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Abstract. COVID-19 is a rapidly proliferating transmissible virus that substantially impacts the world population. Conse-
quently, there is an increasing demand for fast testing, diagnosis, and treatment. However, there is a growing need for quick
testing, diagnosis, and treatment. In order to treat infected individuals, stop the spread of the disease, and cure severe pneumo-
nia, early covid-19 detection is crucial. Along with covid-19, various pneumonia etiologies, including tuberculosis, provide
additional difficulties for the medical system. In this study, covid-19, pneumonia, tuberculosis, and other specific diseases
are categorized using Sharpened Cosine Similarity Network (SCS-Net) rather than dot products in neural networks. In order
to benchmark the SCS-Net, the model’s performance is evaluated on binary class (covid-19 and normal), and four-class
(tuberculosis, covid-19, pneumonia, and normal) based X-ray images. The proposed SCS-Net for distinguishing various lung
disorders has been successfully validated. In multiclass classification, the proposed SCS-Net succeeded with an accuracy of
94.05% and a Cohen’s kappa score of 90.70%; in binary class, it achieved an accuracy of 96.67% and its Cohen’s kappa
score of 93.70%. According to our investigation, SCS in deep neural networks significantly lowers the test error with lower
divergence. SCS significantly increases classification accuracy in neural networks and speeds up training.
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1. Introduction

A novel coronavirus (COVID-19), brought on by
the SARS infection and immediately spread to other
countries, was discovered in China toward the end
of 2019. The symptoms of the covid-19 virus include
fever, hypotension, vomiting, headache, and a feeling
of chest tightness [1]. The World Health Organi-
zation (WHO) estimates that 187 million people
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worldwide were affected by this virus, increasing
human mortality [2]. Unfortunately, because of the
significant growth of covid-19 patients, health centers
may become overwhelmed, resulting in a physician
and radiology shortage. Chest imaging technology is
needed to diagnose covid-19 pneumonia and severe
lung damage, differentiate both viral and bacterial
pneumonia and address other respiratory problems
including Tuberculosis (TB) [3]. On the other hand,
researchers are working on a covid-19 vaccine to pre-
vent the virus from pre-foliating. The first approach
is to develop a new way to help people who are
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sick and sanitation requirements to keep others
from getting sick. Technological breakthroughs have
been achieved by introducing mobile applications to
monitor and track human contact [4]. The reverse
transcription-polymerase chain reaction (RT-PCR) is
used to reveal covid-19 in people’s early stages of
the virus. However, a more severe issue is that RT-
PCR is expensive and needs complex equipment and
technical expertise [5]. Physicians are looking to the
modalities report to address the RT-PCR problem.
With this modality, one can discern bilateral patchy
and confluent patterns, nodular opacities, ground
glass and consolidative opacities, and opacities in the
ground glass.

The imaging modalities utilized to find covid-19
include Computed tomography (CT) [6], X-ray [7],
and ultrasound. CT scans give excellent resolution
but expose patients to more radiation than X-rays
and require expensive equipment. X-ray images are
more readily available to a larger population due
to low-cost X-ray imaging facilities. Due to the
daily increase in cases, manual evaluation of modal-
ities would be time-consuming, and radiologists
would have difficulty diagnosing covid-19. Clinical
and AI researchers have emphasized automating the
identification of pneumonia or other lung disorders
in the recent pandemic years, particularly in their
early detection and identification. Computer-aided
diagnostic (CAD) systems are more effective and
efficient for diagnosing medical imaging [8]. The
CAD is a second opinion from a doctor, especially
in cases where the diagnosis is difficult to deter-
mine with the human eye. Recent research on CAD
systems using artificial intelligence technologies has
been successful [9]. Convolutional Neural Networks
(CNN) automatically extract discriminate features
from medical images that are used to predict out-
comes. The CNN architectures in the CAD systems
allow better classification of medical images provid-
ing large datasets [10]. CNN, Deep Belief Network
[11], Capsule Network [12], Generative Adversar-
ial Network (GAN) [13], and other DL technologies
[14] have been reported for medical image diagno-
sis. X-rays will be used to evaluate the feasibility
of early automated identification and categorization
between healthy patients, COVID-19, pneumonia,
and tuberculosis. We have developed an SCS model
to assess whether or not a patient is healthy or has
lung syndrome (pneumonia, TB, and normal). The
proposed SCS-Net has demonstrated outstanding per-
formance in classifying multiclass problems and has
outperformed state-of-the-art (SOTA) approaches to

classify lung diseases with nominal parameters. In
addition to the methods listed above, there is still
unresolved research on classifying covid-19 patients.
To define covid-19 patients as well as other classes
such as pneumonia, tuberculosis, and normal, a
novel neural network framework is proposed in this
research. This paper’s key impact is as follows:

• Development of a novel neural network with a
sharpened cosine similarity layer to extract fea-
tures named SCS-Net with a minimal number
of trainable parameters for reliable and accurate
classification.

• An effective sharpened cosine similarity layer
is proposed instead of the convolution layer
to make the results bounded and decrease the
model’s variance to be generalized.

• The chest X-ray dataset is used in extensive
research to evaluate the accuracy of the proposed
model and existing methods for binary class
and multiclass classification labeling (covid-19,
pneumonia, tuberculosis, and normal).

• A fast decision network is being deployed for
the pre-screening and early detection of covid-19
and other lung disorders.

The article is organized as follows: Section 2
presents the DL approach for covid-19 diagnosis
along with the research’s motivation and related anal-
ysis. The tools and techniques used for the proposed
work are described in Section 3. The experimental
findings and a discussion are presented in Section 4.
Conclusions and recommendations for further study
and development are presented in Section 5.

2. Background

The section initially presents the motivation behind
the proposed covid-19 classification model. After
that, the recent advancements in covid-19 classi-
fication models and shortcomings of the existing
approaches are presented.

2.1. Motivation of the research

According to earlier findings, most of the covid-19
infected patients are identified as having pneumonia
and tuberculosis disease. As a result, radiographic
testing plays a more significant role in early childhood
infection diagnosis of covid-19 infection. It is chal-
lenging to categorize a patient based solely on CXR
scans. The deep learning architectures currently used
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for classification have high model complexity and
numerous training parameters. A novel neural net-
work with nominal training parameters and greater
accuracy is suggested to solve this issue using the
SCS layer. The neural network model with SCS layer
is considered for covid-19 classification to deploy on
computing- or power-limited devices to make rapid
decisions.

2.2. Related work

The influence of artificial intelligence on the clini-
cal care of covid-19 is briefly discussed in this section,
along with studies that used CXR/CT scans to diag-
nose pneumonia, tuberculosis, and covid-19. In the
recent decade, AI has shown considerable promise
in medical image processing [15]. DL has been used
widely in medical domains [16], including disease
prediction [17], identification of pulmonary nodules
[18], and classification of benign/malignant cancers
[19]. A technique to create artificial CXR images
called auxiliary classifier GAN based on covidGAN
was proposed by Waheed et al. (2020) [20]. The
CNN model is trained using synthetic images. The
approach classified Covid-CXR and Normal-CXR
with a 95% accuracy rate. A covid-DeepNet model
was suggested by Panthakkan et al. to swiftly detect
covid-19 and non-covid pneumonia infections from
lung X-rays of critically sick patients (2021) [21]. The
model can quickly test for covid-19 and has a classifi-
cation accuracy of 99.67%. The major drawback are
large number of layers and nodes which leads to large
number of parameters. Waisy et al. (2021) suggested
a COVID-DeepNet model with contrast constrained
adaptive histogram equalization and Butterworth fil-
ter to improve contrast and remove noises in order
to properly predict covid-19 infection, and obtains
the accuracy of 99.93% [22]. The biggest downside
of the Covid-DeepNet system is that it was trained
to divide the input CX-R picture into two different
groups (e.g., healthy and Covid-19 infected).

To distinguish between covid and non-covid,
Turkoglu et al. (2021) suggested a multiple kernel
extreme learning deep neural network model and
achieved an accuracy of 98.36% [23]. This method’s
drawback is that it can only be used for binary cate-
gorization. To improve model performance, Murugan
et al. (2021) combine the backpropagation approach
and the Whale Optimization Algorithm (WOA) [24].
The method experimented with different pre-trained
models like Alex net, GoogLeNet, squeeze net,
resnet50, and resnet50 with WOA. The resnet50 with

WOA achieved an accuracy of 98.78%, but the num-
ber of trainable parameters is vast. Based on the U-net
concept, Tianbo et al. (2021) created an architec-
ture that included down sampling, skip links, and
ultimately connected layers. [25]. Using a publicly
available dataset that contained binary and multi-
class classification, the model detects COVID-19
with an accuracy of 99.53% and 95.35% in binary and
multiclass tasks, respectively. Deep transfer learning
combined with super pixel-based segmentation was
offered by Prakash et al. (2021) for detecting and
localization of COVID-19 [26]. The method’s overall
accuracy for binary classification was 99.53%, while
for multiclass, it was 99.79%.

