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HSDL-based intelligent threat detection
framework for IoT network
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Abstract. Many Internet of Things (IoT) devices are susceptible to cyber-attacks. Attackers can exploit these flaws using
the internet and remote access. An efficient Intelligent threat detection framework is proposed for IoT networks. This paper
considers four key layout ideas while building a deep learning-based intelligent threat detection system at the edge of the IoT.
Based on these concepts, the Hybrid Stacked Deep Learning (HSDL) model is presented. Raw IoT traffic data is pre-processed
with spark. Deep Vectorized Convolution Neural Network (VCNN) and Stacked Long Short Term Memory Network build the
classification model (SLSTM). VCNN is used for extracting meaningful features of network traffic data, and SLSTM is used
for classification and prevents the DL model from overfitting. Three benchmark datasets (NBaIoT-balanced, UNSW-NB15 &
UNSW BOT IoT- imbalanced) are used to test the proposed hybrid technique. The results are compared with state-of-the-art
models.

Keywords: Hybrid stacked deep learning, stacked LSTM, Vectorized Convolutional Neural Network, IoT-network security,
edge computing

1. Introduction

The Internet of Things (IoT) network is a collection
of intelligent items connected by the worldwide inter-
net, such as sensors, digital appliances, smartphones,
embedded electronic gadgets, integrated automo-
biles, healthcare equipment, computers; it is rapidly
expanding and becoming an integral part of our daily
lives. There are a variety of applications that use this
technology: smart health care systems, smart parking,
intelligent traffic control, smart agricultural science,
and intelligent transportation.

IoT makes human life easier, but there is a con-
cern about privacy and security [1]. IoT networks are
turn into a popular target for hackers. According to
research from Palo Alto Networks’ Unit 42, 98 per-
cent of IoT device communication is unencrypted,
and 40 percent of attacks target IoT device flaws [2].
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Adversaries might then utilize the susceptible devices
to connect with IoT botnet and launch advanced,
large-scale assaults. For example, Mirai [3], the orig-
inal IoT botnet, was competent to infect unprotected
surveillance (CCTV) cameras utilizing default cre-
dentials to execute a DDoS assault at DNS servers in
October 2016. In some regions of the United States,
internet connectivity was disrupted because of this
assault. Mozi, an IoT botnet identified in April 2020,
was proven capable of performing multiple DDoS
assaults [4, 5]. Most preventative approaches fail
somewhere at the level of edge. Edge security is
required; intrusion detection systems are frequently
employed to identify malicious network traffic [6, 7].

As the number of assaults on IoT networks and sys-
tems grows, they become increasingly sophisticated
and undetected because IoT network creates a huge
volume of heterogeneous and time-series data. When
such data is subjected to big data analytics, it is feasi-
ble to uncover previously unknown patterns, uncover
hidden relationships, and obtain new insights [8]. The
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Intelligent threat detection system should be evolved
to deal with security issues.

Many classic machine learning (ML) approaches
utilized for intrusion detection [9] have shallow archi-
tectures and are unsuitable for detecting malicious
activity in huge data context. They have trouble rec-
ognizing unexpected assaults, providing real-time
solutions, and managing the usual intrusion in huge
data sets.

Deep learning (DL) techniques have been used
to manage massive data in many applications in
recent years [10, 11]. Deep Belief Networks are pri-
marily applied for pattern recognition, and it trains
quicker than other DL approaches. CNN is commonly
employed in image-processing applications that has
more discriminative capacity.

DL algorithms perform well when handling highly
heterogeneous data [12–14]. They may indeed assess
complicated and big data to gain knowledge, iden-
tify relationships within data. DL Algorithms use
prior attack patterns to discover new and previously
unknown attack patterns [15–17]. IoT devices have
limited storage and compute capabilities due to that
heavy activity such as big-data analysis, and the
development of learning models must be offloaded
to edge and cloud servers [18–20]. As a result, com-
putational offloading [21] could assist in minimizing
task execution delays and improve energy efficiency
in battery-powered and portable IoT devices, but that
may create specific security issues [22].

Further efforts are required to enhance the practice
of malicious activity detection in the IoT network.
The deep learning based intelligent threat detection
framework is proposed in this paper. The key contri-
butions are as following:

• Established with four basic design concepts for
constructing HSDL-based ITDS for IoT net-
work, including distributed processing, input
vector selection, over fitting management, model
optimization, and testing on real-time IoT
datasets.

• Examined state-of-the-art approaches, discov-
ered gaps, and analyzed the key conflicts for our
work based on the stated core design principles.

