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Novel entropy and distance measures of
linguistic interval-valued q-Rung orthopair
fuzzy sets

Zhiwei Gong∗
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Fujian, P.R. China

Abstract. Entropy is an important tool to describe the degree of uncertainty of fuzzy sets. In this study, we first define a new
entropy and distance measure in the linguistic q-Rung orthopair fuzzy (LIVqROF) environment, and verify its correctness
and rationality. Secondly, in the LIVqROF environment, the new entropy formula is effectively applied to the multi-attribute
decision making (MADM) with unknown attribute weights, which provides a new idea for solving the MADM problems.
Finally, the feasibility and effectiveness of the proposed method are verified by a numerical example.
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1. Introduction

Zadeh [1] proposed the fuzzy set (FS), which only
has the membership degree, and it is difficult to
describe the negative degree of the decision maker to
the evaluation information. Atanassov [2, 3] proposed
intuitionistic fuzzy set (IFS) on the basis of fuzzy
set, and creatively added non-membership degree to
the fuzzy sets. However, intuitionistic fuzzy num-
bers can only be used to describe the evaluation
information in the form of real numbers. Due to
the complexity of the decision-making environment,
the decision making information is often uncertain.
Sometimes it is very difficult to express the member-
ship and non-membership degree with real numbers.
Therefore, Atanassov [4] also proposed interval intu-
itionistic fuzzy set (IVIFS), which membership and
non-membership are interval numbers rather than real
numbers. In real life, the form of linguistic terms
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is often used to qualitatively evaluate information.
Zadeh [5] proposed the fuzzy linguistic method, and
Zhang [6] defined the concept of linguistic intuition-
istic fuzzy set (LIF). Similar to intuitionistic fuzzy
sets, linguistic intuitionistic fuzzy sets are also limited
by the representation range. Inspired by the concepts
of Pythagorean fuzzy set (PFS) and q-Rung orthopair
fuzzy set (qROFS) introduced by Yager in [7] and [8],
Garg [9] proposed linguistic Pythagorean fuzzy set
(LPFS) and Lin [10] developed the concept of linguis-
tic q-Rung orthopair fuzzy set (LqROFS). Linguistic
interval intuitionistic fuzzy numbers can better deal
with the uncertainty and fuzziness of decision infor-
mation, and can truly reflect the objective world. Garg
proposed linguistic interval intuitionistic fuzzy set
(LIVIFS) and linguistic interval Pythagorean fuzzy
set (LIVPFS) in [11] and [12], respectively. Khan
[13] established linguistic interval q-Rung orthopair
fuzzy set (LIVqROFS).

Information measure plays an important role in
fuzzy set theory, and many researchers have explored
it from different perspectives. In order to deal with the
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fuzziness measurement between FSs, De Luca and
termini [14] gave an axiomatic definition of fuzzy
entropy based on Shannon [15]. Since then, Hooda
et al. [16, 17], Mishra et al. [18–21], Pal [22] have
studied various entropy measures of FSs. Burillo
and Bustance [23] defined the intuitionistic fuzzy
entropy to measure the hesitation degree of intu-
itionistic fuzzy sets. Liu [24] presented the interval
intuitionistic fuzzy entropy.Li [25, 26] gave the study
of slope entropy and fractional slope entropy. Zhang
and Jiang [27], Zhang [28], Wei [29], and Wei and
Zhang [30] introduced the entropy measure of IVIFSs
and applied it in solving MADM problems. Rani
[31] gave a new entropy measure of IVIFS, Kumar
et al. [32] gave a new Pythagorean fuzzy entropy,
Sonia et al. [33] gave a entropy measures for inter-
val valued intuitionistic fuzzy soft set and Ohlan [34]
presented a distance measure on IVIFS. Inspired by
their research, this paper defines an entropy measure
and distance measure in LIVqROF environment. The
relationship between the proposed entropy measure
and distance measure are studied.

The rest of this paper is arranged as follows. In
Section 2, we introduce some definitions and oper-
ation rules on IVIFSs and LIVqROFSs. In Section
3, the axiomatic definitions of entropy and distance
in LIVqROF environment are given, a new entropy
and distance are proposed, and their rationality and
relevance are proved. In Section 4, a multi-attribute
decision making method is proposed in LIVqROF
environment by using the proposed entropy. A numer-
ical example is used to verify the effectiveness and
rationality of the method.

2. Preliminary

The linguistic assessment scale is the basis of lin-
guistic decision making. In [35], Bordogna et al.
defined an additive linguistic scale.

Definition 2.1. Let

S = {sα|α = 0, 1, · · · , t}

be an additive linguistic assessment scale with a lin-
guistic term subscript non-negative integer, and let S

satisfy the following conditions:
(1) The set is ordered: sα < sβ if α < β.
(2) There is a negative operator: neg(sα) = sβ such

that α + β = t.

where t is an even number and sα refers to linguistic
terms.

After that, Xu [36] extended the discrete term set
S to a continuous term set S̄ = {sα|α ∈ [0, τ]}, where
τ(τ > t) is a sufficiently large natural number. If
sα ∈ S, then we call sα the original linguistic term,
otherwise, we call sα the virtual linguistic term.

Combining the concept of intuitionistic fuzzy sets
[2] with the definition of linguistic terms [35], Zhang
[6] first proposed the concept of linguistic intuition-
istic fuzzy sets(LIFSs), which is defined as follows.

Definition 2.2. Let X = {x1, x2, · · · , xn} be a finite
universe discourse and S̄ = {sα|α ∈ [0, τ]} be a con-
tinuous linguistic term set with a positive integer τ.
A LIFS on the set X is defined as

I = {(xi, sθ(xi), sσ(xi))|xi ∈ X}, (1)

where sθ : X → S̄ denotes the degree of linguistic
membership and sσ : X → S̄ denotes the degree of
linguistic nonmembership of the element xi ∈ X to
the set I, respectively, with the condition that 0 ≤
θ + σ ≤ τ. The degree of linguistic indeterminacy is
given as sπ(xi) = sτ−θ−σ .