Agarwal S et al. in 2022 have proposed model for
four classes each: normal, covid-19, bacterial pneu-
monia, and viral pneumonia [27]. Set 1 of the datasets
comprises normal, covid-19, and pneumonia. They
looked at various pre-trained CNN models, includ-
ing mobilenetv2, inceptionv3, Xception, VGG16,
InceptionResNetV2, NASNet mobile, resnet50, and
DenseNet121, which are improved by swapping out
the architecture’s last layers. Based on the results,
densenet121 had an accuracy of 97% for the set 1
dataset, while mobilenetv2 had an accuracy of 81%
on the set2 dataset. The disadvantage of this work is
that the accuracy level for four class classifications
is poor due to the model’s inability to discriminate
features.

A covidDetNet architecture with nine convolu-
tional layers and one fully connected layer was
proposed by Naeem et al. (2022). Two activations are
utilized in this architecture. Leaky ReLU and ReLU,
along with batch and channel normalization [28].
The architecture has classified the covid, pneumonia,
and normal, which obtained an accuracy of 98.40%.
The model complexity is more regarding the num-
ber of parameters to be trained. Abhijit et al. (2022)
suggested combining image segmentation and classi-
fication architecture using deep learning algorithms
to identify lung abnormalities [29]. The approach was
carried out in three phases. The segmentation tech-
nique was first carried out using CXR images created
using conditional GAN architecture. Then segmented
image features are extracted using VGG 19 model,
which is merged with the BRISK key point extrac-
tion and classified with a random forest algorithm in
the final layer. The testing accuracy of image classi-
fication is 96.6% when utilizing the architecture of
the Visual Geometry Group-19 model in conjunction
with the binary robust invariant scalable key points
approach. Syed et al. (2022) proposed a novel image
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classification strategy for determining whether or not
a patient is infected with covid19 [30]. To boost accu-
racy, the last layer of SoftMax is substituted with
a KNN classifier in this technique. The suggested
evolutionary approach is utilized to automatically dis-
cover the ideal values for CNN’s hyperparameters,
resulting in a considerable improvement in classifica-
tion accuracy. Larger and more diversified databases
are still needed for validation before claiming that
deep learning may help clinicians recognize COVID-
19 in X-ray images since cross-dataset analysis shows
that even cutting-edge models lack generalization
power.

S.K. Ghosh et al. (2022) introduced the enhanced
residual network (ENResNet) for the visual cate-
gorization of COVID-19 from chest X-ray images.
The ENResNet is used to build the residual images
and is normalized using patches [31]. The ENResNet
achieves a classification accuracy of 99.7% in binary
and 98.4% in multiclass detection. Tripti Goelr et al.
(2022) proposed a two-step DL design for COVID-
19 diagnosis leveraging CXR images [32]. The two
steps of the recommended DL architecture are feature
extraction and classification. The “Multi-Objective
Grasshopper Optimization Algorithm (MOGOA)” is
used to optimize the DL network layers; as a result,
these networks are known as “Multi-COVID-Net.” A
covid fuzzy ensemble network (COFE-Net) was pre-
sented by Banerjee et al. (2022) in ensemble deep
learning architectures [33]. The classification accu-
racy for the COFE-Net model is 99.49% for the binary
class and 96.39% for the multiclass. The proposed
network was compared to an existing pre-trained
network to establish the network’s efficiency. SARS
Net was introduced by Kumar et al. (2022) to clas-
sify COVID-19 using the images CXR [34]. In this
paper, SARS-Net combines a 2L-GCN model and
a CNN model. The model’s accuracy and sensitiv-
ity on the validation set were 97.60% and 92.90%,

respectively. Gurkan Kavuran et al. (2022) introduced
the MTU-COVNet hybrid architecture to abstract
visual features from volumetric thoracic CT images
to identify COVID-19 [35]. Then features are opti-
mized from the concentrated layers and obtain overall
accuracy of 97.7%.

