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Multi-modal approach for COVID-19
detection using coughs and self-reported
symptoms
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Abstract. COVID-19 (Coronavirus Disease of 2019) is one of the most challenging healthcare crises of the twenty-first
century. The pandemic causes many negative impacts on all aspects of life and livelihoods. Although recent developments of
relevant vaccines, such as Pfizer/BioNTech mRNA, AstraZeneca, or Moderna, the emergence of new virus mutations and their
fast infection rate yet pose significant threats to public health. In this context, early detection of the disease is an important
factor to reduce its effect and quickly control the spread of pandemic. Nevertheless, many countries still rely on methods
that are either expensive and time-consuming (i.e., Reverse-transcription polymerase chain reaction) or uncomfortable and
difficult for self-testing (i.e., Rapid Antigen Test Nasal). Recently, deep learning methods have been proposed as a potential
solution for COVID-19 analysis. However, previous works usually focus on a single symptom, which can omit critical
information for disease diagnosis. Therefore, in this study, we propose a multi-modal method to detect COVID-19 using
cough sounds and self-reported symptoms. The proposed method consists of five neural networks to deal with different input
features, including CNN-biLSTM for MFCC features, EfficientNetV2 for Mel spectrogram images, MLP for self-reported
symptoms, C-YAMNet for cough detection, and RNNoise for noise-canceling. Experimental results demonstrated that our
method outperformed the other state-of-the-art methods with a high AUC, accuracy, and F1-score of 98.6%, 96.9%, and
96.9% on the testing set.

Keywords: COVID-19 diagnostics, multi-modal classification, Convolutional neural network (CNN), bidirectional-LSTM,
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1. Introduction

COVID-19, firstly reported in 2019 in Wuhan,
China, is a novel pathogen of the severe acute respi-
ratory syndrome coronavirus 2 (SARS-Cov-2). The
disease has been quickly spread worldwide within
three months and was then declared a global pan-
demic on February 11, 2020, by the World Health
Organization (WHO).

Owing to the development of effective vaccines,
such as the Pfizer/BioNTech BNT162b2 mRNA vac-
cine, the pandemic is gradually under control in many
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countries. However, its impact will linger for an
extended period [13]. Therefore, the combination of
different methods to reduce the spread of COVID-19
is critical. In this context, early detection is still an
important determinant to control the outbreak [54].
Dyspnea, fever, cough, and muscle pain are the
most common symptoms of COVID-19. In the early
period of infection, these symptoms are similar to
other diseases such as flu, pneumonia, and aller-
gies [10]. Consequently, it is difficult to distinguish
them if based only on clinical signs. The labora-
tory diagnosis is required to confirm the diagnosis
of COVID-19. The reverse-transcription polymerase
chainreaction (RT-PCR) assay is the gold standard for
COVID-19 confirmation [1]. However, such testing is
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time-consuming, expensive, and requires adequately
skilled staff [31]. Rapid Antigen Test Nasal is another
method that allows quickly detecting COVID-19.
But, this method is still uncomfortable, painful, and
difficult for self-testing [30].

Recently, artificial intelligence and deep learn-
ing have attracted wide attention from researchers
in diagnosing, preventing, and controlling diseases
[36]. It allows for reducing response times and act-
ing as an efficient solution for far-flung locations, or
overloaded hospitals [14].

This has opened up great opportunities for early
detection of COVID-19. Numerous neural networks,
for example, Convolutional neural networks (CNN)
[17], Long short-term memory (LSTM) [8], or
bidirectional-Long short-term memory (biLSTM)
[1], have been successful in deriving useful high-level
features of the disease from low-level ones [36].

Due to the acute respiratory failure caused by
COVID-19, existing studies mainly analyzed the
respiratory system to detect infections. Respiratory
sounds (RS), computer tomography (CT), or X-Ray
images of chests and lungs are the most used data. RS
consists of important information about the structure
and function of the respiratory system. Therefore,
numerous related sounds have been employed in
the literature for COVID-19 detection, for example,
breath and cough sound as presented in the work of
Alkhodari et al. [2], Pahar et al. [40], or Vrindavanam
et al. [62].