For convenience, the pairs of (sθ(xi), sσ(xi)) are
called as linguistic intuitionistic fuzzy value(LIFV)
or linguistic intuitionistic fuzzy number(LIFN).

On the basis of LIFSs and the concept of
Pythagorean fuzzy sets [7], Garg [9] proposed the
concept of linguistic Pythagorean fuzzy sets(LPFSs),
which is defined as follows.

Definition 2.3. Let X = {x1, x2, · · · , xn} be a finite
universe discourse and S̄ = {sα|α ∈ [0, τ]} be a con-
tinuous linguistic term set with a positive integer τ.
A LPFS on the set X is defined with the form

P = {(xi, sθ(xi), sσ(xi))|xi ∈ X}, (2)

where sθ(xi), sσ(xi) ∈ S̄ stand for the linguistic mem-
bership degree and linguistic nonmembership degree
of the element xi to P , respectively, with the condi-
tion that 0 ≤ θ2 + σ2 ≤ τ2. The degree of linguistic
indeterminacy is given as: sπ(xi) = s√

τ2−θ2−σ2 .

Similarly, the pairs of (sθ(xi), sσ(xi)) are called as
linguistic Pythagorean fuzzy value(LPFV) or linguis-
tic Pythagorean fuzzy number(LPFN).

On the basis of LIFSs, LPFSs and q-rung orthopair
fuzzy sets [8], Lin [10] proposed linguistic q-rung
orthopair fuzzy sets(LqROFSs), which is defined as
follows.
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Definition 2.4. Let X = {x1, x2, · · · , xn} be a finite
universe discourse and S̄ = {sα|α ∈ [0, τ]} be a con-
tinuous linguistic term set with a positive integer τ.
Then the form of a LqROFS on X is defined as

L = {(xi, sθ(xi), sσ(xi))|xi ∈ X}, (3)

where sθ(xi), sσ(xi) ∈ S̄ stand for the linguistic mem-
bership degree and linguistic nonmembership degree
of the element xi to L, respectively, with the condi-
tion that 0 ≤ θq + σq ≤ τq. The degree of linguistic
indeterminacy is given as: sπ(xi) = s q

√
τq−θq−σq .

Similarly, the orthopair of (sθ(xi), sσ(xi))
is called as linguistic q-rung orthopair fuzzy
value(LqROFV) or linguistic q-rung orthopair fuzzy
number(LqROFN).

Obviously, when q = 1 and q = 2, the two special
cases of LqROFSs are LIFSs and LPFSs, respectively.

In [4], Atanassov and Gargov proposed the concept
of interval-valued intuitionistic fuzzy sets(IVIFSs),
which is defined as follows.

Definition 2.5. Let X = {x1, x2, · · · , xn} be a finite
universe discourse. Then the form of a IVIFS on Y is
defined as

Î = {(xi, θ̂(xi), σ̂(xi))|xi ∈ X}, (4)

where θ̂(xi) = [θ̂L(xi), θ̂U (xi)], σ̂(xi) = [σ̂L(xi), σ̂U

(xi)] are all subsets of [0, 1] and are said to be the
membership degree and nonmembership degree of
the element xi to Î, respectively, with the condition
that 0 ≤ θ̂U + σ̂U ≤ 1. The degree of indetermi-
nacy is given as: π̂Î (xi) = [π̂L(xi), π̂U (xi)] = [1 −
θ̂U (xi) − σ̂U (xi), 1 − θ̂L(xi) − σ̂L(xi)].

For convenience, the pairs of (θ̂(xi), σ̂(xi))
are called as interval-valued intuitionistic fuzzy
value(IVIFV) or interval-valued intuitionistic fuzzy
number(IVIFN).

If θ̂L(xi) = θ̂U (xi) and σ̂L(xi) = σ̂U (xi), then the
given IVIFSs can be reduced to intuitionistic fuzzy
sets(IFSs).

In [11, 37], Garg, Liu et al. defined the con-
cept of linguistic interval-valued intuitionistic fuzzy
sets(LIVIFSs). In [12], Garg proposed the con-
cept of linguistic interval-valued Pythagorean fuzzy
sets(LIVPFSs). On this basis, Khan et al. [13] further
proposed linguistic interval-valued q-rung orthopair
fuzzy sets(LIVqROFSs), which is defined as follows.

Definition 2.6. Let X = {x1, x2, · · · , xn} be a finite
universe discourse and S̄ = {sα|α ∈ [0, τ]} be a con-
tinuous linguistic term set with a positive integer τ.

Then the form of a LIVqROFS on X is defined as

L̂ = {(xi, sθ̂(xi), sσ̂(xi))|xi ∈ X}, (5)

where sθ̂(xi) = [sθ̂L
(xi), sθ̂U

(xi)], sσ̂(xi) = [sσ̂L (xi),
sσ̂U (xi)] are all subsets of [s0, sτ] and are said to be
the membership degree and nonmembership degree
of the element xi to L̂, respectively, with the condition
that 0 ≤ θ̂

q
U + σ̂

q
U ≤ τq. The degree of indeterminacy

is given as:

sπ̂(xi) =[sπ̂L
(xi), sπ̂U

(xi)]

= [s q
√

τq−θ̂
q

U
−σ̂

q

U

, s q
√

τq−θ̂
q

L
−σ̂

q

L

].

Obviously, when q = 1 and q = 2, the two spe-
cial cases of LIVqROFSs are LIVIFSs and LIVPFSs,
respectively. If sθ̂L

(xi) = sθ̂U
(xi) and sσ̂L (xi) =

sσ̂U (xi), then the given LIVqROFSs can be reduced
to an ordinary LqROFSs.

For convenience, the pairs of (sθ̂(xi), sσ̂(xi)) are
called as linguistic interval-valued q-rung orthopair
fuzzy value (LIVqROFV) or linguistic interval-
valued q-rung orthopair fuzzy number (LIVqROFN).