2.3. Limitations of the existing studies

Several researchers have tried to use contempo-
rary DL frameworks to automate the analysis of
pneumonia and COVID-19. However, the follow-
ing drawbacks and difficulties affect several of the
notable algorithms:

• There is an inconsistency between the models’
speed, resilience, and accuracy.

• The lack of generalization techniques for accu-
rate model predictions.

• Lack of regularization techniques in models to
avoid overfitting

• Models’ trainable model parameters are high in
numbers, leading to high training time and dif-
ficulty in model deployment.

3. Tools and techniques

3.1. Description of the datasets

The CXR datasets are collected via Kaggle and
GitHub and include diseases such as Covid-19, Nor-
mal, Pneumonia, and Tuberculosis in binary and
multiclass form [36–39]. The images have different
dimensions and are resized to 224 by 224 pixels.
In cases of viral pneumonia, the white opacity sur-
rounding the lungs on an X-ray image reduces and is
almost non-existent in Covid-19 images. Model X-
ray images from the database are shown in Fig. 1.

Fig. 1. Samples from dataset a) Covid-19 (b) Normal (c) Pneumonia (d) Tuberculosis.



E. Balan and O. Saraniya / Classification of covid-19, pneumonia and tuberculosis 6069

Fig. 2. Dataset distribution of multiclass experiment.

The distribution of categories across the obtained
dataset is depicted in Fig. 2.

In total, there are 7135 images in the datasets
shown in Table 1, of which 576 are COVID-19
images, 1583 are normal images, 4273 are pneumo-
nia images, and 703 are tuberculosis images. The
dataset was split into 710 images for validation and
6425 for training. The validation data includes 61
COVID-19 images, 174 normal images, 411 images
of pneumonia, and 64 images of tuberculosis—a total
of 1564 normal and 573 COVID-19 images used for
binary classification. For data validation, 161 normal
images and 54 COVID-19 images were employed.
Different image augmentation techniques, including
rotation, random crop, width shift range, and height
shift range, to prevent the model from overfitting are
used to enhance model performance.

3.2. Problem with CNN

Convolutional layers, which include a collection of
filters whose parameters are learned throughout the
training, are the essential building component of a
convolutional neural network. While each filter con-
volves with the image, the feature map is produced.
A feature map is created when a filter is applied to
the input, revealing the locations and intensities of
a detected feature in the input. The kernel and an
image are confined to two values, a high and a low.
Positive values imply “prefer the signal value to be
as high as possible,” which is ideal for understand-
ing a convolutional kernel. Negative values indicate
“prefer as low a frequency value as possible,” and

zeroes suggest that “it doesn’t matter what the value.”
The convolution layer output size is computed using
equation 1. Convolution results from a sliding dot
product between the kernel and an image portion.
But dot product alone is a poor metric and results in
a poor feature detector [40]. The fundamental short-
coming of the convolution layer is that it does not
encode information when the objects’ location and
orientation change. Furthermore, the intrinsic data
of the image is entirely lost, and the information is
sent to the same neurons, rendering them incapable
of dealing with this type of information.

Output size of convolution=
(

W−F +2P

S
+1

)

(1)
Where, W = Size of the input, F = Size of the filter,

P = Padding, S = Stride
Equation 2 represents a convolution operation, a

strided dot product between an input and a kernel.
CNN has a very high level of accuracy when it comes
to image recognition tasks and automatically selects
critical information without human intervention. The
convolution layer’s primary issue is spatially invari-
ant to input data. Furthermore, a lot of training data
is required because the convolution layer does not
encode the location and orientation of the object.
Again, the Max pooling layer operation makes a CNN
much slower. CNNs have millions of parameters, and
a tiny dataset would lead them to overfit since they
require vast data to make them more generalized. To
solve this issue, we replace the convolution layer with
a sharpened cosine similarity layer.

convolution = X · Y (2)

Where, X = Input, Y = Kernel

3.3. Proposed SCS-Net

The flowchart of the proposed work is shown in
Fig. 3, and the pipeline starts X-ray machine used to
capture the X-ray of the patients and stored in the
database. The produced images from the X-ray are
used to train the model for classification of binary
class and multiclass classification labeling (covid-
19, pneumonia, tuberculosis, and normal. The images

