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Abstract. Neutrosophic graphs deals with more complex, uncertain problems in real-life applications which provides more
flexibility and compatibility than Intuitionistic fuzzy graphs. The aim of this paper is to enrich the efficiency of the network
in accordance with productivity and quality. Here we develop two Neutrosophic graphs into a fully connected Neutrosophic
network using the product of graphs. Such a type of network is formed from individuals with unique aspects in every field
of work among them. This study proposes extending the other graph products and forming a single valued Neutrosophic
graph to find the efficient productivity in the flow of information on a single source network of a single valued Neutrosophic
network. An Optimal algorithm is proposed and illustrated with an application.
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1. Introduction

Graph Theory, a convenient mathematical tool has
a broad spectrum of uses in various fields of Science
and Technology. The graph is usually a graphical rep-
resentation of practical, real-world problems. A graph
is a collection of sets (V, E) where V is a non-empty
set of vertices connected by E, whose constituents
are edges or links. Representing a problem as a graph
provides a significant perspective and clarifies the sit-
uation. A network is typically a graph model with a
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set of nodes connected by edges or links. The net-
work gives us a flexible framework for identifying
and observing complex systems. The study of com-
plex networks is a crucial concept that comprises
several disciplines. Complex systems network theory
provides techniques for analyzing systems of inter-
action structure, represented as networks [10]. These
networks are generally defined by simple graphs that
consist of vertex representing the objects under explo-
ration, that are linked together by edges if there exists
a relationship between them. Lofti Zadeh [19] intro-
duced a novel concept of fuzzy set theory in 1965 to
model real-world problems that are efficient, which
are generally uncertain. Fuzzy is an upper version of
the crisp set with varying membership value grades
between [0, 1]. The membership value is a specific
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single value that lies between zero and one. To deal
with uncertainties of complex problems, with sin-
gle membership grade is important. Atanassov [5]
extended the fuzzy set to an Intuitionistic fuzzy set
by including a non-membership value. Smarandache
[3] has presented the idea of a Neutrosophic set to
capture problems that are uncertain, imprecise, and
vague. A Neutrosophic set is an extension of the crisp
set, fuzzy set, and Intuitionistic fuzzy set which has
three different types of membership values such as
truth, indeterminacy, and falsity values that are not
dependent on each other and lies between [0, 1].

There exists many different of information in real-
world problems that can be modeled using several
types of graphs such as fuzzy graphs, Intuition-
istic fuzzy graphs and Neutrosophic graphs [13,
18]. Shannon and Atanassov introduced the con-
cept of Intuitionistic fuzzy graphs [14]. Parvathi
et al. [9] proposed some operations between two
Intuitionistic fuzzy graphs. Rashmanlou et al. [13]
proposed graph operations such as Direct product,
semi-strong product, strong product, and Lexico-
graphic on Intuitionistic fuzzy graphs. Mahapatra et
al. [15] introduced the fuzzy fractional chromatic
number for calculating lexicographic product on two
fuzzy graphs, also investigated m-polar fuzzy graphs
and their applications [16, 17]. Neutrosophic graphs
are used to model real-world problems which consist
of in-consistent information. Many Scientists such
as Broumi et al. [7], Yang et al. [1] and Akram [3,
4] have researched under a Neutrosophic environ-
ment. Single-valued Neutrosophic sets introduced by
Haibin Wang are a subclass of Neutrosophic sets that
are independent of membership values ranging from
[0, 1]. Related work in the extension of the single-
valued Neutrosophic set is found in [1, 6].

The main motivation of this research work is to
find the most efficient optical network using different
operations on single-valued Neutrosophic Graphs-
(SVNG) such as Lexicographic, Symmetric differ-
ence, Residue product, and Max product based on the
domination parameter presented. Further extended
our study on its applications and finding the effective
minimal spanning tree. In section 2 the motivation
and research background is listed with preliminaries
for the study. In section 3 we define the different types
of operations such as Lexicographic, Symmetric dif-
ference, Residue product, Max product and examine
the efficiency of the network using the score func-
tion. In section 4 the optimal network of symmetric
difference is identified and its applications are given
for better sales training technology.

2. Preliminaries

Definition 2.1. [2] Let X be a universe of discourse.
A single-valued Neutrosophic set N is defined on X

is given by

N = {(x, TN (x), IN (x), FN (x) : x ∈ X}
where

TN (x) : X → [0, 1]

IN (x) : X → [0, 1] and

FN (x) : X → [0, 1]

are called the degree of truth membership value,
degree of indeterminancy value and degree of falsity
membership value of x on N, respectively satisfying
the condition

0 ≤ TN (x) + IN (x) + FN (x) ≤ 3, ∀ x ∈ X.