Definition 2.7. [38] Let Âi = (sθ̂i
, sσ̂i ) = ([sθ̂iL

,

sθ̂iU
], [sσ̂iL , sσ̂iU ]), i = 1, 2 be two LIVqROFNs.

Then

(1) If sθ̂1L
= sθ̂2L

, sθ̂1U
= sθ̂2U

, sσ̂1L
= sσ̂2L

, sσ̂1U

= sσ̂2U
, then Â1 = Â2;

(2) If sθ̂1L
≤ sθ̂2L

, sθ̂1U
≤ sθ̂2U

, sσ̂1L
≥ sσ̂2L

, sσ̂1U

≥ sσ̂2U
, then Â1 ≤ Â2;

(3) Negation of Â1 is defined as ÂC
1 =

([sσ̂1L
, sσ̂1U

], [sθ̂1L
, sθ̂1U

]).

In [39], Bustince and Burillo proposed the
axiomatic definition of entropy measure for IFSs.
Analogously, in [24], Liu, Zheng and Xiong proposed
the entropy measure of IVIFSs, which is defined as
follows.

Definition 2.8. An entropy measure of IVIFS(X) is
a real-valued function F : IVIFS(X) → [0, 1], if it
satisfies the following conditions:

(F1) F (Â) = 0 if and only if Â = ([1, 1], [0, 0])
or Â = ([0, 0], [1, 1]) for each xi ∈ X;

(F2) F (Â) = 1 if and only if [θ̂L(xi), θ̂U (xi)] =
[σ̂L(xi), σ̂U (xi)] for each xi ∈ X;

(F3) F (Â) = F (ÂC), where ÂC = {(xi, σ̂(xi),
θ̂(xi))|xi ∈ X};

(F4) F (Â1) ≤ F (Â2) if Â1 ≤ Â2 (i.e. θ̂1L(xi) ≤
θ̂2L(xi), θ̂1U (xi) ≤ θ̂2U (xi), σ̂1L(xi) ≥
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σ̂2L(xi), σ̂1U (xi) ≥ σ̂2U (xi)) when θ̂2L(xi)
≤ σ̂2L(xi) and θ̂2U (xi) ≤ σ̂2U (xi) for each
xi ∈ X, or Â2 ≤ Â1 when θ̂2L(xi) ≥ σ̂2L(xi)
and θ̂2U (xi) ≥ σ̂2U (xi).

In [40], Düğenci proposed the distance measure on
IVIFS(X), defined as follows.

Definition 2.9. Let Â1, Â2 ∈ IVIFS(X), a mapping
D : IVIFS(X) × IVIFS(X) → [0, 1] is called a dis-
tance measure between Â1 and Â2 if D(Â1, Â2)
satisfies the following properties:

(D1) 0 ≤ D(Â1, Â2) ≤ 1;
(D2) D(Â1, Â2) = 0 if Â1 = Â2;
(D3) D(Â1, Â2) = D(Â2, Â1);
(D4) If Â1 ≤ Â2 ≤ Â3, Â1, Â2, Â3 ∈ IVIFS(X),

then D(Â1, Â2) ≤ D(Â1, Â3) and
D(Â2, Â3) ≤ D(Â1, Â3).

3. Entropy and distance measures for
LIVqROFSs

Pal [41] proposed the exponential entropy measure
of a fuzzy set A (A ∈ F (X) = {(xi, μ(xi))|xi ∈ X})
as

E(A) = 1

n(
√

e − 1)

n∑
i=1

(μ(xi)e
1−μ(xi)

+ (1 − μ(xi))e
μ(xi) − 1). (6)

Rani et al. [31] proposed the exponential entropy
and distance measure for IVIFSs. Inspired by this,
this study will discuss the problem of LIVqROFSs on
entropy and distance measure. In the following, we
give the axiomatic definition of entropy and distance
measure for LIVqROFSs.

Definition 3.1. An entropy measure of
LIVqROFS(X) is a real-valued function
E : LIVqROFS(X) → [0, 1], if it satisfies the
following conditions:

(E1) E(Â) = 0 if and only if Â =
([sτ, sτ], [s0, s0]) or Â = ([s0, s0], [sτ, sτ])
for each xi ∈ X(i.e. Â is a crisp set);

(E2) E(Â) = 1 if and only if [sθ̂L
(xi), sθ̂U

(xi)] =
[sσ̂L (xi), sσ̂U (xi)] for each xi ∈ X;

(E3) E(Â) = E(ÂC);
(E4) E(Â1) ≤ E(Â2) if Â1 ≤ Â2 when sθ̂2L

(xi) ≤
sσ̂2L

(xi) and sθ̂2U
(xi) ≤ sσ̂2U

(xi) for each xi ∈

X, or Â2 ≤ Â1 when sθ̂2L
(xi) ≥ sσ̂2L

(xi) and
sθ̂2U

(xi) ≥ sσ̂2U
(xi).

Definition 3.2. Let Â1, Â2, Â3 ∈ LIVqROFS(X), a
mapping D : LIVqROFS(X) × LIVqROFS(X) →
[0, 1] is called a distance measure on LIVqROFS(X),
if it satisfies the following properties:

(D1) 0 ≤ D(Â1, Â2) ≤ 1;
(D2) D(Â1, Â2) = 0 if Â1 = Â2;
(D3) D(Â1, Â2) = D(Â2, Â1);
(D4) If Â1 ≤ Â2 ≤ Â3, then D(Â1, Â2) ≤

D(Â1, Â3) and D(Â2, Â3) ≤ D(Â1, Â3).

Definition 3.3. Let sα ∈ S̄, φ : S̄ → [0, τ] is a map-
ping, such that φ(sα) = α.