• An efficient pre-processing with the spark gives
distributed environment to process data.

• Combination of VCNN and Stacked LSTM is
used for intelligent threat detection systems on
the Internet of Things.

• The deepVCNN collected significant character-
istics from network data flow.

• The SLSTM is utilized here for maintaining
long-term interdependence with retrieved vari-
ables.

• The drop-connect regularisation approach is
used here in the hidden layer of the SLSTM to
avoid overfitting.

• RMSProp is used for model optimization, and
the hyper-parameters of the model are optimized
by observation and experimentation. For mal-
ware classification, the suggested model is tested
using the publicly available three IoT network
traffic datasets.

The article’s structure proceeds as follows: Sec-
tion II reviewed the related work. In Section III,
the proposed model is described. The experimental
setup, dataset selection, and experimental results are
discussed in Section IV. Section V presents the com-
parison of Results with the state-of-the-art model.
Section VI covers the conclusion and future work of
this paper.

2. Related works

In the digital world, humans are increasingly
reliant on technologies. Every public and private
sector uses smart technology, consisting of sen-
sors, sensors integrated with products, and actuators.
These sensor-based devices are networked and com-
municate massive amounts of data every second.
These devices provide low-hanging fruit for attack-
ers to access any network and steal data remotely.
As a result, there is a need for intelligent systems
smart enough to make judgments to secure informa-
tion from intrusion. Many applications make use of
ML and DL artificial intelligence algorithms.

This section includes recent research on IoT secu-
rity threats and mitigation strategies. Deep Learning
methodologies have surpassed standard machine
learning methods in every underlying technology.
McDermott CD [23] et al. developed an RNN-based
bidirectional LSTM for deep packet inspection threat
detection. Their investigation was generated on their
dataset that was primarily for detecting Mirai attacks.
The bidirectional model lengthens processing time
yet provides a superior progressive model at points of
time. Based on network flow, they created a labelled
dataset for botnet identification. Jiyeon Kim [24] et
al. developed a device-level botnet assault detection
system using ML and DL algorithms. Sajad Homay-
oun [25] et al. discovered a correlation between
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autoencoder characteristics and the CNN model for
network botnet traffic. Hammoudeh M [26] et al.
suggested a signature-based fraudulent traffic detec-
tion approach in a smart home using IoT network
to identify abnormal behavior. They employed pas-
sive network sniffing methods on a cloud application.
Their approach was limited to detecting malicious
behaviour in DNS and Telnet traffic.

H. Haddad Pajouh [27] et al. employed an RNN
technique to find malware in the operation execution
codes of ARM-based IoT apps (Opcodes). For IoT
systems, A.A. Diro [28] et al. used a distributed attack
detection approach based on DL. DL significantly
increases classification accuracy for a challenging
problem without using a feature selection approach.
DL has the capacity to self-learn, provides excel-
lent accuracy, works with large amounts of data, and
boosts processing speed with GPU processors. It is
also appropriate for networks with limited resources.
Deep autoencoders were utilized by Yeir Meidan
[29] et al. to identify botnet attacks at the network
level. Deep encoders have the potential to learn com-
plicated functions. The authors took a sample of
benign IoT traffic to detect malicious behavior. If
the benign snapshot is not built, they discover it
to be a sign of a botnet. There were many stud-
ies done on host-based [29, 30] threat detection.
When it comes to IoT devices, many have restricted
access (for example, wearables) and lack the process-
ing capability to execute complicated computations.
The effectiveness of host-based threat detection is
not appropriate for all IoT devices. In all networks,
including IoT, a network-based threat detection tech-
nique is applied [31, 32]. Honey pots are used to
monitor malware behaviour on a network. The key
purposes of honey pots are to collect malware, iden-
tify their behaviours, characterize them, and track
them. It is used for malware signature extraction and
device emulation. It aids in understanding malware
behaviour rather than forecasting botnets. A network-
based [32] anomaly detection system continually
analyses network behaviour by leveraging signature
patterns from approaches (honeypot, sandbox) or a
hybrid approach of Command & Control Server com-
munication, network traffic, and data mining. D.H.
Summerville et al. [33] employed network traffic flow
data for anomaly-based malware detection which is
suited for detecting compromised devices known as
bot or botnet in all types of environments, including
IoT.