Table 1
Dataset dissemination

Normal COVID-19 Pneumonia Tuberculosis

Before Augmentation 576 1583 4273 703
After Augmentation 2880 3915 21365 3515
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Fig. 3. Flowchart for SCS-Net model.

are preprocessed to fit the model for training. Train
data and validation data are split from the dataset.
The SCS-Net architecture is developed with different
layers consisting of a cosine similarity layer, max-
pooling layer, and flattened and dense layer. Figure 4
depicts the SCS-Net architecture with layers com-
bined. The training set is employed to create the
SCS-Net model. After the model has been trained,
validation data are used to evaluate it, and perfor-
mance metrics, including accuracy, precision, recall,
F1 measure, and Cohen’s kappa score, are gener-
ated. Moreover, the SCS-Net model’s accuracy is
evaluated in various samples of state-of-the-art archi-
tecture. Instead of applying a convolution layer, we
employed the SCS layer to build the feature map. SCS
is a feature-building method for neural networks that
is an alternative approach to convolution. Similar to
convolution, SCS is a stride operation that takes fea-
tures out of an image. But before calculating the dot
product, the image patch and kernel are adjusted to
have a magnitude of 1, producing a cosine similarity,
also known as cosine normalization [41]. The cosine

of the angle formed by the two-dimensional signal
and kernel vectors is given in equation 3.

cos(θ) = X · Y

‖ X ‖‖ Y ‖ (3)

SCD(X, Y ) =
(

X · Y

(‖ X ‖ +Q) (‖ Y ‖ +Q)

)p

(4)

SCS(X, Y )=sign(X·Y )

(
X·Y

(‖X‖+Q)(‖Y ‖ +Q)

)P

(5)

Where, X = Input, Y = Kernel, Q = Scale invariance,
P = Sharpening exponents.

Convolution-like stride operations, such as SCS,
extract features from images. The Sharpened Cosine
Distance (SCD) is described in equation (4), and the
Sharpened Cosine Similarity (SCS) is in equation (5).
The sharpening exponents must be learned for each
unit. This peak can be sharpened by raising it to a
power of an exponent [42]. It performs better than
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Fig. 4. Overall architecture of SCS-Net.

a convolution neural network with 10x-100x fewer
parameters and doesn’t require normalization or acti-
vation functions after SCS layers. Since the cosine
has a wide range, two very different vectors might
have a high cosine similarity. It can be sharpened by
keeping the sign while increasing the size of the result
to a power P. If the signal or kernel magnitude ever
approaches 0, this measure may become numerically
unstable, increasing the input strength by a modest
amount, Q. The kernel magnitude doesn’t grow too
narrow.

The benefits of sharpened cosine similarity are as
follows:

• Unscaled inputs can be handled by using sharp-
ened cosine similarity.

• The architecture’s simplicity and parameter effi-
ciency seem to be the main advantages of SCS.

• The SCS Net provides better accuracy with an
optimal number of model parameters.

• SCS layers are not needed an activation layer,
normalization, or dropout layer.

• Maximum absolute pooling is used instead of
Maxpooling to choose the element with the most
significant magnitude, even if the values are neg-
ative.

One of the essential constraints of the SCS is
training the model on GPUs and TPUs by raising
operations to the power of P often don’t parallelize
efficiently. On GPUs, reducing the parameters greatly

accelerates performance, but SCS loses its “sharp-
ened” quality.

3.3.1. Absolute max-pooling, flatten and dense
layer

Pooling is the process of down sampling the dimen-
sion of the data. This specific filter is updated in
backpropagation until and unless we have an appro-
priate value for extracting the features in the particular
images. Even if the element has a negative, it chooses
the highest magnitude. The max-pooling equation is
given in equation 6.

Abs Max pooling =
∣∣∣∣
((

N + 2P − −F

S

)
+ 1

)∣∣∣∣
(6)

Where, N = Image size, P = size of padding,
F = size of filter, S = Stride.

Flatten layer turns data into a one-dimensional col-
umn vector to pass the input to a dense layer. The
Dense layer contains a fully connected neuron with
SoftMax activation for multiclass and sigmoid for
binary classification.