Definition 3.4. Let X = {x1, x2, · · · , xn}, Â ∈
LIVqROFS(X), the entropy measure is defined by

E(Â) = 1
q
√

n(
√

e − 1)

{
n∑

i=1

(
	Â(xi)e

(1−	Â(xi))

+(1 − 	Â(xi))e
	Â(xi) − 1

)q} 1
q
, (7)

where

	Â(xi)

=φ(sθ̂L
(xi)) + φ(sθ̂U

(xi)) + 2τ − φ(sσ̂L
(xi)) − φ(sσ̂U

(xi))

4τ
.

In the following, we prove the validity of our pro-
posed entropy measure (7).

Theorem 3.5. The mapping E(Â) defined in Equation
(7) is a linguistic interval-valued q-Rung orthopair
fuzzy entropy measure.

Proof. Obviously to prove that E(Â) is an entropy
measure of LIVqROFS(X), we just need to prove that
it satisfies (E1)-(E4) in Definition 3.

(E1)Let Â be a crisp set then we have
Â = ([sτ, sτ], [s0, s0]) or Â = ([s0, s0], [sτ, sτ]),
that is [sθ̂L

(xi), sθ̂U
(xi)] = [sτ, sτ] and

[sσ̂L (xi), sσ̂U (xi)] = [s0, s0] or [sθ̂L
(xi), sθ̂U

(xi)] =
[s0, s0] and [sσ̂L (xi), sσ̂U (xi)] = [sτ, sτ] for each
xi ∈ X, so we get 	Â(xi) = 1 or 	Â(xi) = 0. From
equation (7), we obtain that E(Â) = 0.

On the other hand, if E(Â) = 0, from the definition
of exponential entropy given by Pal in [41], we know
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that 	Â(xi) = 0 or 1 for each xi ∈ X. i.e.,

φ(sθ̂L
(xi)) + φ(sθ̂U

(xi)) + 2τ − φ(sσ̂L
(xi)) − φ(sσ̂U

(xi))

4τ
= 0

(8)

or

φ(sθ̂L
(xi)) + φ(sθ̂U

(xi)) + 2τ − φ(sσ̂L
(xi)) − φ(sσ̂U

(xi))

4τ
= 1

(9)

for each xi ∈ X. Now Equations (8) and
(9) hold if either Â = ([sτ, sτ], [s0, s0]) or
Â = ([s0, s0], [sτ, sτ]) i.e. Â is a crisp set.

(E2)Let [sθ̂L
(xi), sθ̂U

(xi)] = [sσ̂L (xi), sσ̂U (xi)], i.e.
sθ̂L

(xi) = sσ̂L (xi), sθ̂U
(xi) = sσ̂U (xi) for each xi ∈ X.

Apply the condition to Equation (7), we can get
E(Â) = 1.

On the other hand, let

f (	Â(xi)) = 1

(
√

e − 1)
(	Â(xi)e

(1−	Â(xi))

+ (1 − 	Â(xi))e
	Â(xi) − 1), (10)

if E(Â) = 1, that is 1
n

∑n
i=1 f (	Â(xi)) = 1, so we

can get f (	Â(xi)) = 1 for each xi ∈ X. Take the par-
tial derivative of equation (10) with respect to 	Â(xi)
and set it equal to zero, we have

∂f (	Â(xi))

∂(	Â(xi)))
= 1

(
√

e − 1)
((1 − 	Â(xi))e

1−	Â(xi)

− 	Â(xi)e
	Â(xi)) = 0,

it implies (1 − 	Â(xi))e1−	Â(xi) = 	Â(xi)e	Â(xi) for
each xi ∈ X. Since g(x) = xex is a bijection function,
we get 1 − 	Â(xi) = 	Â(xi), that is 	Â(xi) = 0.5
for each xi ∈ X. Since

∂2f (	Â(xi))

∂(	Â(xi)))2 = 1

(
√

e − 1)
((	Â(xi) − 2)e(1−	Â(xi))

− (1 + 	Â(xi))e
	Â(xi)),

we get [
∂2f (	Â(xi))

∂(	Â(xi)))2

]
	Â(xi)=0.5

< 0,

for each xi ∈ X. So f (	Â(xi)) is a concave func-
tion and has a maximum at 	Â(xi) = 0.5. By
Equation (7), E(Â) achieves the maximum at
	Â(xi) = 0.5 which implies that [sθ̂L

(xi), sθ̂U
(xi)] =

[sσ̂L (xi), sσ̂U (xi)].

(E3) Form ÂC = {(xi, [sσ̂L (xi), sσ̂U (xi)],
[sθ̂L

(xi), sθ̂U
(xi)])|xi ∈ X} and Equation (7), we

can easily get that E(Â) = E(ÂC).
(E4)If we take x = φ(sθ̂L

(xi)) + φ(sθ̂U
(xi)) and

y = φ(sσ̂L (xi)) + φ(sσ̂U (xi)), let

g(x, y) = (
x + 2τ − y

4τ
)e(1− x+2τ−y

4τ
)

+ (1 − x + 2τ − y

4τ
)e( x+2τ−y

4τ
) − 1, (11)

where x, y ∈ [0, τ].
Taking the partial derivatives of g with respect to

x and y, respectively, we get

∂g

∂x
= 1

4τ

[
(
y + 2τ − x

4τ
)e( y+2τ−x

4τ
)

− x + 2τ − y

4τ
e( x+2τ−y

4τ
)
]
, (12)

∂g

∂y
= 1

4τ

[
(
x + 2τ − y

4τ
)e( x+2τ−y

4τ
)

− y + 2τ − x

4τ
e( y+2τ−x

4τ
)
]
, (13)

Set ∂g
∂x

= 0 and ∂g
∂y

= 0 to find the critical points, we
get x = y. From Equation (12) and x = y, we obtain

∂g

∂x
≥ 0, when x ≤ y

and

∂g

∂x
≤ 0, when x ≥ y,

for any x, y ∈ [0, τ].
Thus, g(x, y) is increasing with respect to x when

x ≤ y and is decreasing when x ≥ y. Similarly, we
obtain that

∂g

∂y
≤ 0, when x ≤ y

and

∂g

∂y
≥ 0, when x ≥ y.