Similarly, owing to the possibility of visualizing
and monitoring the condition of body parts, CT and
X-Ray images have been applied in many studies for
COVID-19 diagnoses, such as the works of ElImuogy
et al. [16], Farag et al. [17] or Mahanty et al. [33].
But, such data are not easy to collect: patients should
come to the hospital and be scanned by doctors.

Recently, to improve the accuracy of COVID-19
detection, several researchers have applied multi-
modal methods. This latter is the process of
knowledge creation by conjointly examining differ-
ent forms of information sources and seeing how the
combination and interaction between various modes
in generating meaning as a whole [37]. Therefore,
it can provide essential complementary information
that can be used to enhance the understanding of
the studied problem. The multi-modal method for
COVID-19 usually combines common symptoms
and data, such as sounds, images, or the pres-
ence/absence of fever, dyspnea, or muscle pain [9,
15]. They rely on the idea that these symptoms are
all important in COVID-19 diagnosis [15]. Never-

theless, existing works either mainly used medical
images (i.e., CT and X-ray images) [42, 58] or still
have room for improvement in terms of performance.
We are interested in early detection methods that
can be self-tested without requiring complex devices
and physicians (i.e, CT and X-ray images). Owing
to its outperformance, in this study, we propose a
multi-modal method for early detection of COVID-
19 using cough sounds and self-reported symptoms.
Our contributions can be summarized as follows:

— we investigate a multi-modal method for early
detection of COVID-19, using cough sounds, and
self-reported symptoms.

— we propose an architecture that combines three
neural networks to deal with multi-modal inputs,
including CNN-biLSTM for sequence MFCCs,
EfficientNetV2 [57] for Mel spectrogram images,
and Multilayer Perceptron (MLP) for binary vec-
tors of self-reported symptoms.

— to pre-process input recordings, we applied two
techniques: (i) transfer learning on the YAMNet
[65] to produce a new model (C-YAMNet) that
allows detecting cough sounds; and (ii) noise can-
celing using RNNoise neural network [60].

— we evaluate the proposed method on a public
dataset of COVID-19 (Coswara) and highlight the
experimental results thus obtained

The remainder of this paper is organized as fol-
lows. In Section 2, we will discuss related studies. Our
material and methods are presented in Section 3. Sec-
tion 4 reports the experiments and results, followed
by conclusions in Section 5.

2. Related works

Since 2020, there have been significant efforts
to diagnose COVID-19 using artificial intelligence.
Based on the input data, they can be roughly divided
into two groups, including unimodal and multi-
modal-based methods [15]. The first groups are
widely applied in previous studies, which used only
one type of data for COVID-19 diagnoses, such as
medical images like CT or X-ray images) or acoustics
like cough, breathing, or speech [1, 2, 9, 46].

For example, Alshazly etal. [3] proposed to
apply transfer learning with several CNN architec-
tures (SqueezeNet [24], Inception [55], ResNet [20],
Xception [11], ResNeXt [64], ShuffieNet [32], and
DenseNet [23]) on two CT image datasets (SARS-
CoV-2 CT [53] and COVID19-CT [21]). With some
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different configurations and custom-sized inputs for
each network, the authors reported a high perfor-
mance with average accuracies of 99.4% and 92.9%
and sensitivity scores of 99.8% and 93.7% on the
two datasets. Similarly, Mahanty et al. [33] pre-
sented a method to detect COVID-19 using X-ray
images of chests. The authors applied three machine
learning methods, including a traditional classifica-
tion model (SVM), and two deep transfer learning
models (VGG16 & Xception). The dataset consists
of 208 images (104 positives and 104 negatives).
Their methods achieved high accuracies of 95.55%,
96.54%, and 97.46% for SVM, VGG16, and XCep-
tion, respectively. Other similar works can be found
in the literature, for example, COVID-19 detection
with chest CT scans [6, 16, 27, 49, 70], with chest X-
ray images [17, 39, 48] or prediction of COVID-19
mutation [41].