The cloud [34] is utilized in various applications
to store and analyze large amounts of data rapidly

[35]. Because the cloud is centralized, when IoT
devices connect to this cloud server, the quantity
of data transfer is measured in Tbps (Terabits per
second), resulting in massive traffic, high bandwidth
use, and excessive latency. IoT devices transmit data
continuously; however, uploading all information to
the cloud is not essential, but periodic updates are
required. At the same time, designers do not want any
loss of essential data [36, 37]. To address this issue,
edge and edge cloud enable that data to be processed
close to the device and only essential data to be sent
to the cloud. Edge computing reduces network traffic,
bandwidth utilization, latency, and boosts availability
[38]. Mollah MB et al. [39] suggested an effec-
tive data exchange and searching method for IoT
employing edge with cloud assistance. Using edge
computing, the authors addressed the significant chal-
lenges of data leakage, modification, integrity, and
illegal access. Data sharing at the edge reduces the
processing load on smart devices while assuring data
integrity [40].

3. Materials and methods

3.1. Proposed intelligent threat detection
framework

The Internet of Things network is described as
several smart sensor embedded gadgets mounted in
numerous locations. As a result, the intelligent threat
detection system should be able to handle the mali-
cious traffic created by these gadgets to deal with a
rapid reaction in a robust way. In this condition, the
central abnormality finding system behaves poorly
in accurate detection. The proposed intelligent threat
detection framework is planned to reduce the burden
of centralized system processing by distributing the
processing load at the end nodes. The edge computing
process reduces the network traffic and latency.

Figure 1 represents the working functionality of
the proposed framework. It comprises three parts:
IoT device (things), edge service, and cloud storage.
The IoT gadgets are interconnected through the edge
gateway. Some of these devices have processor and
memory constraints, and they cannot handle security
events. The edge layer contains spark streaming pro-
cess, network traffic monitoring devices that monitor
malicious activity by the intelligence.

The edge layer is accountable for gathering data,
processing, and securing the data. It will reduce the
computational overhead on IoT devices. This layer
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Fig. 1. Diagram of proposed intelligent threat detection framework.

is further responsible for improving service quality
when data is sent to the cloud and lowering the com-
putational overhead of IoT devices at the cloud. This
layer is also in-charge of delivering critical and secure
data to the cloud for further processing. The proposed
framework detects anomalous behaviour in the IoT
devices using the master edge node, and its detailed
functionality is explained in the upcoming subsec-
tion. The Artificial Intelligence of Deep Learning
methodology is used for training the proposed frame-
work. The model is evaluated with three benchmark
datasets created in the real-time network traffic at the
IoT environment.

3.2. Methodology

3.2.1. Convolutional Neural Network (CNN)
CNN is a deep learning model used to learn high-

level patterns in image processing. CNN’s building
blocks are made up of three layers: convolution with
activation function ReLU (Rectified Linear Unit),
max pooling, and completely connected [41, 42].
The first two layers will extract features, while the
third layer will map the extracted features with out-
put for classification. There will be multiple kernels
in a convolutional layer. Each kernel works as a
feature detector. The outcome of the convolution is
frequently referred to as a feature map. Feature map
displays where the kernel occurred in the signal. A
collection of feature maps is the result of a set of ker-
nels. This is a one-dimensional multichannel signal
for one-dimensional data. The kernels in a layer are
often a tiny exponent of two (i.e., 2,4,8 or 16). The
convolution layer’s mathematical action is a special-
ized linear operation. In this paper, a one-dimensional
vectorized CNN is employed for malware detection.
The performance of a model under specific kernels
and weights has been determined with a weight vec-
tor via forward and backpropagation on a training

sample, and learnable parameters, i.e., kernels and
weights, are updated according to the loss value via
the RMSprop optimization algorithm, which is an
exponential moving average of the gradient.

The following equations are used for updating the
weights and bias for each layer.

yi =
nc−1∑
c=0

p∑
k=−p

xc,j−kwc,k Convolution (1)

∂L

∂xc,i

=
p∑

k=−p

∂L

∂yi+k

wc,k input gradient (2)

∂L

∂wc,k

=
m−1∑
j=0

∂L

∂yj

xc,j−k parameter gradient (3)

wt+1 = wt− ∝ Vt − ε
∂L

∂w
. RMSProp Optimization

(4)

Vt = βVt+1 + 1 − β

(
∂L

∂w

)2

(5)

∂L
∂w

- Gradient Component
∝ - Learning rate
β - 0.9 (by default)
Vt - Initialized to zero
t - Time step
Wt, Wt−1 - Weight with respect to time t and t − 1
ε - 10−6

Where x, y are input and output, c- channel index,
m-total number of instances, k- kernel size, p- half
the kernel length, respectively. The Equation (1) is
used to find the range of convolution, which is from
minus infinity to plus infinity. The only non-zero val-
ues occur when the non-zero sections of the input
value and the kernel overlap. Equation (3) determines
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Fig. 2. The architecture of traditional Long Short-Term Memory
(LSTM).

the partial derivative of the loss function for each of
the parameters, i.e., each of the kernel element val-
ues. The input gradient is calculated using Equation
(2) for each output. The weights are updated using
Equations (4) & (5).