Now if Â1 ≤ Â2, with sθ̂2L
(xi) ≤ sσ̂2L

(xi) and
sθ̂2U

(xi) ≤ sσ̂2U
(xi) for each xi ∈ X. Then we have

sθ̂1L(xi)
≤ sθ̂2L(xi)

≤ sσ̂2L(xi) ≤ sσ̂1L(xi),

sθ̂1U (xi)
≤ sθ̂2U (xi)

≤ sσ̂2U (xi) ≤ sσ̂1U (xi).
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It implies that sθ̂1L(xi)
≤ sσ̂1L(xi), and sθ̂1U (xi)

≤
sσ̂1U (xi). Thus, from the monotonic of g(x, y) and
Equation (7), we obtain E(Â1) ≤ E(Â2).

Similarly, when Â2 ≤ Â1 with sθ̂2L
(xi) ≥ sσ̂2L

(xi)
and sθ̂2U

(xi) ≥ sσ̂2U
(xi) for each xi ∈ X and thus, it

can be prove that E(Â1) ≤ E(Â2).
By calculating the weight of each elementxi ∈ X, a

weighted exponential entropy measure of LIVqROFS
is proposed as follows:

EW (Â) = 1√
e − 1

{
n∑

i=1

wi

(
	Â(xi)e

(1−	Â(xi))

+(1 − 	Â(xi))e
	Â(xi) − 1

)q} 1
q
, (14)

where wi ≥ 0,
n∑

i=1
wi = 1, and

	Â(xi)

= φ(sθ̂L
(xi)) + φ(sθ̂U

(xi)) + 2τ − φ(sσ̂L
(xi)) − φ(sσ̂U

(xi))

4τ
.

It is clear, if wi = 1
n

, then EW (Â) = E(Â). It can be
easily checked that the mapping EW (Â), defined by
Equation (14), is an entropy measure for LIVqROFS.

For A1, A2 ∈ FS(X), X = {x1, x2, · · · , xn}, Fan
and Xie [42] proposed the fuzzy information for dis-
crimination of Â1 against Â2 is defined by

I1(A1, A2) =
n∑

i=1

(1 − (1 − μA1 (xi))e
(μA1 (xi)−μA2 (xi))

− μA1 (xi)e
(μA2 (xi)−μA1 (xi))). (15)

The fuzzy distance between A1 and A2 is defined
by

D1(A1, A2) = I1(A1, A2) + I1(A2, A1). (16)

For Â1, Â2 ∈ IVIFS(X), X = {x1, x2, · · · , xn},
Ohlan [34] proposed the interval-valued intuitionistic
fuzzy information for discrimination of Â1 against Â2
is defined by

I2(Â1, Â2) =
n∑

i=1

(1 − (1 − HÂ1
(xi))

e
(HÂ1

(xi)−HÂ2
(xi)) − HÂ1

(xi)e
(HÂ2

(xi)−HÂ1
(xi))),

(17)

where

HÂ1
(xi)

= θ̂1L(xi) + θ̂1U (xi) + 2 − σ̂1L(xi) − σ̂1U (xi)

4
,

HÂ2
(xi)

= θ̂2L(xi) + θ̂2U (xi) + 2 − σ̂2L(xi) − σ̂2U (xi)

4
.

The distance measure for IVIFSs is defined as

D2(Â1, Â2) = I2(Â1, Â2) + I2(Â2, Â1). (18)

Inspired by the above distance measures of FSs and
IVIFSs, now the distance measures of LIVqROFSs
can be defined as the following.

Definition 3.6. Let X = {x1, x2, · · · , xn}, Â1, Â2 ∈
LIVqROFS(X), the linguistic interval-valued q-
Rung orthopair fuzzy information for discrimination
of Â1 against Â2 is defined by

I(Â1, Â2) =
{

n∑
i=1

(
1 − (1 − 	Â1

(xi))

e
(	Â1

(xi)−	Â2
(xi)) − 	Â1

(xi)e
(	Â2

(xi)−	Â1
(xi))

)q

}1
q

,

(19)

where

	Â1
(xi)

=
φ(sθ̂1L

(xi)) + φ(sθ̂1U
(xi)) + 2τ − φ(sσ̂1L

(xi)) − φ(sσ̂1U
(xi))

4τ
,

	Â2
(xi)

=
φ(sθ̂2L

(xi)) + φ(sθ̂2U
(xi)) + 2τ − φ(sσ̂2L

(xi)) − φ(sσ̂2U
(xi))

4τ
.

Theorem 3.7. If q = 1, the relation between E(Â)
and I(Â, B̂) is given by the following formula

E(Â) = 1 −
√

e

n(
√

e − 1)
I(Â, B̂),

where 	B̂(xi) = 1
2 .
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Proof.

√
eI(Â, B̂)

= √
e

n∑
i=1

(1 − (1 − 	Â(xi))e
(	Â(xi)−	B̂(xi)) − 	Â(xi)e

(	B̂(xi)−	Â(xi)))

= √
e

n∑
i=1

(1 − (1 − 	Â(xi))e
(	Â(xi)− 1

2 ) − 	Â(xi)e
( 1

2 −	Â(xi)))

=
n∑

i=1

(
√

e − (1 − 	Â(xi))e
	Â(xi) − 	Â(xi)e

(1−	Â(xi)))

= n(
√

e − 1) −
n∑

i=1

((1 − 	Â(xi))e
	Â(xi) + 	Â(xi)e

(1−	Â(xi)) − 1)

= n(
√

e − 1) −
n∑

i=1

((1 − 	Â(xi))e
	Â(xi) + 	Â(xi)e

(1−	Â(xi)) − 1)

= −
n∑

i=1

((1 − 	Â(xi))e
	Â(xi) + 	Â(xi)e

(1−	Â(xi)) − 1)

= n(
√

e − 1) − n(
√

e − 1)E(Â)

= n(
√

e − 1)(1 − E(Â)).