Concerning the acoustic, for instance, Mohammed
et al. [34] developed pre-screening models for
COVID-19 using cough sound with shallow machine
learning, Convolutional Neural Network (CNN), and
pre-trained CNN models. This work has been con-
ducted on two crowdsourced cough datasets, in which
the authors segmented the cough sound recordings
into individual non-overlapped segments to enrich
the COVID-positive records. The obtained models
achieved a high accuracy of 75%. Similarly, Pahar
et al. [40] based on cough sounds to develop a non-
contact method for COVID-19 detection. The authors
experimented with seven machine learning classi-
fiers (four traditional machine learning and three deep
learning models) on two public datasets, including
Cosawa [51] and Sarcos [40]. The datasets were col-
lected from volunteers via web and mobile platforms.
Cosawa consists of breathing, cough, phonation of
sustained vowels, and spoken digits, while Sarcos
contains only cough. The obtained accuracies ranged
from 75.7% to 95.33%, in which the best performance
was exhibited by the ResNet50. Similar works can be
found in the literature, such as cough [5, 43], breath
[1, 46] or speech [4, 29].

In general, the medical image methods are not
portable and must involve equipment and experts
(i.e., doctors) from hospitals or medical centers [15].
In contrast, the acoustic approaches are easier in data
collection. Since they can be simply retrieved using
commercially available devices that are accessible
by many users, especially cough or breath. More-
over, acoustic signals recorded at the mouth provide
an accurate assessment of respiration quality without
the need for an external excitation signal or deductive

operations. Therefore, the acoustic data are suitable
for early detection of COVID-19.

The second group, multi-modal methods, com-
bines data from different modalities that provide
separate views on the disease. For example, Chetu-
palli et al. [9] proposed a multi-modal method using
the Coswara dataset [51], which fuses cough, breath-
ing, and speech signals with eight self-reported
symptoms. The authors separately applied four tra-
ditional machine learning methods to each type of
data to produce prediction scores. Logistic regression
(LR), SVM with linear kernel, and SVM with radial
basis function kernel were consecutively explored
for acoustic data, while the decision tree model for
eight symptoms. A probability score of COVID-19
infection was then obtained from the average of
the prediction scores. The proposed method demon-
strated a significant improvement over individual
modality, with the highest area-under-curve (AUC) of
92.4%. Similarly, Effati et al. [15] proposed a multi-
modal method based on coughs, breathing, and fever
to predict COVID-19. The authors trained two sep-
arate deep neural networks using CIder CNN [12]
on the Cambridge dataset [7]. In contrast with the
work of Chetupalli et al. [9], which used an equal
weighting function for the fusion of modalities, this
method employed different weights for each symp-
tom. These weights were calculated from the average
of their prevalence in the dataset. From the obtained
results, the authors concluded that there is a consid-
erable improvement in COVID-19 detection. Similar
studies can be found in [26, 29, 44, 59, 63].

Table 1 summarizes the methods and modalities
that these recent works have applied. The same trend
was observed for this multi-modal approach, where
acoustic recordings and clinical symptoms were com-
mon data for early COVID-19 detection. Among the
studied methods, cough sounds are the most used
modality. They are usually passed through several
pre-processing steps, such as noise reduction [29] or
cough detection [63]. The second most modalities are
breathing and clinical symptoms. According to Zar-
dini et al. [68], some symptoms are more prevalent
in COVID-19 patients, such as fever, muscle pain,
fatigue, or the appearance of coughs. Consequently,
many existing works fuse self-reported symptoms
with others to detect COVID-19. X-rays, CT images,
and speech are also popular. But to collect these data,
participants should strictly follow predefined instruc-
tions or be scanned by complex devices.

Regarding the applied methods, the existing works
employed two main approaches: traditional machine
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Table 1
Recent multi-modal methods for COVID-19 diagnosis

Recent Dataset Methods Audio Image Clinical
works Cough Breathing Speech X-ray CT symptoms
[15] Cambridge [7] CNN X X X
[9] Coswara [51] LR, SVM X X X X
[63] Cambridge [7] SVM, VGGish X X X
[26] Virufy and Coswara [51] CovParaNet + CovTinyNet X X X X X
[29] X-ray: Self-collected datasets. CNN X X

Cough: Coughvid DetectNow

and Virufy
[44] COUGHVID [38] CoughNet-V2 X X
[59] Coswara and COUGHVID MLP + Nested Hierarchical X X

Transformer

learning and deep learning. Some most popular exam-
plesare SVM [9, 47], Decision Tree Classifier [9, 61],
Random Forest (RF) [25, 66], k-Nearest Neighbour
(kNN) [28, 35], Artificial Neural Network (ANN)
[45] for the first approaches, and CNN [15], LSTM
[40], biLSTM [1] for the second approaches. Experi-
mental results show that the deep models outperform
the traditional ones [33, 40]. It can be explained by
the fact that the shallow architectures are not suit-
able for complicated large-scale real-world problems
such as COVID-19 detection [69]. These problems
require a more profound and layered architecture to
extract the complex information [19], which can be
resolved by multi-layer neural networks, with many
hidden layers, as in deep learning techniques.