Definition 2.2. [2] Let NG = (VG, EG) be a graph,
where VG be the set of vertices and EG be the
set of edges. Then the single-valued Neutrosophic
graph of NG is denoted by N

′
G = (VG, σ, μ) where

σ = (Tσ, Iσ, Fσ) is a single-valued Neutrosophic set
on VG and μ = (Tμ, Iμ, Fμ) is a single-valued Neu-
trosophic symmetric relation on EG ⊆ VG × VG is
defined as follows:

i) Tμ(x, y) ≤ Tσ(x) ∧ Tσ(y), ∀(x, y) ∈ VG ×
VG.

ii) Iμ(x, y) ≤ Iσ(x) ∧ Iσ(y), ∀ (x, y) ∈ VG ×
VG.

iii) Fμ(x, y) ≥ Fσ(x) ∨ Fσ(y), ∀ (x, y) ∈ VG ×
VG.

Definition 2.3. [8] The SVNG N
′
G is called strong

single-valued Neutrosophic graph if ∀ (x, y) ∈ EG,

Tμ
N

′
G

(x, y) = Tσ
N

′
G

(x) ∧ Tσ
N

′
G

(y),

Iμ
N

′
G

(x, y) = Iσ
N

′
G

(x) ∧ Iσ
N

′
G

(y)

Fμ
N

′
G

(x, y) = Fσ
N

′
G

(x) ∨ Fσ
N

′
G

(y)

Definition 2.4. [8] The SVNG N
′
G is said to be com-

plete if ∀ x, y ∈ V,

Tμ
N

′
G

(x, y) = Tσ
N

′
G

(x) ∧ Tσ
N

′
G

(y)

Iμ
N

′
G

(x, y) = Iσ
N

′
G

(x) ∧ Iσ
N

′
G

(y)

Fμ
N

′
G

(x, y) = Fσ
N

′
G

(x) ∨ Fσ
N

′
G

(y).
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Definition 2.5. [8] Let ud be a vertex in a NG, GNG
=

(AN, BN ). The degree of a vertex ud is defined as the
sum of the weight of the strong arcs incident at ud

and is denoted by deg(ud). The neighborhood of ud

is denoted by NG = {vd ∈ AN/(ud, vd)} is a strong
arc.
The minimum degree of GNG

is
δ(GNG

) = min{dGNG
(ud)/ud ∈ AN}.

The maximum degree of GNG
is

�(GNG
) = max{dGNG

(ud)/ud ∈ AN}.

Definition 2.6. [12] The cardinality of a vertex vi ∈ V

in a SVNG, NG = (A, B) is defined by

|Vi| = TA(vi) + IA(vi) + FA(vi).

The cardinality of an edge vivj ∈ E in a SVNG,
NG = (A, B) is defined by

|vivj| = TB(vivj) + IB(vivj) + FB(vivj).

Definition 2.7. [2] Let CP1 = (ACP1 , BCP1 ) and
CP2 = (ACP2 , BCP2 ) be the two SVNG of G1 =
(V1, E1) and G2 = (V2, E2) respectively.

The cartesian product CP1 × CP2 is defined such
that

i)

TA(x1, x2) = min
(
TACP1

(x1), TACP2
(x2)

)
;

IA(x1, x2) = min
(
IACP1

(x1), IACP2
(x2)

)
;

FA(x1, x2) = max
(
FACP1

(x1), FACP2
(x2)

)
,

∀ (x1, x2) ∈ V1 × V2.

ii)

TB ((x, x2)(x, y2)) = min
(
TACP1 (x), TBCP2(x)

)
;

IB ((x, x2)(x, y2)) = min
(
IACP1 (x), IBCP2 (x2,y2)

)
;

FB ((x, x2)(x, y2)) = max
(
FACP1 (x), FBCP2 (x2y2)

)
,

∀ x ∈ V1, x2y2 ∈ E2.

iii)

TB ((x1, z)(y1, z)) = min
(
TBCP1 (x1y1), TACP2 (z)

)

IB ((x1, z)(y1, z)) = min
(
IBCP1 (x1,y1), IACP2 (z)

)

FB ((x1, z)(y1, z)) = max
(
FBCP1 (x1y1), FACP2 (z)

)
,

∀ z ∈ V2 and x1y1 ∈ E1.

The cartesian product G1 × G2 of two graphs
G1 and G2 is denoted by V(G1) × V(G2) such
that two vertices (V1, V2) and (V

′
1, V

′
2) are

adjacent in G1 × G2 iff
1) V1 = V

′
1 and V2 is adjacent to V

′
2 in G2.

2) V2 = V
′
2 and V1 is adjacent to V

′
1 in G1.

Definition 2.8. [2] The Lexicographic product LP1 ·
LP2 of two graphs LP1 = (M1, N1) and LP2 =
(M2, N2) is such that

i) The vertex set of LP1 · LP2 is the cartesian
product V (LP1) × V (LP2).

ii) Any two vertices (m1, n1) and (m2, n2) are
adjacent in LP1 · LP2 iff either m1 is adjacent
to m2 in LP1 or m1 = m2 and n1 is adjacent to
n1 in LP2

Definition 2.9. [8] The residue product of RP1 · RP2
two graphs RP1 and RP2 is defined as
σRP1·RP2 (u1, v1) = σRP1 (u1) ∨ σRP2 (v1)
and μRP1·RP2 ((u1, v1)(u2, v2)) = μRP1 (u1u2),
∀ (u1, v1) ∈ V and (u1, v1)(u2, v2) ∈ E.