Thus, we get E(Â) = 1 −
√

e

n(
√

e−1)
I(Â, B̂).

Definition 3.8. Let X = {x1, x2, · · · , xn}, Âi =
(sθ̂i

, sσ̂i ), i = 1, 2 be two LIVqROFSs, the distance

measure D(Â1, Â2) between the LIVqROFS(X) A1
and A2 is defined as follows:

D(Â1, Â2) = 1

2 q
√

n(1 − e−1){ n∑
i=1

(
2−(1− 	Â1

(xi) + 	Â2
(xi))e

(	Â1
(xi)−	Â2

(xi))

− (1 − 	Â2
(xi) + 	Â1

(xi))e
(	Â2

(xi)−	Â1
(xi)))q

} 1
q

.

(20)

In particular, if q = 1, then

D(Â1, Â2) = I(Â1, Â2) + I(Â2, Â1). (21)

Theorem 3.9. The mapping D(Â1, Â2) defined
in Equation (20) is a distance measure on
LIVqROFS(X).

Proof. In order for Equation (20) to be qualified as a
sensible measure of LIVqROFSs, it must satisfy the
conditions (D1)-(D4) in Definition 3.2.

(D1)It is clear that the function h(t) = 2 −
(1 − t)et − (1 + t)e−t in interval [-1,1] has maxi-
mum value fmax(t) = 2 − 2e−1 and minimum value
fmin(t) = 0. h(t) is decreasing in [-1,0] and is increas-
ing in [0,1]. Since −1 ≤ 	Â1

(xi) − 	Â2
(xi) ≤ 1, we

get 0 ≤ D(Â1, Â2) ≤ 1.
(D2)Let Â1 and Â2 be two LIVqROFSs, if Â1 =

Â2 then φ(sθ̂1L
(xi)) = φ(sθ̂2L

(xi)), φ(sθ̂1U
(xi)) =

φ(sθ̂2U
(xi)),φ(sσ̂1L

(xi)) = φ(sσ̂2L
(xi)), φ(sσ̂1U

(xi)) =
φ(sσ̂2U

(xi)). It is clear 	Â1
(xi) − 	Â2

(xi) = 0, there-

fore, D(Â1, Â2) = 0.
(D3)D(Â1, Â2) = D(Â2, Â1) is easily known

from Equation (20).
(D4)If Â1 ≤ Â2 ≤ Â3, we have 0 ≤ 	Â2

(xi) −
	Â1

(xi) ≤ 	Â3
(xi) − 	Â1

(xi) and 0 ≤ 	Â3
(xi) −

	Â2
(xi) ≤ 	Â3

(xi) − 	Â1
(xi). Then it is easy to

see that D(Â1, Â2) ≤ D(Â1, Â3) and D(Â2, Â3) ≤
D(Â1, Â3).

It can be said that D(Â1, Â2) is a distance measure
between LIVqROFSs Â1 and Â2 since D(Â1, Â2)
satisfies (D1)-(D4). �
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4. Application of the proposed entropy
measure of LIVqROFSs

Now we apply the proposed LIVqROFSs based
weighted entropy measure to the Multi-criteria group
decision making (MCGDM) problem. Therefore, we
introduce a MCGDM model based on LIVqROFS
weighted entropy measure.

4.1. A method of group decision making of
LIVqROFS setting based on the proposed
weighted entropy measure

We provide a group decision making method based
on LIVqROFSs with the known experts and unknown
criteria weights. Let X̂ = {x̂1, x̂2, · · · , x̂m} be a set
of m feasible alternatives, and Ĉ = {ĉ1, ĉ2, · · · , ĉn}
be a set of attributes. w = (w1, w2, · · · , wn)T is
the weighting vector of attributes satisfying wj ≥ 0

and
n∑

j=1
wj = 1. Let D = {d1, d2, · · · , dl} be a set

of decision makers with the weighting vector V =
(v1, v2, · · · , vl)T satisfying vk ≥ 0 and

l∑
k=1

vk = 1.

Assume that each decision maker gives their own
decision matrix Rk = (

r̂
(k)
ij

)
m×n

, where

r̂
(k)
ij = ([s

θ̂
(k)
ijL

, s
θ̂

(k)
ijU

], [s
σ̂

(k)
ijL

, s
σ̂

(k)
ijU

])

is the evaluation result given by decision maker dk ∈
D under the attribute ĉj ∈ Ĉ for the alternative x̂i ∈
X̂ .

Step 1. Construct the linguistic interval-valued
q-rung orthopair fuzzy decision matrices Rk =(
r̂

(k)
ij

)
m×n

(k = 1, · · · , l).
Step 2. Based on the given expert weights,

apply the proposed LIVqROF operators(Khan et al.
[13]) to aggregate the LIVqROFVs. We choose the
LIVqROFWA operator to aggregate all the deci-
sion matrices Rk into a collective decision matrix
R = (r̂ij)m×n, where

r̂ij = ([sθ̂ijL
, sθ̂ijU

], [sσ̂ijL , sσ̂ijU ])

= LIVqROFWA(r̂(1)
ij , r̂

(2)
ij , · · · , r̂

(l)
ij )

= v1r̂
(1)
ij ⊕ v2r̂

(2)
ij ⊕ · · · ⊕ vlr̂

(l)
ij

= ([s

τ
q

√
1−

∏l

k=1
(1−(

θ̂
(k)
ijL
τ

)q)vk

,

s

τ
q

√
1−

∏l

k=1
(1−(

θ̂
(k)
ijU
τ

)q)vk

],

[s
τ
∏l

k=1
(
σ̂

(k)
ijL
τ

)vk
, s

τ
∏l

k=1
(
σ̂

(k)
ijU
τ

)vk
]).