The multi-modal approaches have shown promis-
ing and better results than the unimodal methods.
However, the existing works did not provide a
clear reason to fuse symptoms. The most com-
mon symptoms of this disease are coughs and some
self-reported symptoms [68]. Therefore, including
breathing or speech can introduce unexpected noise
to the training data.

3. Material and methods

3.1. Multi-modal neural network for COVID-19
detection

In this study, we propose a multi-modal neu-
ral network to detect COVID-19. Considering
the most common symptoms of COVID-19 [68],
we fused two modalities, including cough sounds
and the presence/absence of 2 groups of symp-
toms: (i) fever/muscle pain; (ii) asthma/cold/sore
throat/diarrhea. The cough sounds were extracted into
two different features: MFCCs and Mel spectrogram,

while a binary vector was used to represent the sec-
ond modality. The proposed method consists of five
neural networks, including C-YAMNET for cough
detection, RNNoise for noise reduction, 1D CNN-
biLSTM for MFCC features, EfficientNetV2 [57] for
Mel spectrogram, and Multilayer Perceptron (MLP)
for the binary vector, as shown in Fig. 1.

To combine different types of features extracted
from the three modalities, we horizontally con-
catenated outputs generated from the last layer
of CNN-biLSTM, EfficientNetV2 and MLP. They
are then passed to two fully connected and
dropout layers, before predicting COVID-19 or
non-COVID-19.

In the next section, we will present in detail the used
features and the architecture of the three networks.

3.2. Pre-processing

To normalize and improve the quality of input
recordings, we performed two pre-processing steps,
including noise reduction and cough detection. First,
we applied RNNoise (Recurrent Neural Network
Noise) [60] to filter noise. RNNoise is a comb filter
defined at the pitch interval, applied to each window.
RNNoise slides over the Vorbis window of size 20
ms with 50% of overlapping.

After noise canceling, we determined the existence
of cough sounds by a dedicated model, C-YAMNet,
that was based on the YAMNet network [65] trained
on AudioSet ontology [18]. The network used the
Mobilenet depthwise-separable convolution architec-
ture [22] and allows for predicting 521 audio event
classes. It consisted of twenty-two layers: nineteen
convolutional, followed by an average pooling, fully-
connected, and softmax layer. The first nineteen
layers are depthwise separable convolutions. Each
convolutional layer used ReLU as the activation func-
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Fig. 1. Overall architecture of the proposed method.

tion, and the batch norm was used for the standardized
distribution of batches.

Recently, the Coswara dataset has updated its
annotations to describe the quality of cough sounds.
The audio files were manually listened to and labeled
as one of the three categories: 2 (excellent), 1 (good),
and 0 (bad). We considered that the two first cate-
gories contain cough sounds, while the last one is the
others. We fine-tuned YAMNet on this new dataset to
classify two classes: cough and others. Therefore, the
feature extractor was kept as the original network. To
adapt to our purpose, we updated the classifier sec-
tion with a new softmax layer that adjusts to 2 classes
only. Only recordings containing cough sounds were
passed to the next step (feature extraction). The new
model was named C-YAMNet to differentiate from
the original network, as illustrated in the upper branch
of Fig. 1.

3.3. Feature extraction

In this study, we extracted three features coming
from two types of data to train models. Because of
their ubiquity and efficiency in sound analysis, MFCC
was chosen for the first feature. The feature is com-
puted from the short-term Fourier Transform as the
spectrum of the mel-warped spectrum. MFCC repre-
sents phonemes (which are the distinct units of sound)
as the shape of the vocal tract (which is responsible
for sound generation) is manifest in them [52]. They
allow modeling the signals based on the human sense

of hearing, which has proven to achieve better perfor-
mance in analyzing cough sounds, as presented in [2,
40, 62]. For this purpose, we down-sampled the fre-
quency of cough sounds to 22kHz, as human ears can
only consume sounds that have a frequency value up
to 20kHz. We extracted then 39-dimensions MFCC
with a window length of 20 ms and an overlap of
10 ms. From this, we created two features, including
a 1D array and Mel-spectrogram images. First, the
mean values of the 39-dimensions MFCC were calcu-
lated for the 1D array that was fed to CNN-biLSTM,
as shown in Fig. 1. Second, Mel spectrogram images
were generated, which is similar to MFCC but with
the filter bank energies, instead of using the discrete
cosine transform [50]. The images have the size of
224 x 224 x 3, which was used to train Efficient-
NetV2, as illustrated in Fig. 1.