If u1u2 ∈ E1andv1 /= v2 then,
μRP1·RP2 ((u1, v1)(u2, v2)) ≤ σRP1(u1,v1) ∧
σRP2(u2,v2).

Definition 2.10. [2] Let SD1 = (σ1, μ1) and SD2 =
(σ2, μ2) be two SVNGs of the graphs GSD1 =
(V1, E1) and GSD2 = (V2, E2) respectively. Then the
symmetric difference of SD1 and SD2 is defined as

SD1 ⊕ SD2

= (σ1 ⊕ σ2, μ1 ⊕ μ2) is defined as follows

i) ∀ (x, y) ∈ V1 × V2.

TσSD1
⊕ TσSD2

(x, y) = TσSD1
(x) ∧ TσSD2

(y);

IσSD1
⊕ IσSD2

(x, y) = IσSD1
(x) ∧ IσSD2

(y) and

FσSD1
⊕ FσSD2

(x, y) = TσSD1
(x) ∨ FσSD2

(y);

ii) ∀ x ∈ V1 and (y, z) ∈ E2,

(TμSD1
⊕ TμSD2

)((x, y), (x, z))

= TσSD1
(x) ∧ TμSD2

(y, z);

(IμSD1
⊕ IμSD2

)((x, y), (x, z))
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= IσSD1
(x) ∧ IμSD2

(y, z);

(FμSD1
⊕ FμSD2

)((x, y), (x, z))

= FσSD1
(x) ∨ FμSD2

(y, z);

iii) ∀ x ∈ V2 and (y, z) ∈ E1,

(TμSD1
⊕ TμSD2

)((y, x), (z, x))

= TμSD1
(y, z) ∧ TσSD2

(x);

(IμSD1
⊕ IμSD2

)((y, x), (z, x))

= IμSD1
(y, z) ∧ IσSD2

(x);

(FμSD1
⊕ FμSD2

)((y, x), (z, x))

= FμSD1
(y, z) ∨ FσSD2

(x);

iv) ∀ (x, y) /∈ E1 and (z, w) ∈ E2,

(TμSD1
⊕ TμSD2

)((x, z), (y, w))

= TσSD1
(x) ∧ TσSD1

(y) ∧ TμSD2
(z, w);

(IμSD1
⊕ IμSD2

)((x, z), (y, w))

= IσSD1
(x) ∧ IσSD1

(y) ∧ IμSD2
(z, w);

(FμSD1
⊕ FμSD2

)((x, z), (y, w))

= FσSD1
(x) ∧ FσSD1

(y) ∧ FμSD2
(z, w);

v) ∀ (x, y) ∈ E1 and (z, w) /∈ E2,

(TμSD1
⊕ TμSD2

)((x, z), (y, w))

= TμSD1
(x, y) ∧ TσSD2

(z) ∧ TσSD2
(w);

(IμSD1
⊕ IμSD2

)((x, z), (y, w))

= IμSD1
(x, y) ∧ IσSD2

(z) ∧ IσSD2
(w);

(FμSD1
⊕ FμSD2

)((x, z), (y, w))

= FμSD1
(x, y) ∨ FσSD2

(z) ∨ FσSD2
(w).

Definition 2.11. [8] Let
MP1 = ((σmp1 , σmp2 , (μmp1 , μmp2 )),
MP2 = ((σ′

mp1
, σ′

mp2
), (μ′

mp1
, μ′

mp2
)) be two Intu-

itionistic fuzzy graph.
The Max product of two Intuitionistic fuzzy graph
MP1, MP2 and is denoted by
MP1 ∗ MP2 (V ′′

1 ×M V ′′
2 , E′′

1 ×M E′′
2)

where E′′
1 ×M E′′

2 = {(p′′
1, q

′′
1)((p′′

2, q
′′
2)/ p′′

1 = p′′
2;

q′′
1q′′

2 ∈ E′′
2 or q′′

1 = q′′
2; p′′

1p
′′
2 ∈ E′′

1}
σMP1∗MP2

mp1
(p′′

1, q
′′
1) = σmp1 (p′′

1) ∨ σ′
mp1

(q′′
1) for all

(p1, q1) ∈ (V ′′
1 ×M V ′′

2 )
σMP1∗MP2

mp2
(p′′

1, q
′′
1) = σmp2 (p′′

1) ∧ σ′(
mp2

q′′
1) for all

(p′′
1, q

′′
1) ∈ (V ′′

1 ×M V ′′
2 ) and

μ′MP1∗MP2
mp1

((p′′
1, q

′′
1)(p′′

2, q
′′
2)) = {σmp1 (p′′

1) ∨

σmp1 (q′′
1) if p′′

1 = p′′
2; q′′

1q′′
2 ∈ E′′

2,

σmp1 (p′′
1) ∨ μ′

mp1
(q′′

1q′′
2) if q′′

1 = q′′
2; p′′

1p
′′
2 ∈ E1′′

μ′MP1∗MP2
mp2

((p′′
1, q

′′
1)(p′′

2, q
′′
2)) = {σmp2 (p′′

1) ∧
σmp2 (q′′

1) if p′′
1 = p′′

2; q′′
1q′′

2 ∈ E′′
2

σmp2 (p′′
1) ∧ μ′

mp2
(q′′

1q′′
2) if q′′

1 = q′′
2; p′′

1p
′′
2 ∈ E′′

1}

Definition 2.12. [12] In a SVNG, NG = (A, B), the
domination number is defined by the minimum car-
dinality among all the minimal dominating set of NG