3.4. Model parameter tuning

The SCS-Net model is trained using 40 epochs, 64
batch sizes, and a 0.0001 learning rate. The momen-
tum and RMS prop optimizer combined model are
trained using the Adam optimizer. The Keras tuner
library is used to fine-tune the hyperparameters to
make the proposed SCS-Net robust. The key rea-
son for utilizing the Adam optimizer is that it uses
very little memory and is computationally efficient.
The learning rate affects the pace of learning of
the DL model, which determines the number of
movements required to minimize the loss func-
tion value. The momentum enhances both model
training speed and accuracy. For binary classifica-
tion, the sigmoid function is utilized at the output
layer, while SoftMax activation is used for multiclass
classification.

4. Experimental design

An Intel i9 processor, 64GB of RAM, and a 24
GB RTX6000 GPU are employed in the experi-
ment. Model development and training were carried
out using the Keras and TensorFlow frameworks.
Table 2 shows the model shapes and parameters for
binary and multiclass classification. The SCS-Net
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Table 2
SCS-Net architecture parameters

Model: “Sequential” Model: “Sequential”
Number of Classes: 4 Number of Classes: 2

Layer (type) Output Shape Param # Layer (type) Output Shape Param#

Cos sim2d(CosSim2D) (None,222,222,10) 290 Cos sim2d(CosSim2D) (None,222,222,10) 290
Cos sim2d 1(CosSim2D) (None,222,222,10) 120 Cos sim2d 1(CosSim2D) (None,222,222,10) 120
Cos sim2d 2(CosSim2D) (None,222,222,10) 120 Cos sim2d 2(CosSim2D) (None,222,222,10) 120
Cos sim2d 3(CosSim2D) (None,222,222,12) 144 Cos sim2d 3(CosSim2D) (None,222,222,12) 144
Cos sim2d 4(CosSim2D) (None,222,222,12) 168 Cos sim2d 4(CosSim2D) (None,222,222,12) 168
Max pooling2d (None,111,111,12) 0 Max pooling2d (None,111,111,12) 0
(MaxPooling2D) (MaxPooling2D)
Cos sim2d 5(CosSim2D) (None,111,111,24) 22 Cos sim2d 5(CosSim2D) (None,111,111,24) 22
Cos sim2d 6(CosSim2D) (None,111,111,8) 208 Cos sim2d 6(CosSim2D) (None,111,111,8) 208
Max pooling2d 1 (None,55,55,8) 0 Max pooling2d 1 (None,55,55,8) 0
(MaxPooling2D) (MaxPooling2D)
Cos sim2d 7(CosSim2D) (None,53,53,32) 44 Cos sim2d 7(CosSim2D) (None,53,53,32) 44
Cos sim2d 8(CosSim2D) (None,53,53,10) 340 Cos sim2d 8(CosSim2D) (None,53,53,10) 340
Max-abs pool2d (None,27,27,10) 0 Max-abs pool2d (None,27,27,10) 0
(MaxAbsPool2D) (MaxAbsPool2D)
Flatten (None,7290) 0 Flatten (None,7290) 0
Dense (None,4) 29164 Dense (None,2) 14,582
Total params: 30,620 Total params: 16,038
Trainable params: 30,620 Trainable params: 16,038
Non-trainable params: 0 Non-trainable params: 0

model for 4 class classification contains 30,620 train-
able parameters and for binary classification contains
16,038 trainable parameters.

4.1. Results and discussion

The experiments are conducted for binary classi-
fication and multiclass classification. We have used
the 10% dataset for validation and the 90% dataset
for training. DL methods use this split ratio fre-
quently for model training and validation [43–45].
The model is trained using the same parameter with a
40-epoch, a 0.0001 learning rate, and a 64-batch size.
For training and validation, the 224x224 CXR images
are utilized. The model keeps track of the validation
accuracy and modifies the initial learning for better
feature extraction by using checkpoint callbacks. An
Adam optimizer with a momentum of 0.9, a binary
cross-entropy loss function for binary classes, and a
categorical cross-entropy loss function for multiclass
classification are utilized for training the SCS-Net
model.