The last feature was relied on the two most
informative clinical symptom types of COVID-19,
including (i) fever/muscle pain symptoms and (ii)
asthma, cold, sore throat, or pneumonia. We model
this feature by a binary vector, in which the value 1
corresponds to the occurrence of at least one of these
symptoms and vice versa.

3.4. 1D CNN-biLSTM for sequence MFCC

We propose a deep convolutional biLSTM archi-
tecture to analyze the 1D array. The network starts
with two convolutional layers as the feature extractor,
followed by two biLSTM layers. The two first layers
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Table 2
Detailed network to produce the first modality

CNN

Layer Configuration (kernel, Output
stride, channel, activation)

convl x Convl: 2,1, 32, relu 12 x 32
BatchNormalization
conv2 X Convl: 2, 1, 64, relu 11 x 64
BatchNormalization
biLSTM
biLSTM Hidden units:8 11 x 16
biLSTM Hidden units:8 16
Add Inl: 11 x 16, In2: 16 11 x 16
Dense In:11 x 16 11 x 64
Dropout - 11 x 64
Flatten In:11 x 16 704
Table 3

Detailed network to produce the second modality

Stage Operator Stride #Channels #Layers
0 Conv3x3 2 24 1
1 Fused-MBConvl, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6
5 MBConv6, k3x3, SE0.25 1 160 9
6 MBConv6, k3x3, SE0.25 2 272 15
7 Convlxl & Pooling & FC - 1792 1

Global Max Pooling + Global Average Pooling
BatchNormalization
Dropout

Concatenate(10,10)

have a filter of 32 and 64, with a stride of 1. After each
convolutional layer, we used batch normalization to
regularize the filtered data. ReLU activation function
was used for these two layers.

Since cough sounds are continuous in the time
domain, we need an architecture that accounts for the
temporal relationships in the input-output mappings.
Therefore, we employed two biLSTM layers after the
two convolutional layers. These layers were trained
with the same configuration, which contains eight
hidden units, the tanh function for activation, and the
sigmoid for the recurrent activation. At the end of
the CNN-biLSTM architecture, we added a dropout
layer to avoid overfitting. The output of this network
was flattened to one dimension for the fusion of three
modalities. Table 2 presents the detailed architecture
of the proposed network.

3.5. EfficientNetV2 for Mel spectrogram images

For Mel spectrogram images, we mainly applied
EfficientNetV?2 [57] architecture which was recently

proven as an efficient solution for image classifica-
tion. The network is a new family of convolutional
networks that have faster training speed and better
parameter efficiency. EfficientNetV2 was based on
the previous version, EfficientNetl [56] with some
modifications, including (1) extensively using both
MBConv and the newly added Fused-MBConv in the
early layers, (2) applying smaller kernel sizes (3x3
instead of 5x5), and (3) removing the last stride-
1 stage. They also combined training-aware neural
architecture search and scaling, to jointly optimize
training speed and parameter efficiency.

In this study, we applied the mixed-pooling idea
proposed by Yu et al. [67]. After extracting the fea-
tures, we parallelly reduced them by Global Max
Pooling and Global Average Pooling, followed by
batch normalization and a dropout layer. A concate-
nation layer was used to combine the outputs of these
two pooling layers. We finally obtained a 1D vector
of size 20 for the fusion. Table 3 presents the detailed
architecture of the proposed network to extract fea-
tures from Mel spectrogram images.

In the next section, we will introduce the MLP
network for the clinical symptom data.

3.6. MLP for symptoms

We explored Multilayer Perceptron (MLP) net-
works to analyze the binary vector of symptoms. MLP
is a feed-forward Artificial Neural Network (ANN),
which consists of an input layer, a hidden layer, and
an output layer. An MLP with more than one hid-
den layer can be considered a Deep Neural Network
(DNN), in which every layer contains a bias neuron,
except the output layer. They are fully connected to
the next layers.

