complete description of the data by
using the correlation between different feature sub-
sets for collaborative clustering, resulting in better
clustering results. Through the analysis of the above
four evaluation indicators, we can see that the ib-
CPFCM algorithm proposed in this paper has better
clustering performance and better clustering quality
than the comparison algorithms.
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Table 7
Adjusted rand index on UCI dataset (ARI) (%)

Dataset Algorithm
FCM PFCM WPFCM PFGG CFC ib-CPFCM

P1 P2 P3 P1 P2 P3

Iris 72.94 77.11 78.59 85.14 85.11 79.71 85.09 90.37P1 86.80P2 90.37P3

Wine 35.31 36.75 40.31 50.21 39.59 32.60 39.01 54.12P1 60.78P2 58.33P3

Wdbc 50.71 53.37 55.58 62.17 52.30 50.18 52.30 69.99P1 66.39P2 66.38P3

Ecoli 35.96 36.93 47.66 59.11P2 37.30 32.51 35.82 60.59P1 58.54 62.52P3

Sonar –0.39 0.26 1.33 1.08 7.33 0.44 3.62 14.38P1 2.20P2 4.01P3

Dermatology 3.47 8.96 3.26 51.11 49.96 55.60P2 37.83 59.39P1 53.68 60.35P3

Tae 0.25 –0.65 0.67 1.97 0.54 2.55 1.31 3.01P1 3.13P2 2.90P3

Knowledge 30.10 26.21 19.57 22.66 35.49 26.45 28.13 41.52P1 33.54P2 40.34P3

Lymphography 20.20 19.35 20.67 8.02 16.40 22.98 14.44 24.27P1 32.27P2 24.64P3

Table 8
Partition coefficient on UCI dataset (PC) (%)

Dataset Algorithm
FCM PFCM WPFCM PFGG CFC ib-CPFCM

P1 P2 P3 P1 P2 P3

Iris 78.33 76.90 55.62 45.37 76.19 72.59 85.60 89.81P1 80.09P2 88.76P3

Wine 58.38 67.49 58.28 67.32 79.60 74.60 73.74 88.80P1 86.67P2 86.35P3

Wdbc 70.27 69.44 73.51 60.73 80.04 77.22 75.59 85.28P1 81.58P2 83.18P3

Ecoli 30.75 18.32 24.15 16.46 55.58 53.59 53.02 56.84P1 66.76P2 67.83P3

Sonar 52.99 50.00 50.00 50.03 76.85 70.71 73.68 80.05P1 80.20P2 80.30P3

Dermatology 31.60 16.66 16.67 29.96 55.94 56.33 55.03 69.73P1 71.07P2 69.19P3

Tae 55.86 59.21 34.61 36.92 70.67 58.82 77.99 83.47P1 68.14P2 79.09P3

Knowledge 25.79 25.66 42.22 44.99 78.67 77.35 76.07 79.02P1 77.44P2 78.69P3

Lymphography 25.49 25.05 25.00 35.07 27.04 35.70 52.99 65.52P1 50.82P2 64.08P3

5. Conclusion

In this paper, we introduce the idea of collaborative
clustering and the theory of information bottleneck
into possibilistic fuzzy clustering, and propose a col-
laborative possibilistic fuzzy clustering algorithm,
named ib-CPFCM. The work of this algorithm mainly
includes the following two innovations. (1) This algo-
rithm uses information bottleneck theory as a similar-
ity measure to calculate the distance between cluster
centers and data points; (2) it makes full use of the
relationship between feature subsets through the idea
of collaboration. In order to evaluate the clustering
performance of this algorithm, comparative experi-
ments were conducted on 9 UCI datasets with other
5 clustering algorithms. Experimental results show
that the proposed ib-CPFCM algorithm is superior
to the comparison algorithms in terms of clustering
accuracy and collaborative effectiveness. Since the
collaboration coefficient �[ii, kk] changes the clus-
tering results, and �[ii, kk] is determined empirically,
a large number of experiments are required to arrive
at a suitable value. How to find the optimal �[ii, kk]
to improve the overall performance of the ib-CPFCM
algorithm is subject to further study in the future.
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