and it is denoted by γSVN (NG).

Definition 2.13. [20] Let A = (T, I, F) be a SVNG,
then the score function S is defined as follows

S(A) = 2 + T − I − F

3

Let G1 = (V1, E1) and G2 = (V2, E2) be two
SVNG’s, while applying any operation ’*’ on
the SVNG’s G1 and G2 such that the required
SVNG G1 ∗ G2 contains the vertex set (V1 ∗ V2),
cartesian product of V1 and V2. Selecting any
such operation, which satifies the above condition
will be applied on any two SVNG’s and it can be
constructed into a network. In this paper, we present
such different operations on SVNG like lexico-
graphic, symmetric difference, maximal product,
and residue product are presented with appropriate
examples. We have modeled a real-life problem for
selecting the best optimal network using SVNG and
those operators are used to find the most efficient one.

The operations on single-valued Neutrosophic
Graphs (SVNG) such as Lexicographic, Symmet-
ric difference, Residue product and Max product are
studied from [2, 6, 8].

3. Domination on operations of single-valued
Neutrosophic graphs

3.1. Lexicographic product of two single-valued
Neutrosophic graphs

3.1.1. Definition
Let LP1 = (M1, N1) and LP2 = (M2, N2) be two

single-valued Neutrosophic networks of the graphs
GLP1 = (V1, E1) and GLP2 = (V2, E2) respectively.
The Lexicographic product graph is denoted as LP1 ·
LP2 is the pair (M, N) of single-valued Neutrosophic
graph such that
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Fig. 1. SVNG G1.

Fig. 2. SVNG G2.

i)

TM(x1, x2) = min
(
TM1 (x1), TM2 (x2)

)

IM(x1, x2) = min
(
IM1 (x1), IM2 (x2)

)

FM (x1, x2) = max
(
FM1 (x1), FM2 (x2)

)

∀ (x1, x2) ∈ M1 × M2.

ii)

TN ((x, x2)(x, y2))

= min
(
TM1 (x), TM2 (x2y2)

)

IN ((x, x2)(x, y2))

= min
(
IM1 (x), IN2(x2y2)

)

FN ((x, x2)(x, y2))

= max
(
FM1 (x), FN2 (x2y2)

)

∀ x ∈ M1, x2y2 ∈ N2.

iii)

TN ((x1, x2)(y1, y2))

= min
(
TN1 (x1y1), TN2 (x2y2)

)

IN ((x1, x2)(y1, y2))

= min
(
IN1 (x1y1), IN2 (x2y2)

)

FN ((x1, x2)(y1, y2))

= max
(
FN1 (x1y1), FN2 (x2y2)

)
,

∀ x1y1 ∈ N1 and x2y2 ∈ N2.

3.1.2. Example
Let SVNG G1 and SVNG G2 be two Lexico-

graphic SVNN shown in Fig 1 and Fig 2 of the graphs
GLP1 = (V1, E1) and GLP2 = (V2, E2) respectively.
The Lexicographic product of single-valued Neutro-
sophic network LP1 · LP2 is shown in Fig. 3.

Fig. 3. LP1 · LP2.

To analyze the optimal network from the con-
structed network, we define an efficient score function
to find the minimum domination number of the
weighted SVNG network. The score function defined
by us is more efficient than the existing score func-
tion defined in 2.13 since, Indeterminacy value (I)
does not depend on both Truth (T) and Falsity (F)
value because I is not a complement of T and F and
the values of T, I, F are independent of each other.
Even though the value of indeterminacy is uncer-
tain, we assume it by taking 0.5 as both chances of
truth and falsity which makes our work the significant
advantage of defining efficient networks.

Hence, we define the Edge score function (ESF)
and Vertex score function (VSF) of a single-valued
Neutrosophic graph to find the minimum weight of
the spanning tree as follows:

ESF = 2 + Tμ(x, y) − (0.5)Iμ(x, y) − Fμ(x, y)

3

VSF = 2 + Tσ(x) − (0.5)Iσ(x) − Fσ(x)

3

The weighted LP1 · LP2 represented in Fig 4, and
it’s minimal dominating sets are as follows;
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Fig. 4. LP1 · LP2 with minimum score function.