Step 3. Calculate the weight vector of the criterion.
The weight formula of the criterion is determined as
follows.

wj = 1 − E(ĉj)

n −
n∑

j=1
E(ĉj)

, j = 1, 2, · · · , n; (22)

where E(ĉj) is the entropy value of the jth attribute,
which is calculated by Equation (7).

Step 4. For each alternative x̂i, Equation (14) is
used to calculate the weighted LIVqROF information
measure.

Step 5. Rank all the alternative x̂i according to the
EW (x̂i), the smaller the value of EW (x̂i), the better
the alternative x̂i.

4.2. Illustrative example

In the following, we apply the proposed group
decision method to the evaluation of college teach-
ers. Five college teachers {x̂1, x̂2, x̂3, x̂4, x̂5} who
participated in the evaluation from four main evalu-
ation indexes: Teaching ability (ĉ1), student training
and service (ĉ2),cientific research ability (ĉ3), disci-
pline construction (ĉ4). Assume that, three decision
makers {d1, d2, d3} evaluated five teachers with four
attributes using the following linguistic scale

S = {s0 = extrmely poor, s1 = very poor,

s2 = poor, s3 = slightly poor,

s4 = fair, s5 = slightly good, s6 = good,

s7 = very good, s8 = extremly good}.
Step 1. The decision matrices given by decision

makers are shown in Tables 1, 2 and 3 .
Step 2. The weighting vector v = (0.3, 0.5, 0.2) of

decision maker is given. Let q = 3, the LIVqROFWA
operator is utilized to aggregate all the decision matri-
ces Rk(k = 1, 2, 3) into a collective decision matrix
R, as shown in Table 4.

Step 3. By using Equation (22), take q = 3, we
get the criteria weight as:

w = (0.2729, 0.1427, 0.3908, 0.1936).
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Table 1
Decision matrix R1 provided by decision maker d1

ĉ1 ĉ2 ĉ3 ĉ4

x̂1 ([s2, s3], [s3, s4]) ([s3, s4], [s1, s4]) ([s2, s6], [s1, s3]) ([s3, s5], [s2, s4])
x̂2 ([s2, s4], [s2, s6]) ([s2, s6], [s1, s3]) ([s3, s5], [s2, s5]) ([s3, s6], [s3, s5])
x̂3 ([s3, s5], [s2, s6]) ([s4, s6], [s3, s5]) ([s3, s4], [s1, s2]) ([s3, s5], [s2, s6])
x̂4 ([s1, s3], [s3, s4]) ([s3, s5], [s2, s4]) ([s1, s3], [s3, s6]) ([s3, s4], [s2, s6])
x̂5 ([s2, s5], [s3, s6]) ([s2, s4], [s2, s6]) ([s2, s6], [s3, s5]) ([s2, s4], [s3, s6])

Table 2
Decision matrix R2 provided by decision maker d2

ĉ1 ĉ2 ĉ3 ĉ4

x̂1 ([s2, s4], [s3, s5]) ([s2, s4], [s2, s6]) ([s2, s3], [s3, s4]) ([s3, s5], [s1, s4])
x̂2 ([s3, s6], [s2, s5]) ([s3, s5], [s3, s5]) ([s3, s6], [s3, s5]) ([s4, s6], [s3, s4])
x̂3 ([s3, s5], [s2, s6]) ([s2, s5], [s3, s4]) ([s3, s4], [s1, s3]) ([s3, s6], [s2, s5])
x̂4 ([s2, s3], [s3, s5]) ([s3, s5], [s4, s5]) ([s1, s4], [s2, s6]) ([s2, s6], [s2, s5])
x̂5 ([s3, s4], [s2, s5]) ([s3, s4], [s3, s6]) ([s3, s6], [s3, s5]) ([s2, s5], [s4, s5])

Table 3
Decision matrix R3 provided by decision maker d3

ĉ1 ĉ2 ĉ3 ĉ4

x̂1 ([s1, s4], [s3, s5]) ([s2, s4], [s3, s6]) ([s2, s3], [s4, s5]) ([s3, s4], [s1, s5])
x̂2 ([s3, s6], [s2, s5]) ([s2, s6], [s3, s5]) ([s2, s5], [s3, s6]) ([s2, s4], [s3, s5])
x̂3 ([s3, s6], [s1, s4]) ([s3, s5], [s2, s6]) ([s3, s5], [s2, s3]) ([s2, s6], [s4, s5])
x̂4 ([s2, s3], [s3, s5]) ([s3, s4], [s3, s5]) ([s4, s6], [s4, s5]) ([s1, s5], [s3, s4])
x̂5 ([s2, s4], [s3, s6]) ([s1, s5], [s3, s6]) ([s3, s4], [s3, s5]) ([s2, s5], [s1, s3])

Table 4
Collective LIVqROF assessment information

ĉ1 ĉ2 ĉ3 ĉ4

x̂1 ([s1.8765, s3.7612], ([s2.3973, s4.0000], ([s2.0000, s4.5433], ([s3.0000, s4.8418],
[s3.0000, s4.6762]) [s1.7617, s5.3128]) [s2.2855, s3.8367]) [s1.2311, s4.1826])

x̂2 ([s2.7753, s5.6127], ([s2.6008, s5.5779], ([s2.8545, s5.5779], ([s3.4835, s5.7531],
[s2.0000, s5.2811]) [s2.1577, s4.2896]) [s2.6564, s5.1857]) [s3.0000, s4.4721])

x̂3 ([s3.0000, s5.2560], ([s3.0802, s5.3706], ([s3.0000, s4.2529], ([s2.8545, s5.7611],
[s1.7411, s5.5326]) [s2.7663, s4.6382]) [s1.1487, s2.6564]) [s2.2974, s5.2811])

x̂4 ([s1.8080, s3.0000], ([s3.0000, s4.8418], ([s2.4256, s4.4764], ([s2.3146, s5.4101],
[s3.0000, s4.6762]) [s3.0673, s4.6762]) [s2.5946, s5.7852]) [s2.1689, s5.0506])

x̂5 ([s2.6008, s4.3664], ([s2.5316, s4.2529], ([s4.7083, s6.0774], ([s2.0000, s4.7567],
[s2.4495, s5.4772]) [s2.6564, s6.000]) [s3.0000, s5.0000]) [s2.7808, s4.7682])

Step 4. Take q = 3, calculate Ew(x̂i) for each the
alternative using Equation (14).