3.2.2. Long Short-Term Memory (LSTM)
In present days, the LSTM is utilized in every

sequential modelling task, such as detecting motion,
processing natural languages, and recognizinspeech.
Figure 2 shows the block diagram of the traditional
LSTM.

The memory cell and three multiplicative gating
units such as input gate, output gate, and a forget
gate are placed in the LSTM block. For the cells,
continuous operations are provided by the recur-
rent integration among the cells and each gate. The
cell controls the transmission of state values towards
arbitrary time intervals. The writing, reading, and
resetting of the operations for the cell is performed
by every gate placed in the block [43].

The formula to calculate the LSTM block is given
below. In that formula, when the input gate allows the
input value to the block, the input value is protected
in the state of the cell.

nl = σ (Xnyl + Sngl−1 + an) (6)

D̃l = ReLU (XDyl + SDgl−1 + aD) (7)

Where,
nl => input value, σ => activation function
D̃l => candidate value of memory cells,
l => time steps, gl => output value,
X, S, a => input vector, weight matrices, and bias,

respectively.

The forget gate is managing the weight of the state
unit, and the following equation is utilized to calculate
the forget gate value,

el = σ(Xeyl + Segl−1 + ae) (8)

After this calculation, the equation to calculate the
new state of the memory cell is updated as a given
blow,

Dl = nl × D̃l + el × Dl−1 (9)

With the help of the above calculation, the follow-
ing equion is utilized to calculate the output value of
the gate,

ul = σ (Xuyl + Sugl−1 + PuDl + au) (10)

And at last, the below-mentioned formula is used
to find the final output value of cells,

gl = ul × Softmax (Dl) (11)

The output gate blocks the cell’s output, and all
gates use the sigmoid function for nonlinearity. The
state unit also serves as an additional unit for the other
gating units. They finally know that the long-term
dependencies issue can be solved with minimal cost
of computations with LSTM architecture.

3.2.3. Stacked LSTM
Graves pioneered Deep LSTM for voice detec-

tion. Layered LSTM is employed here to get depth
in space, like how feedforward layers are layered in
CNN. A stacked LSTM layer is consisting of multi-
ple hidden LSTM layers, each with its own memory
cell. Instead of a single output, an LSTM layer gives
a sequence of output to the following hidden LSTM
layer. Stacked LSTM has been shown to be stable for
problems involving sequence prediction tasks that are
difficult for other models. Network flow data is also in
the form of a sequence of packets, which may be suc-
cessfully handled using stacked LSTM for in-depth
packet analysis.

3.3. The proposed deep learning model for
intelligent threat detection

3.3.1. Data collection – IoT devices
The network traffic data collection is represented as

Td = [x1, x2, x3 . . . xn, Lc], where x1−n is the input
features, and L is the label, c is the number of classes
in the label. The network traffic dataset is represented
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Fig. 3. Block diagram of proposed hybrid stacked deep learning model.

Fig. 4. Diagram of pre-processing steps used in spark.

in two-dimensional matrix TDS using Equation (12).

TDS =

⎡
⎢⎢⎢⎢⎢⎣

x1
1 x1

2 . . . x1
k

x2
1 x2

2 . . . x2
k

...
...

...

xn
1 xn

2 . . . xn
k

⎤
⎥⎥⎥⎥⎥⎦

(12)

3.3.2. Spark – data pre-processing module
Spark is an open-source big-data processing

engine. It does the job in parallel with the help of
the master node and worker nodes. It provides faster
computing speed on a huge volume of data. In this
work, PySpark version 3 is used in the google colab
to process the IoT traffic data. The process of scal-
ing and normalization is done in parallel with spark.
The traffic data’s normalization process is performed
using the Equation (13), is mentioned below:

fn
k (new) = xn

k − min
(
xn
k

)
max

(
xn
k

) − min
(
xn
k

) (13)

Where the range of normalization is [0,1]. xn
k is the

raw traffic data; after the normalization input feature
of the dataset is symbolized in Equation (14), the
input features for the proposed hybrid stacked deep

learning model.

NTDS =

⎡
⎢⎢⎢⎢⎢⎣

f 1
1 f 1

2 . . . f 1
k

f 2
1 f 2

2 . . . f 2
k

...
...