As mentioned previously, the clinical symptoms
are divided into two groups. Therefore, the data input
for the MLP network has the shape of 2. The MLP
network has two fully-connected layers containing 64
nodes, followed by two dropout layers to avoid over-
fitting, as presented in Fig. 1. Thereafter, we obtained
a 1D vector of size 64, which allows us to incorporate
the clinical information into the fusion.

3.7. Fusion

Since these modalities were observed in almost
COVID-19 patients, we considered that they have
an equally important role in training models. There-
fore, the output of three networks was horizontally
concatenated to integrate different types of extracted



K. Nguyen-Trong and K. Nguyen-Hoang / Multimodal deep learning approach for COVID-19 detection 3507

features. After that, we obtained a feature vector of
size 788. The vector was then passed through two
fully connected layers to jointly learn non-linear cor-
relations among the features. The concatenation of
three features is defined in Equation 1.

x1 = CNN_biLSTM(FyFcc))
xy = EfficientNetV2(Fper)

, (D
x3 = MLP(V)

x = concatenate([x1, x3, x3])

where Fyrcc, Fuer, V are the MFCC, Mel spectro-
gram and binary vector features, respectively.

4. Experiment
4.1. Dataset

We used the dataset from the Coswara project [51]
of the Indian Institute of Science (IISc) Bangalore
to train and evaluate our models. The objective of
this project is to build a diagnostic tool for Covid-
19 based on respiratory, cough, and speech sounds.
It supports an online platform! where public par-
ticipants can provide their breathing sounds, cough
sounds, sustained phonation of vowel sounds, and a
counting exercise.

The participants are recommended to use their
smartphone for sound recording, with a sampling
frequency of 48 kHz. Each participant contributes
nine recordings, including shallow and deep breath-
ing, shallow and heavy cough, sustained phonation of
three vowels, and fast and normal pace number count-
ing. Several self-reported information is also required
for each participant, such as meta-data (location, age,
gender .. .), health status (cough, fever, muscle pain
..., respiratory ailments, and some pre-existing con-
ditions), and COVID-19 test status.

The data published on 24", February 2022 was
used in this study, which contains 2746 samples. Each
sample has a COVID-19 status that falls into one
of the eight categories, as shown in Table 4. There
are 1433 negative (healthy) and 681 positive (pos-
itive_mild, positive_moderate, and positive_asymp)
COVID-19 samples.

Since each participant contains two cough sounds
(shallow and heavy cough), we created two samples
per participant, which have the same symptoms but
with different coughs. According to the request of

Uhttps://coswara.iisc.ac.in/

Table 4
COVID-19 status of Coswara dataset

Categories Total of samples
1 healthy 1433
2 positive_mild 426
3 no_resp-illness_exposed 248
4 positive_moderate 165
5 resp-illness_not_identified 157
6 recovered_full 146
7 positive_asymp 90
8 under_validation 81
EEE Quantity
1000
800
600
400 -
200
0-
A - G -
V 4 & & th ©  a ; g o flj 7 i Ny

Time (seconds)

Fig. 2. Distribution of recording time.

the Coswara project, participants are recommended
to take around 5-7 minutes of recordings. In addi-
tion, through a statistical analysis, as shown in Fig.
2, we found that most recordings range from 4-6
seconds. Therefore, only participants whose cough
sounds fall in this range were selected. Besides, we
eliminated recordings that were assessed as bad qual-
ity (not cough sounds). A total of 1947 samples were
obtained, which consisted of 520 negatives and 298
positives for shallow cough sounds, and 460 negatives
and 255 positives for heavy cough sounds. Finally, we
randomly eliminated a number of negative samples
to create a balanced dataset (544 negatives and 544
positives for both types of coughs). The dataset was
then split into three subsets for training (70%), vali-
dation (15%), and testing (15%), respectively. Table
5 presents detailed demographic and clinical infor-
mation of subjects included in the study.
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Table 5
Demographic information and self-reported symptoms of studied subjects
Healthy Positive
Mild Moderate Asymp
Demographic information
Age (Average) 333 37.9 45.7 31.3
Gender (Male/Female) 442/166 240/122 92/78 46/30
Self-reported symptoms