Ew(x̂1) = 0.9911, Ew(x̂2) = 0.9944, Ew(x̂3)

= 0.9807, Ew(x̂4) = 0.9884, Ew(x̂5) = 0.9859.

Step 5. Since Ew(x̂3) < Ew(x̂5) < Ew(x̂4) <

Ew(x̂1) < Ew(x̂2). We get a descending order of x̂i.

x̂3 	 x̂5 	 x̂4 	 x̂1 	 x̂2.

Therefore, we get x̂3 is the best alternative.

4.3. Comparative analyses

In this subsection, we compare the proposed
weighted entropy measure model for LIVqROFSs
with other decision tools VIKOR model for
LIVqROFSs proposed by Khan et al. in [13] and
TOPSIS model for LIVqROFSs proposed by Gur-
mani et al. in [38] to illustrate the effectiveness of our
proposed method.

Steps of Khan’s approach are as under:
Step 1. Construct the decision matrices. For better

comparison, we select the data in Tables 1, 2 and 3.
Step 2. The collective matrix is presented in Table

4 using the given expert weights.
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Step 3. According to Table 4, we get the
LIVqROFS positive ideal solution and LIVqROFS
negative ideal solution respectively as:

r+ = {([s3.0000, s5.6127], [s1.7411, s4.6762]),

([s3.0802, s5.5779], [s1.7617, s4.2896]),

([s4.7083, s6.0774], [s1.1487, s2.6564]),

([s3.4835, s5.7611], [s1.2311, s4.1826])}

r− = {([s1.8080, s3.0000], [s3.0000, s5.5326]),

([s2.3973, s4.0000], [s3.0673, s6.0000]),

([s2.0000, s4.2529], [s3.0000, s5.7852]),

([s2.0000, s4.7567], [s3.0000, s5.2811])}

Step 4. For better comparison, we give the criteria
weight as:

w = (0.2729, 0.1427, 0.3908, 0.1936).

Step 5. Calculate the distance between the
LIVqROFS positive ideal solution r+ and the alter-
native x̂i, and the distance between the LIVqROFS
negative ideal solution r− and the alternative x̂i

respectively as:

d+
1 (x̂1, r

+) = 0.1570, d−
1 (x̂1, r

−) = 0.1235;

d+
2 (x̂2, r

+) = 0.1010, d−
2 (x̂2, r

−) = 0.1065;

d+
3 (x̂3, r

+) = 0.1537, d−
3 (x̂3, r

−) = 0.1852;

d+
4 (x̂4, r

+) = 0.1437, d−
4 (x̂4, r

−) = 0.0650;

d+
5 (x̂5, r

+) = 0.1072, d−
5 (x̂5, r

−) = 0.1172.

Step 6. Calculate the relative closeness coefficient
of each alternatives as follows:

�(x̂1) = 0.4403, �(x̂2) = 0.5133, �(x̂3) = 0.5465,

�(x̂4) = 0.3115, �(x̂5) = 0.5222.

Step 7.Rank the relative closeness coefficients in
descending order to select the best alternative.

Fig. 1. The ranking of alternatives obtained by the three
approaches.

�(x̂3) > �(x̂5) > �(x̂2) > �(x̂1) > �(x̂4).

Therefore, we get x̂3 is the best alternative.
Steps of Gurmani’s approach are as under:
In order to make the comparison result more rea-

sonable, we chose the same data, so steps 1, 2, 3 and
4 are the same as Khan’s approach.

Step 5. Calculate the group utility measure �i

and individual regret measure yi of alternatives x̂i

respectively as:

�1 = 0.5971, �2 = 0.3393, �3 = 0.4214,

�4 = 0.7355, �5 = 0.5832.

y1 = 0.2421, y2 = 0.2375, y3 = 0.1978,

y4 = 0.3657, y5 = 0.1833.

Step 6. Calculate the compromise measure Qi of
alternatives x̂i.

Q1 = 0.4865, Q2 = 0.1485, Q3 = 0.1434,

Q4 = 1, Q5 = 0.3077.

Step 7. Rank the compromise measure in ascend-
ing order to select the best alternative.

Q3 < Q2 < Q5 < Q1 < Q4.

Therefore, we get x̂3 is the best alternative.
The comparison results of the proposed approach

and the existing approachs are shown in Fig. 1.
According to the optimal results of the three meth-

ods, there are some similarities among the three
methods, but there are also differences among the
three methods from the final ranking of the alterna-
tives. The group decision making method based on
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weighted exponential entropy measure in LIVqROFS
environment is more efficient, simple and consistent
than the existing measures and methods to solve the
decision problem.

5. Conclusion

In this study, a new multi-attribute group deci-
sion making method is proposed under the linguistic
interval-valued q-rung orthopair fuzzy environment.
We propose novel entropy and distance measure for
linguistic interval-valued q-rung orthopair fuzzy sets.
The main innovations and advantages of this study are
shown as follows:

(1) The axiomatic definitions of entropy and
distance are proposed under the LIVqROF envi-
ronment. It provides some important and reliable
reference results for the subsequent research of com-
plex information measures and distance measures in
the LIVqROF environment.

(2) The proposed information measure is applied
to the problem of multi-attribute decision making.
An effective linguistic multi-attribute decision mak-
ing model is established, which enriches the theory
and method of qualitative decision making in the
LIVqROF environment.

Theoretical analysis and numerical results show
that the method is simple and intuitive without infor-
mation loss. The model can be applied to medical
diagnosis, personnel assessment, pollution treatment,
quality evaluation and other fields. We will continue
to extend the proposed method to complex decision
information environment.
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