...

fn
1 fn

2 . . . f n
k

⎤
⎥⎥⎥⎥⎥⎦

. (14)

3.3.3. HSDL model
The structure of the proposed model is based on

two levels: Deep VCNN and SLSTM, shown in Fig.
3. Deep VCNN is constructed with three layers of
CNN which are used for feature extraction. One Max-
pooling layer is used for dimensionality reduction of
the input shape, followed by a stacked LSTM layer,
which drops some input features to avoid overfitting.
The output of the stacked LSTM layer passed to a
fully connected layer to find the malware classifica-
tion on IoT traffic. A fully connected layer calculated
the loss values for the output label. The number of
nodes in the fully connected and output layers is
equivalent to the number of classes in the dataset.

Deep VCNN performs the convolution operation
with zero padding to find the new input features. For
zero padding, zeros are added at the righand left end
of the data. The kernel size and filters are fixed to find
the most relevant features. The activation function
used in hidden layers is ReLU (Rectified Linear Unit)
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that is calculated using the Equations (15).

f (y) = max (0, f ) (15)

The pooling layer is used to perform the downsam-
pling by using a pool size of 2 and stride size of 3. The
output of the deep VCNN is a reduced form of input
vectors, given as input to the SLSTM. SLSTM has
three layers of LSTM; it trains the pre-trained input
vectors to find the network anomaly in the given input
using the Equations (6–11). The learning rate of the
model is fixed as 0.005 after many trials. It is one of
the tunning parameters for optimizing the DL algo-
rithms. Further improving the model’s performance,
hyperparameters should be tuned.

The RMSProp optimizer is used in this model to
lower the cost function (loss), which aids in reaching
the global minima in the shortest period. However,
cost functions are not always convex, so it will not
converge to global minima; instead settles in local
minima. The RMSProp is used to attain global min-
ima by varying the learning rate and momentum to
address this convergence problem. Equations (4 &
5) used for calculating RMSProp. The binary cross
entropy’s loss function is calculated using the follow-
ing Equation (16).

Loss = − 1

K

K∑
i=1

M∑
j=1

Yijlog(Pij). (16)

Where K is the number of records in traffic data, Yij

is the true probability distribution, log(Pij) is the pre-
dicted probability distribution. Binary cross-entropy
is used to calculate the loss value in the network,
and its output is a probability bween 0 and 1. It is
worth noting that binary cross-entropy loss grows
when the anticipated valudeviates from the actual
class label. The learning process continues still loss
reaches the defined threshold. The learning model is

constructed at the master edge node to detect anoma-
lous behaviour in the network.

3.3.4. Edge-based distributed learning
It consists of one master edge node and worker

edge nodes for distributed learning. The edge nodes
are used to handle the data collected from various IoT
devices. The load is uniformly distributed across the
existing worker edge nodes in the proposed method.
The distributed learning process solves scalability
issues. Once the training process is completed then
the results are recorded in the master edge node and
used to identify abnormalities in elusive IoT traffic
flow.

3.3.5. Botnet detection in IoT traffic
“Robot Network” refers to a botnet, which is made

up of malware-infected devices that are managed
from a remote location by a botmaster. These com-
promised devices were used to carry out a variety
of exploits and attacks. The first IoT-based botnet
assault, known as the Mirai attack, occurred in 2016,
in which around 1 million IoT devices were trans-
formed into bots that generated 1Tbps of network
traffic. The master edge node detects this sort of
irregularity in IoT traffic. The features are efficiently
obtained using the deep VCNN by aggregating the
IoT traffic data. The SLSTM is used to differentiate
between benign and malicious IoT device commu-
nications. The SoftMax function is used to detect
the flow of traffic categorization. The binary classi-
fication approach uses just two network nodes in the
SLSTM’s output layer, whereas the multiclass clas-
sification strategy uses a number of nodes according
to the number of class labels in the IoT traffic dataset.
Algorithm 1 is used in the IoT network traffic to iden-
tify unexpected behaviour. It examines IoT devices
traffic to determine if it is benign or malicious.