Fever 14 154 104 8
Cold 26 126 98 18
Cough 40 216 130 14
Muscle pain 4 116 94 10
Loss of smell 0 58 66 6
Sore throat 6 100 66 8
Fatigue 6 166 106 16
Breathing Difficulties 6 40 62 4
Diarrhoea 2 18 26 2

4.2. Performance metrics

The accuracy, F1 score, precision, recall, accuracy,
and confusion matrix were used to evaluate the exper-
imental results. These metrics can be calculated as
followings:

TP+ TN

Accuracy = , 2)
TP+ TN + FP+ FN
o TP

Precision = ——, 3)

TP + FP

TP
Recall = ————, 4
TP + FN

class i precision; * recall;

classes
F| = Z 2 % * — ,
- total samples  precision; + recall;
(5)
where TP is the true positive, TN is the true negative,
FP is the false positive, and FN is the false negative
number.
We also calculated the area under the Receiver-
Operator Characteristic curve (AUC) as a measure of
diagnostic accuracy.

4.3. Experiment setup

To evaluate the proposed method and effectiveness
of multi-modal fusion, we conducted six experi-
ments, as presented in Table 6. First, we individually
evaluated MFCC features with CNN-biLSTM (No
#1), and Mel spectrogram with EfficientNetV2 (No
#2). Second, three multi-modal networks were con-
ducted, which combined each pair of features,
including MFCC and Mel spectrogram (No #3),
MFCC and symptoms (No #4), and Mel spectro-
gram and symptoms (No #5). Lastly, we evaluated
the multi-modal with all features (No #6).

The TensorFlow Framework 2.3.0, Python 3.6.9 on
a 12 GB NVIDIA Tesla K80 GPU, and an Intel(R)
2.3Ghz Xeon(R) microprocessor were used to imple-
ment these models.

We used the following parameters and techniques
for training models:

— The loss function was the binary cross entropy;

— An Adam optimizer was employed for optimiza-
tion with g1 = 0.9, g2 = 0.999, and e = 1077,
The initiated learning rate was 10™4, and a self-
adjusting learning rate technique was applied;

— To minimize the cost function, we applied a mini-
batch with a size of 64;

Table 6
Six experiments with different inputs and networks

Exp Branch 1 Branch 2 Branch 3

1 MFCC + CNN_biSLTM - -

2 - Mel Spectrogram + EfficientNetV2 -

3 MFCC + CNN_biSLTM Mel Spectrogram + EfficientNetV2 -

4 MFCC + CNN_biSLTM - Symptoms + MLP
5 - Mel Spectrogram + EfficientNetV2 Symptoms + MLP
6 MFCC + CNN_biSLTM Mel Spectrogram + EfficientNetV2 Symptoms + MLP
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— An early stop technique with patience of 50
was employed to increase the training speed and
reduce overfitting. This makes the model stop
learning if it has reached its maximum accuracy;

— Other details of the network parameters are shown
in Table 2, and Table 3 for CNN-biLSTM, and
EfficientNetV2, respectively.

4.4. Results and discussion

Owing to the early stop technique, the training was
stopped after 83 epochs. Figure 3 shows the model
training progress over time in terms of accuracy and
loss of the sixth experiment. The training and valida-
tion accuracy increases, while training and valuation
loss decrease as the number of training iterations
increases. The gap between the curves is also small,
which indicates that no overfitting occurs.

The results of six experiments are presented in
Table 7. The table shows that six models can detect
COVID-19 using corresponding inputs and networks.
Among the obtained results, the sixth experiment

Table 7
Experiment results

Exp  Precision Recall F1 Score ACC AUC
1 82.56% 88.94% 85.34% 85% 90.26%
2 87.36% 100% 91.18% 90.63%  92.72%
3 88.61% 100% 88.31% 88.13%  93.27%
4 96.2% 96.17% 95.45% 95.63%  97.63%
5 96.88% 88.66% 86.63% 87.5% 91.98%
6 96.25% 9747%  96.86%  96.88% 98.6 %

Table 8

Normal versus COVID-19 classification
Precision Recall F1-score Support

Class 0 0.9747 0.9625 0.9686 80
Class 1 0.9630 0.9750 0.9689 80
Accuracy 0.9688 160
Macro avg 0.9688 0.9688 0.9687 160
Weighted avg 0.9688 0.9688 0.9687 160

exhibits the best performance, with an AUC of 98.6%,
an accuracy of 96.88%, and an F1 Score of 96.86%.
This high performance can be explained by the fusion
of different modalities and suitable neural networks.
Owing to the pre-processing step for dataset bal-
ance, the precision, recall, and F1 score are 96.25%,
97.47%, and 96.86% which are not much different
from the accuracy.