S1 = {ay, cz, dy}
S2 = {ay, bz, dy}
S3 = {ay, bx, dy}
S4 = {ay, cz, dy}
S5 = {by, cy, dy, ay}.

The vertex cardinality of the members of above
dominating sets are ay = 0.4666, cz = 0.5, dy =
0.5333, bz = 0.52, bx = 0.5166, by = 0.55, cy =
0.5.

The domination number of the dominating sets
S1, S2, S3, S4, S5 are

S1(LP1 · LP2)

= 0.4666 + 0.5 + 0.5333 = 1.4999

S2(LP1 · LP2)

= 0.4666 + 0.5166 + 0.5333 = 1.5165

S3(LP1 · LP2)

= 0.4666 + 0.55 + 0.5333 = 1.5495

S4(LP1 · LP2)

= 0.4666 + 0.5 + 0.5333 = 1.4999

S5(LP1 · LP2)

= 0.55 + 0.5 + 0.5333 + 0.4666 = 2.049

The domination number of LP1 · LP2 is 1.4999
which is obtained from the dominating sets S1 and
S4.

Fig. 5. Minimum Spanning Tree of LP1 · LP2.

The minimal spanning tree of the weighted
network LP1 · LP2 is found using the Kruskal’s algo-
rithm is shown in Fig 5 and hence, its minimum
weight of spanning tree is 5.1996.

3.2. Symmetric difference of two single-valued
Neutrosophic graphs

Let SD1 = (σ1, μ1) and SD2 = (σ2, μ2) be two
SVNGs of the graphs GSD1 = (V1, E1) & GSD2 =
(V2, E2) respectively. Then the symmetric difference
of SD1 & SD2 is defined and denoted as

SD1 ⊕ SD2

= (σ1 ⊕ σ2, μ1 ⊕ μ2) is defined as follows

i) ∀ (x, y) ∈ V1 × V2.

TσSD1
⊕ TσSD2

(x, y)

= TσSD1
(x) ∧ TσSD2

(y),

IσSD1
⊕ IσSD2

(x, y)

= IσSD1
(x) ∧ IσSD2

(y) and

FσSD1
⊕ FσSD2

(x, y)

= TσSD1
(x) ∨ FσSD2

(y);

ii) ∀ x ∈ V1 and (y, z) ∈ E2,
(TμSD1

⊕ TμSD2
)((x, y), (x, z)) =

TσSD1
(x) ∧ TμSD2

(y, z);

(IμSD1
⊕ IμSD2

)((x, y), (x, z)) =
IσSD1

(x) ∧ IμSD2
(y, z);
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(FμSD1
⊕ FμSD2

)((x, y), (x, z)) =
FσSD1

(x) ∨ FμSD2
(y, z);

iii) ∀ x ∈ V2 and (y, z) ∈ E1,

(TμSD1
⊕ TμSD2

)((y, x), (z, x))

= TμSD1
(y, z) ∧ TσSD2

(x);

(IμSD1
⊕ IμSD2

)((y, x), (z, x))

= IμSD1
(y, z) ∧ IσSD2

(x);

(FμSD1
⊕ FμSD2

)((y, x), (z, x))

= FμSD1
(y, z) ∨ FσSD2

(x);

iv) ∀ (x, y) /∈ E1 and (z, w) ∈ E2,

(TμSD1
⊕ TμSD2

)((x, z), (y, w))

= min{TσSD1
(x), TσSD1

(y), TμSD2
(z, w)};

(IμSD1
⊕ IμSD2

)((x, z), (y, w))

= min{IσSD1
(x), IσSD1

(y), IμSD2
(z, w)};

(FμSD1
⊕ FμSD2

)((x, z), (y, w))

= max{FσSD1
(x), FσSD1

(y), FμSD2
(z, w)};

v) ∀ (x, y) ∈ E1 and (z, w) /∈ E2,

a) (TμSD1
⊕ TμSD2

)((x, z), (y, w))

= min{TSDμ1 (x, y), TσSD2
(z), TσSD2

(w)};
(ISDμ1 ⊕ IμSD2

)((x, z), (y, w))

= min{ISDμ1 (x, y), IσSD2
(z), IσSD2

(w)};
(FSDμ1 ⊕ FμSD2

)((x, z), (y, w))

= max{FSDμ1 (x, y), FσSD2
(z), FσSD2

(w)}.

3.2.1. Example
Let SVNG G1 and SVNG G2 be two Symmet-

ric difference SVNN shown in Fig 1 and Fig 2 of
the graphs GSD1 = (V1, E1) and GSD2 = (V2, E2)
respectively. The Symmetric difference of single-
valued Neutrosophic network SD1 ⊕ SD2 is shown
in Fig. 6.

The weighted SD1 ⊕ SD2 is represented in Fig 7,
and its corresponding dominating sets are as follows;

S1 = {ay, cz, dy}
S2 = {bx, by, dy}
S3 = {cx, cy, ay}
S4 = {ay, cz, dx}.

Fig. 6. SD1 ⊕ SD2.

Fig. 7. SD1 ⊕ SD2 with minimum score function.