Algorithm 1: Proposed Traffic Flow Based Intelligent Threat Detection

Input: IoT network traffic data
Output: Normal/Malicious

START:
Step 1: Data Pre-processing

For all traffic data spark streaming do
For all batch data processing (parallel) do

Normalization (13)
End for

End for
Step 2: Feature Selection

For each VCNN do
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Calculate Convolution using (1)
Calculate Gradient using ((2) & (3))

End For
Feature Selection using Max Pooling

Step 3: Training

For SLSTM do
For each LSTM do

Update weight and bias using (9)
Calculate ReLU Activation (6)
Drop weights

End For
Calculate SoftMax Activation (11)
Optimize hyper parameter using (4)
Build Model
End For
Step 4: Testing

For all traffic testing data do
Test Model – Compute Class
Evaluate Model – Metrics (Accuracy, F1 Score, Precision, Recall)

End For
End

4. Result analysis with performance metrics

This section presents the evaluation of the
proposed framework. It is evaluated using three
benchmark datasets (NBaIoT, UNSW NB15,
UNSW BOT IoT). These datasets are generated
from the different IoT network environments. The
IoT network traffic data were collected from different
smart devices used here to build the deep learning
model based on anomaly detection for detecting
malicious activity in the IoT network.

4.1. Dataset description

The dataset NBaIoT [44, 45] was developed by the
University of California, Irvine, School of Informa-
tion and Computer Science. This dataset was created
from nine viable IoT devices in a real-time environ-
ment. Mirai and BASHLITE (Botnets) viruses are
used to infect the IoT dataset, and the infection strate-
gies of network traffic are collected in real-time. This
dataset is originally designed to differentiate the mali-
cious and benign traffic data for anomaly detection
in the IoT network. It consists of 11 different classes,
which means ten different attacks carried out by two
botnets and one class of benign. The ground truth
training and testing datasets are concatenated, around
5,79,782 & 2,48,478 records, respectively, on differ-
ent forms as attack & normal. The dataset is in the
form of binary classification

The dataset UNSW-NB 15 [46, 47] was developed
by the Australian Cyber Security Centre (ACCS)

cyber range lab using the IXIA PerfectStrom tool. The
tool is used here to produce a mixture of modern reg-
ular operations and synthetic attack behaviors. TCP
dump tool used to detect raw traffic of 100 GB data
(e.g., Pcap files). Around nine types of attacks were
included in this dataset, namely Worms, Fuzzers,
DoS, Generic, backdoors, Reconnaissance, Analysis,
Exploits & shellcode. The Argus and Bro-IDS pro-
grams were used to build the class label to produce
49 features. The ground truth training and testing
datasets are concatenated, which are around 1,75,341
& 82,332 records, respectively, on different forms as
attack & normal. The dataset is in the form of binary
classification.

UNSW IoT Botnet [48] was created by the Cyber
Range Lab of UNSW Canberra. This dataset was cre-
ated for building a realistic IoT network environment
with primary components of network architecture,
fabricated IoT facilities, and feature extraction tech-
niques. The Argus tool is used here to extract the
necessary data features from the dataset. There are
over 72 million records and 46 attributes in the gen-
erated dataset. The attribute assessment approach

Table 1
Statistics of three dataset

Dataset Training Testing Classes
Instances Instances

NBaIoT 579782 248478 11
UNSW-NB 15 1778033 762014 10
UNSW BOT IoT 204174 87502 4
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Table 2
Name of classes and corresponding instance of three dataset

Data Set NBaIoT UNSW NB15 UNSW BOT IoT
S.No. Class Name Instances Class Name Instances Class Name Instances

1 benign 15538 Normal 2218764 DDoS 1541315
2 gafgyt combo 15345 Generic 215481 DoS 1320148
3 gafgyt junk 15449 Exploits 44525 Recon 72919
4 gafgyt scan 14648 Fuzzers 24246 Normal 370
5 gafgyt tcp 15676 DoS 16353
6 gafgyt udp 15602 Reconnaissance 13987
7 mirai ack 15138 Analysis 2677
8 mirai scan 14517 Backdoor 2329
9 mirai syn 16436 Shellcode 1511
10 mirai udp 15625 Worms 174
11 mirai udpplain 15304

Table 3
Features of three dataset

Dataset Name Name of the attribute Number of
Features

NBaIoT Proto, saddr, sport, daddr, dport, seq, drate, srate, max, attack category& port,
jitter, statistics of L1, L3, L5(mean, std, weight, variance, radius, covariance, pcc)
of each IP

115

UNSW NB 15
(NB15)

id,dur,proto,service,state,spkts,dpkts,sbytes,dbytes,rate,sttl,dttl,sload,dload,sloss,
dloss,sinpkt,dinpkt,sjit,djit,swin,stcpb,dtcpb,dwin,tcprtt,synack,ackdat,smean,
dmean,trans depth,response body len,ct srv src,ct state ttl,ct dst ltm,ct src
dport ltm,ct dst sport ltm,ct dst src ltm,is ftp login,ct ftp cmd,ct flw http mthd,
ct src ltm,ct srv dst,is sm ips ports,Attack category(Label)

43

UNSW BOT IoT
(BOT IoT)

proto, saddr, sport, daddr, dport, seq, stddev, N IN Conn P SrcIP, min,
state number, mean, N IN Conn P DstIP, drate, srate, max, attack category
(Label)

16

is used to reduce dimensionality, which aids in
improving the intelligent threat detection system’s
performance in terms of time and space. The dataset
is in the form of binary and multi-class classification.