Table 7 also shows the effectiveness of fusion
across the multi-modal data. In general, the fusion
of different modalities yields an improvement over
individual ones. The accuracy, AUC and F1 score
are increased from the first experiment (only MFCC)
to the third (MFCC + Mel spectrogram) by 3.13%,
3.01%, 2.96%, to the fourth (MFCC + self-reported
symptoms) by 10.62%, 7.1%, 10.11%, and to the
sixth (MFCC + Mel spectrogram + self-reported
symptoms) by 11.9%, 8.34%, 11.56%, respectively.
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Table 9
Performance comparison

Method Precision (Sensitivity) Recall (Specificity) F1 Score ACC AUC
Cough audio + SVM [62] 76.9% 81.2% 78.4% 83.9% -
Multi-modal (deep features) + CNN-biLSTM [1] 93.16% 91.06% 91.98% 92.08% 86%
Multi-modal + LR/SVM + Decision Tree [9] 69% 95% - 92.7% 92.40%
Cough audio + CNN-LSTM [40] 93% 98% - 95.33% 97.6%
Our method 96.25% 97.47 % 96.86 % 96.88 % 98.6 %

Similarly, combining the Mel spectrogram with other
modalities outperforms the individual one.

Besides, it is observed that if combining cough
sounds with self-reported symptoms, there are con-
siderable improvements in COVID-19 detection. For
instance, in comparison with the experiments without
using self-reported symptoms (exp #1, #2, and #3),
the average AUC, accuracy, and F1 score of the three
last experiments increase by 3.56%, 4.38%, and 3.9%
respectively.

The mean ROC curves for the sixth model is shown
in Fig. 4. The figure show that our proposed multi-
modal architecture achieved a high AUC of 98.6%
and demonstrated a good performance in classifica-
tion of negative and positive samples.

Table 8 presents the detailed classification between
COVID-19 patients and healthy people in the sixth
experiment. The model performs extremely satisfac-
torily. The precision, recall, F1 score of negative
and positive classes are 97.47%, 96.25%, 96.86%,
and 96.3%, 97.5%, 96.89%, respectively. The micro-
average and weighted average are about 96.8%. We
have found 96.9% accuracy using our model without
overfitting. The support is 80 for the COVID-19 class,
80 for the healthy class, and 160 for each accuracy,
micro-average, and weighted average.

We also compared the achievement of the proposed
method with a recently published method on the same
dataset. Table 9 presents the comparison according
to AUC, accuracy, F1 Score, recall (specificity), and
precision (sensitivity). Our method outperforms all
these works in terms of AUC, accuracy, F1 Score,
and precision.

5. Conclusion

In this study, to improve the performance of
COVID-19 detection, we propose a multi-modal
approach that combines three input categories:
sequence MFCC of cough sounds, Mel spectrogram
images of cough sounds, and self-reported symp-
toms. Each type of input was analyzed by a suitable

network based on its characteristics. For instance,
owing to the sequential and time-dependent features
of sequence MFCCs, CNN-biLSTM was applied for
this modality; EfficientNetV2 for Mel spectrogram
images because of its high performance in image
classification; and MLP for a binary vector of self-
reported symptoms. Although each modality can be
used independently for COVID-19 diagnostic, the
multi-modal approach has proven that their fusion
leads to superior results. We conducted an empir-
ical experiment on a common COVID-19 dataset,
Coswara, to demonstrate the effectiveness of the pro-
posed method, which achieved an AUC of 98.6%, an
accuracy 0f 96.9%, an F1 Score of 96.9%, and outper-
formed the other state-of-the-art methods. Moreover,
six experiments that combine different modalities
were conducted. The obtained results show that the
fusion of different modalities yields an improvement
over individual ones.

In ongoing work, we will integrate the proposed
method into an IoT-based pervasive system that
allows early detection of COVID-19 patients from
distance.
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