The domination number of the dominating sets
S1, S2, S3, S4 are

S1(SD1 ⊕ SD2)

= 0.4666 + 0.5 + 0.5333 = 1.4999
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Fig. 8. Minimum Spanning Tree of SD1 ⊕ SD2.

S2(SD1 ⊕ SD2)

= 0.55 + 0.55 + 0.5333 = 1.6333

S3(SD1 ⊕ SD2)

= 0.4666 + 0.55 + 0.5 = 1.5166

S4(SD1 ⊕ SD2)

= 0.4666 + 0.5 + 0.5833 = 1.5166.

The domination number of SD1 ⊕ SD2 is 1.4999
which is obtained from the dominating set S1.

The minimal spanning tree of the weighted net-
work SD1 ⊕ SD2 is shown in Fig 8 and hence, its
weight of minimum spanning tree is 4.6498.

3.3. Residue product of two single-valued
Neutrosophic graphs

Let RP1 = (σ1, μ1) and RP2 = (σ2, μ2) be two
single-valued Neutrosophic networks of the graphs
GRP1 = (V1, E1) and GRP2 = (V2, E2) respec-
tively. Then the Residue product RP1 · RP2 =
(σ1 · σ2, μ1 · μ2) is defined as

i) ∀ (x, y) ∈ V1 × V2,

Tσ1 · Tσ2 (x, y) = Tσ1 (x) ∧ Tσ2 (y),

Iσ1 · Iσ2 (x, y) = Iσ1 (x) ∧ Iσ2 (y) and

Fσ1 · Fσ2 (x, y) = Fσ1 (x) ∨ Fσ2 (y),

Fig. 9. RP1 · RP2.

ii) ∀ (x, y) ∈ E1 and z /= w ∈ V2,

(Tμ1 · Tμ2 )((x, z), (y, w)) = Tμ1 (x, y);

(Iμ1 · Iμ2 )((x, z), (y, w)) = Iμ1 (x, y) and

(Fμ1 · Fμ2 )((x, z), (y, w)) = Fμ1 (x, y).

3.3.1. Example
Let SVNG G1 and SVNG G2 be two Residue prod-

uct SVNN shown in Fig 1 and Fig 2 of the graphs
GRP1 = (V1, E1) and GRP2 = (V2, E2) respectively.
The Residue product of single-valued Neutrosophic
network RP1 · RP2 is shown in Fig 9.

The weighted RP1 · RP2 represented in Fig 10, and
it’s corresponding dominating sets are as follows;

S1 = {bx, cx, bz, cz}
S2 = {by, cy, dy, bz}
S3 = {ay, by, cy, dy}
S4 = {cx, az, bz, cz}.

The domination number of the dominating sets
S1, S2, S3, S4 are
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Fig. 10. RP1 · RP2 with minimum score function.

S1(RP1 · RP2) = 0.55 + 0.55 + 0.5166 + 0.5

= 2.1166

S2(RP1 · RP2) = 0.55 + 0.5 + 0.5333 + 0.5166

= 2.0999

S3(RP1 · RP2) = 0.4833 + 0.55 + 0.5 + 0.5333

= 2.0666

S4(RP1 · RP2) = 0.55 + 0.4666 + 0.5166 + 0.5

= 2.0332.

The domination number of RP1 · RP2 is 2.0332
which is obtained from the dominating set S4.

The minimal spanning tree of the weighted net-
work RP1 · RP2 is shown in Fig 11 and hence, its
minimum weight of the spanning tree is 5.4333.

3.4. Max product of two single-valued
Neutrosophic graphs

Let MP1 = (σmp1 , μmp1 ) and MP2 =
(σmp2 , μmp2 ) be two single-valued Neutrosophic
networks of the graphs GMP1 = (Vmp1 , Emp1 )
and GMP2 = (Vmp2 , Emp2 ) respectively. Then the

Fig. 11. Minimal Spanning Tree of RP1 · RP2.

maximal product of the graphs MP1 and MP2 is
denoted by

MP1 ∗ MP2 = (
σmp1 ∗ σmp2 , μmp1 ∗ μmp2

)

and defined as:

i) ∀ (x, y) ∈ Vmp1 × Vmp2 ,

(Tσmp1
∗ Tσmp2

)(x, y) = Tσmp1
(x) ∨ Tσmp2

(y),

(Iσmp1
∗ Iσmp2

)(x, y) = Iσmp1
(x) ∨ Iσmp2

(y),

and

(Fσmp1
∗ Fσmp2

)(x, y) = Tσmp1
(x) ∧ Fσmp2

(y);

ii) ∀ x ∈ Vmp1 and (y, z) ∈ Emp2 ,

a)
(
Tμmp1

∗ Tμmp2

)
((x, y), (x, z)) =

Tσmp1
(x) ∨ Tμmp2

(y, z);

b)
(
Iμmp1

∗ Iμmp2

)
((x, y), (x, z)) =

Iσmp1
(x) ∨ Iμmp2

(y, z);

c)
(
Fμmp1

∗ Fμmp2

)
((x, y), (x, z)) =

Fσmp1
(x) ∧ Fμmp2

(y, z);
iii) ∀ x ∈ Vmp2 and (y, z) ∈ Emp1 ,

a)
(
Tμmp1

∗ Tμmp2

)
((y, x), (z, x)) =

Tμmp1
(y, z) ∨ Tσmp2

(x);
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Fig. 12. MP1 ∗ MP2.