Table 2 contains information for each class
instance of three separate datasets. The NBaIoT
dataset is balanced, implying that the multiple class
instances are almost equal in the count. The other two
datasets are unbalanced, implying that the number
of cases in each class varies significantly. The pro-
posed model will be validated using both balanced
and unbalanced datasets. Table 3 gives information
about the input vector. BOT IoT has 15 input vec-
tors, NBaIoT has 115, NB15 has 42, and BOT IoT
has 15 input vectors. The most common vector in
all datasets is source IP, destination IP, source port,
destination port, protocol, sequence, number of input
connections between source to destination IP, jitter,
and statistical information of network flow. which is
contributing more for finding the malicious activity
in the network.

4.2. Experimental setup

The experiments were performed on an Intel(R)
Core (TM) i7-9750HF CPU @ 2.60 GHz, 2592 Mhz,
6 Core(s), 12 Logical Processor(s) with 32 GB RAM,
under Windows and virtual machine of Ubuntu.
The proposed framework has Apache Spark for pre-
processing the massive amount of IoT traffic data in
a distributed and parallel way. Deep Learning mod-
els were implemented with Tensorflow and Keras
package. The master edge node experimentation was
conducted on a single system. The performance of the
DL models was evaluated using three datasets that are
represented in Table 1.

4.3. Experimental result analysis

The proposed intelligent threat detection system
is evaluated using performance metrics of accuracy,
precision, recall, and F1 score and confusion matrix
performance metrics, calculated using the following
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Fig. 5. Performance metrics of UNSW BOT IoT dataset.

Equations (17 to 20).

Accuracy = TP + TN

TP + TN + FP + FN
(17)

Precision = TP

FP + TP
(18)

Recall = TP

TP + FN
(19)

F1Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(20)

Figures 5 & 7 display the classification perfor-
mance of the proposed model with other two DL
models are assessed on the imbalanced dataset of
UNSW BOT IoT & UNSW NB15, and Figs. 6 & 8
depicts the confusion matrix of the respective dataset.
The experimental outcomes of training and testing are
ouerformed wh nearly 100 percent accuracy. Even
though the data set is unbalanced, the model bet-
ter predicts all types of malicious activity in the IoT
network.

Fig. 7. Performance metrics of UNSW NB 15 dataset.

Figure 9 demonstrates the proposed model’s clas-
sification performance compared to the other two DL
models on the NBaIoT balanced dataset, and Fig. 10
represents the classification of each class in the con-
fusion matrix. The findings reveal that, apart from
the miraisyn assault, the suggested technique cor-
rectly classifies all attacks. Miraisyn is accurately
identified by 77% of respondents, with the remain-
ing 23% misidentifying it as miraiudpscan. Because
it did not categorize the attack as normal, the perfor-
mance in binary classification was 100 percent. The
CNN model has misclassified many classes as normal
rather than attack. The LSTM model also outper-
forms other models in categorization across all types
of assaults. The suggested method performs better
in predicting all sorts of network attacks in an IoT
network.

5. Comparison of result

5.1. Performance analysis with time

The suggested distributed technique’s anomaly
detection timing is compared to those of the existing
approach. Table 4 compares the detection times of the

Fig. 6. Confusion matrix of UNSW BOT IoT dataset.
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CNN_MODEL LSTM_MODEL CNN_LSTM_MODEL

Fig. 8. Confusion matrix of UNSW NB15 dataset.

Fig. 9. Performance metrics of NBaIoT dataset.

CNN and LSTM techniques for different amounts of
IoT traffic. If The number of input features increases,
then the time required to process the model also
increases in the unbalanced datasets, where input fea-
tures are 16 in BOT IoT and 42 in UNSW NB 15. Even
though the number of features is more, the suggested
method requires less time to train the model in the

balanced dataset (NBaIoT).