b)
(
Iμmp1

∗ Iμmp2

)
((y, x), (z, x)) =

Iμmp1
(y, z) ∨ Iσmp2

(x);

c)
(
Fμmp1

∗ Fμmp2

)
((y, x), (z, x)) =

Fμmp1
(z, y) ∧ Fσmp2

(x);

3.4.1. Example
Let SVNG G1 and SVNG G2 be two Max product

SVNN shown in Fig 1 and Fig 2 of the graphsGMP1 =
(V1, E1) and GMP2 = (V2, E2) respectively. The
Max product of single-valued Neutrosophic network
MP1 ∗ MP2 is shown in Fig 12.

The maximal product of MP1 ∗ MP2 is given as
follows.

The weighted MP1 ∗ MP2 is represented in Fig 13,
and it’s corresponding dominating sets are as follows;

S1 = {bx, dy, az, cz}
S2 = {ax, cx, ay, dz}
S3 = {cx, ay, dy, cz}
S4 = {ay, dy, bx, bz}

The domination number of the dominating sets
S1, S2, S3, S4 are

Fig. 13. MP1 ∗ MP2 with minimal score function.

S1(MP1 ∗ MP2) = 0.6166 + 0.5833 + 0.5166

+0.55 = 2.2665

S2(MP1 ∗ MP2) = 0.5666 + 0.5666 + 0.5333

+0.5833 = 2.2498

S3(MP1 ∗ MP2) = 0.5666 + 0.5333 + 0.5833

+0.55 = 2.2332

S4(MP1 ∗ MP2) = 0.5333 + 0.5833 + 0.6166

+0.5833 = 2.3165.

The domination number of MP1 ∗ MP2 is 2.2332
which is obtained from the dominating set S3.

The minimal spanning tree of the weighted net-
work MP1 ∗ MP2 is shown in Fig 14 and hence, its
minimum weight of spanning tree is 5.8996.

4. Application

4.1. An application of symmetric difference
network

Technology salespeople fulfil responsibilities
throughout their workday to help consumers find the
technology that can benefit them the most. Technol-
ogy sales are the result of connecting customers with
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Fig. 14. Minimal Spanning Tree of MP1 ∗ MP2.

technology that can provide a solution to a specific
problem.

Technology sales professionals face a unique set
of challenges, such as needing a deep understanding
of the complex products they sell and possessing the
people’s skills needed to build trust as well as sales
abilities to close deals with prospects.

A sales training program is designed to help sales
professionals achieve sales success for themselves
or for their organizations. Most sales training pro-
grams help to develop the sales skills and techniques
needed to approach leads, create new sales opportu-
nities, close deals, and build rapport with clients and
customers.

Sales team members have the right combination of
technical knowledge and practical sales know how to
simultaneously do well. For this reason, sales train-
ing designed specifically for technology companies is
important. Especially whether selling a new technol-
ogy or in a highly competitive market, these training
can help the technology sales team develop the sales
skills needed to serve more, reach decision makers
and take deals off the line to maximize revenue.

Let us consider a group of experts who will train the
group of trainees to develop their sales skills. Assume
that Network SD1 as trainees has a concern for per-
sons (nodes) whom they have a flow arising from their

knowledge or skills. Nodes a(.2, .4, .6), b(.4, .3, .5),
c(.3, .4, .5), d(.4, .5, .4) are represented as Trainee 1,
Trainee 2, Trainee 3 and Trainee 4 respectively.

Let us assume that Network SD2 consists of
expects x(.3,.3,.4), y(.4,.4,.6), z(.2,.5,.4), whose role
is to train the trainees with their skills so that each
trainee can attain a new skill when trained by the
experts.

The role of each expert in training is different from
one another. So, when a skill is trained by an expert
to a trainee a new skill is developed by them and
also their existing skill will make the sales training
more effective in technology. A trainee therefore is
trained by experts and does attain other skills expect
their own core competency so that the trainee can
have a cleaver focus on what they can do the trust
to attain and wider the scope to capture high-value
opportunities in sales technology.

The experts of Network SD2 plays a different role
in sales training. Each expert (or) trainer is well-
developed with special sales training. For example,
expert ’x(.3,.3,.4)’ is good at training inside and field
sales for the trainees. Expert ’y(.4,.4,.6)’ is used in
service sales training skills and expert ’z(.2,.5,.4)’ is
prone to sales management skills. These experts com-
bine their sales training to develop the trainees for
the letter sales development to achieve the business
objectives through effective management.

For example, ax(.2, .3, .6) be the sales executive
of the Network developed by the expert ’x(.3,.3,.4)’
with training in inside sales for a trainee who is good
at effective communication when ’ax’ is trained they
are built into a better sales executive with their exist-
ing skill ay(.2, .4., .6) as insurance sales officer with a
skill of better communication and training of service
sales expert and az(.2, .4, .6) the account manager
who is trained by the sales management expert
by(.2, .3, .65) is attained by the trainee ’b(.4,.3,.5)’
with good networking skills who is trained by the
expert with service sales [Sales Development Rep-
resentative] and so on the expertise in each field are
developed by the experts to the trainees in sales tech-
nology.

The roles of each node are different from one
another, when these nodes are connected into a Sym-
metric difference, the above Network SD1 ⊕ SD2 is
obtained from the two small networks SD1 and SD2
respectively.

Symmetric difference Network of the sales tech-
nology allows effective management of business and
pursue network. Organizational structure in the first
place.
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Flexibility is one of the main reasons for trained
employees to engage in a network organization by
outsourcing work. This allows them to complete the
tasks in a minimal duration of time without facing
major problems.

The neutrosophic network nodes are linked to one
another for the flow of information in less time to
other nodes. The truth-membership degree of each
node indicates the better-skilled person trained in the
organization. The indeterminacy-membership degree
of each node demonstrates how much the person-
âŁ™s skill is uncertain. The falsity-membership
degree of each node tells the fewer skills gained by
the person. The flow of information from one node
to another the node in the network takes place in
effective time management. The truth-membership
degree, the indeterminacy-membership degree and
the falsity-memb-ership degree of each link is given
by effective time management of the node in collab-
oration. From the above single-valued Neutrosophic
network models, we find the Optimal network whose
minimal spanning tree make the network more flexi-
ble with the minimum possible weights with effective
score function are found and thus the optimal network
with minimum optimal value increase in profits of the
organizations.

The limitations of the study is, an effective opti-
mum network is obtained from the each constructed
network with a minimum weight of spanning tree
using score function. The score function defined in
our study gives an Optimal value from which the
effective optimal network is chosen from the vari-
ous operations applied on single valued Neutrosophic
graphs. This study can also be extended to different
operations applied on graphs.

4.2. Optimal network algorithm

Step-1: Constructed a set of finite networks say
N = N1, N2, · · · , Nr using the distinct operations
on network with vertex set V = V1 × V2.

Step-2: Find the value of score function of
each nodes and links of the constructed networks
N1, N2, · · · , Nr.

Step-3: Find the minimal dominating set and
dominating number of each constructed networks
N1, N2, · · · , Nr.

Step-4: Let the domination number of
the constructed network N1, N2, · · · , Nr be
DN1 , DN2 , · · · , DNr respectively.

Step-5: Discover the minimal spanning
trees of the constructed networks and Let
it be TST1 , TST2 , · · · , TSTR of the networks
N1, N2, · · · , Nr respectively and find the mini-
mum weights of TST1 , TST2 , · · · , TSTR using score
function.

Step-6: Let the minimum weight of
TST1 , TST2 , · · · , TSTR be WST1 , WST2 , · · · , WSTR .

Step-7: Compute the optimal value for each con-
structed network N1, N2, · · · , Nr, where the optimal
value is defined as the minimum value of the sum of
the domination number and the minimum weight of
the spanning tree.

ONi = DNi + WSTi

OptimalValue, OVN = min
i

{ONi}, i = 1, 2, · · · , r.

Step-8: Among these values which network gives
the optimal value is said to be the optimal network.

From section-3 we arrived at the following;

The domination number of LP1 · LP2 is 1.4999.

The domination number of SD1 ⊕ SD2 is 1.4999.

The domination number of RP1 · RP2 is 2.0332.

The domination number of MP1 ∗ MP2 is 2.2332.

Minimum weight of spanning tree LP1 · LP2 =
5.1996.

Minimum weight of spanning tree SD1 ⊕ SD2 =
4.6498.

Minimum weight of spannin,g tree RP1 · RP2 =
5.4333.

Minimum weight of spanning tree MP1 ∗ MP2 =
5.8996.

Using the Optimal network algorithm, symmet-
ric difference SD1 ⊕ SD2 network has the minimum
domination number and its weight of the spanning
tree is minimum, which gives the best optimal net-
work of all the other networks constructed here.
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5. Conclusion

The single-valued Neutrosophic models give more
precision, flexibility, and compatibility to the sys-
tem as compared to the classical, fuzzy, intuitionistic
fuzzy and Neutrosophic models. In this paper, the
authors arrive at some operations such as Lexico-
graphic, Symmetric difference, Residue product and
Max product on single-Valued Neutrosophic graphs.
Also, investigated some of their properties to find
their efficiency and discussed the real-world appli-
cation of the Symmetric difference network with a
minimum spanning tree algorithm which is generated
to achieve the minimum efficient productivity to com-
plete the tasks in a social network. In the future, the
study will be extended to other operations along with
strategies to achive the efficiency of the constructed
network.
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