5.2. Performance analysis with metrics

The proposed approach’s performance is evaluated
using the metrics of accuracy, precision, recall, and
F1-score, which are stated in Table 5. Accuracy is
the rate of accurately classified attack as attack and
normal as normal among total classification, which
is achieved 99.98% & 100% in imbalanced data sets
and 97.39% in the balanced dataset. When the costs
of false positives are high, precision is employed
to determine. Precision in the network threat detec-
tion implies that real attack traffic is forecasted as
normal traffic. These devices may be attacked with
malware. The cost of false negatives is calculated
using recall. If malicious network traffic is antici-
pated as regular network flow in traffic flow instances,

CNN_MODEL LSTM_MODEL CNN_LSTM_MODEL

Fig. 10. Confusion matrix of NBaIoT dataset.
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Table 4
Training time of CNN, LSTM, proposed model based on IoT botnet datasets

Dataset Model/ Training Time Per Step (msec) Per Epoch (sec) Iteration Total (mins) Batch Size

UNSW BOT IoT CNN 6 14 6 1.4 1000
LSTM 22 4 50 3.3 1000

Proposed 16 3 42 2.1 1000
UNSW-NB 15 CNN 37 29 20 9 5000

LSTM 770 440 14 52 5000
Proposed 435 140 18 42 10000

NBaIoT CNN 18 2 18 0.6 500
LSTM 1 115 20 40 500

Proposed 360 41 20 14 500

Table 5
Comparison of performance metrics

DATA SET Metrics/ Model CNN LSTM Proposed

UNSW BOT IoT F1-Score 99.78% 97.97% 99.88%
Recall 99.78% 97.98% 99.89%

Precision 99.78% 97.99% 99.90%
Accuracy 99.78% 97.98% 99.89%

UNSW NB 15 F1-Score 96.76% 100.00% 100.00%
Recall 96.92% 100.00% 100.00%

Precision 97.06% 100.00% 100.00%
Accuracy 96.92% 100.00% 100.00%

NBaIoT F1-Score 87.46% 86.27% 96.79%
Recall 90.50% 89.35% 97.83%

Precision 85.93% 87.95% 95.77%
Accuracy 90.50% 89.35% 97.39%

the result might be disastrous for the entire network
system. There is a need to balance precision and
recall. When there is an unequal class distribution,
the F1-Score could be a preferable metric to utilize in
large-scale data. Our proposed approach obtains high
accuracy, recall, and F1- score in both balanced and
unbalanced datasets, demonstrating that our model
outperforms at predicting anomalous attacks in IoT
networks.

5.3. ROC (Receiver-operating characteristic)
analysis

The true positive rate (TPR) is plotted against
the false positive rate (FPR) to create the receiver-
operating characteristic (ROC) curve. TPR and FPR
values can range from 0 to 1. As a result, the ROC’s
maximum area is 1. The accuracy of the model
increases as the area under the curve increases. Fig-
ures 11–13 represents the loss and accuracy curve of
ROC of three datasets; it observed that our proposed
approach achieves maximum value for predicting the
malware.

6. Conclusion

This research helps to establish effective anomaly
detection in real-time at the edge system and have
efficacy in real-time data processing, scaling, dis-
tributing, and effectively detecting malware at an
early point. The proposed framework helps in reduc-
ing communication cost and bandwidth utilization
and boosts data availability. The spark distributed
processing is used for raw network data process-
ing and normalization, which is distributed at the
edge nodes to analyze parallel network traffic. The
VCNN module is used to select model features
while training, which decreases computing overhead.
The dropout and hidden LSTM layers are used to
avoid model overfitting, and RMSProp optimizers
are used to improve the proposed model’s accuracy.
The proposed model is tested using two imbalanced
datasets of UNSW NB15 & UNSW BOT-IoT and
one balanced dataset of NBaIoT. The experimental
results show that the proposed framework of DL –
based intelligent threat detection is effective in terms
of detecting malicious behaviour early in an edge
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Fig. 11. Roc Curve of binary and multi-class classification of UNSW BOT IoT dataset.

Fig. 12. ROC curve of binary classification on UNSW-NB15 dataset.
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Fig. 13. ROC curve of binary classification on NBaIoT dataset.

Table 6
Comparison of accuracy with state of art model

Year Dataset Methodology Accuracy

2019 [48] UNSW BOT IoT LSTM 98.05%
2020 [26] Cloud-based (IoT Mon) 98.84%
Proposed HSDL 99.89%
2021 [50] UNSW NB15 CNN-LSTM 97.17 %
Proposed HSDL 100.00%
2021 [49] NBaIoT CNN & LSTM 90.88%
Proposed HSDL 97.39%

environment. According to Table 6, the suggested
technique significantly outperformed state-of-the-art
intelligent threat detection systems and traditional
DL models. Furthermore, ROC analysis reveals that
the suggested framework outperformed accuracy by
a maximum of 1(100%) in imbalanced datasets.
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