Figure 5(a) and 5(b) show the training and valida-
tion accuracy of binary and multiclass classification.
Figure 6(a) and 6(b) show the loss of binary and multi-
class classification training and validation. Accuracy,
precision, recall, F1-score, and kappa score are the
metrics used to evaluate the model performance. The
formulae for the performance metrics are given in
Table 3. Figure 7 shows the confusion matrix of

the SCS-Net for multiclass and binary classifica-
tion, which is used to determine performance metrics
for SCS-Net. The SCS-Net model is developed to
achieve a minimal false-positive class for binary clas-
sification; we achieved only four images that fall
into the false positive category for covid-19 disease,
and in multiclass, seven images fall into false pos-
itive classes for covid-19 disease. In Table 4, the
proposed work is compared to different SOTA mod-
els reported in XiangYu [46], Stephan [47], Gaobo
Liang [48], Gayathri J [49], Soni M [50], Mehedi M
[51], Lokeswari V [52], Shikhar J [53], Emtiaz Hus-
sai [54], Tanvir M [55] and Ahmed S Elkorany [56]
by accuracy for both binary and multi-classification.
The proposed SCS-Net model based on cosine sim-
ilarity operation that can identify distinct features
between covid-19 and other diseases is analyzed. To
demonstrate the SCS-Net performance, it is com-
pared with a few published experiments that mainly
use CNN architecture. Our SCS-Net obtained an
accuracy of 97.67 % (binary class) and 94.05 % (4
class), which is better than SOTA models for covid-
19 classification. The following factors contribute to
the SCS-Net model’s higher performance. SCS-net
models use cosine similarity functions to learn the
data projection. The SCS-Net model is more bene-
ficial in model-trainable parameters and also learns
non-linear transformations.

Moreover, compared to conventional CNN model,
the SCS-Net model achieved good performance with
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Fig. 5. Training and validation accuracy of SCS-Net model (a) Binary Class (b) Multiclass.

Fig. 6. Training and validation Loss of SCS-Net model (a) Binary Class (b) Multiclass.

Table 3
Performance Metrics

Metrics Formulae
tp = true positive, tn = true negative,

fp = false positive, fn = false negative

Accuracy Acc = tp+tn
tp+tn+fn+fp

Precision P = tp
tp+fp

Recall R = tp
tp+fn

F1-Score F1 = 2
1
P

+ 1
R

substantially 10X-100X parameters. The SCS-Net
architecture is also trained on an imbalanced dataset,
but it proves to be a better model when counting
the number of false positives among the classes.

As seen in Table 5, model training parameters are
significantly less for both binary and multiclass clas-
sification. It shows each label’s performance metrics
on recall, precision, f1-score, overall accuracy, kappa
score, and trainable parameter. The SCS layer proved
worthy in extracting the distinct features between dif-
ferent classes and proved better in model training
parameters.

The Covid-19, tuberculosis, pneumonia, and nor-
mal classes processed using the SCS layer’s filter are
captured in the feature space. Visualize a feature map
for a specific image to explain the observed features.
In contrast to feature maps towards the model output,
which capture more distinctive features, feature maps
nearer the input are thought to identify fine-grained
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Fig. 7. (a) Multi-class Classification (b) Binary Class Classification.

Table 4
Performance Analysis between SCS-Net model and other models

for binary and multiclass

Ref Classification Accuracy (%)

Binary class
SCS-Net Model 2 Class 97.67
XiangYu [46] 2 Class 96.62
Stephan [47] 2 Class 94.81
Gaobo Liang [48] 2 Class 90.54
Gayathri J [49] 2 class 95.78
Soni M [50] 2 class 93.00
Mehedi M [51] 2 class 92.70

Multi class
SCS-Net Model 4 Class 94.50
Lokeswari V [52] 4 class 88.00
Shikhar J [53] 4 Class 87.13
Emtiaz Hussai [54] 4 Class 91.20
Tanvir M [55] 4 Class 90.20
Ahmed S Elkorany [56] 4 Class 94.40

information. While the deeper layer networks learn
more sophisticated features like pathological lesions,
the first layer networks always learn basic features

like edges, lines, patterns, and color. Later layers
incorporate features from earlier layers to create new
features. To analyze the feature maps of the proposed
SCS Net model are shown in Fig. 8. Figure 8(a) shows
the feature map of covid-19 class, Fig. 8(b) shows the
feature maps of the pneumonia class, 8(c) shows the
feature maps of the tuberculosis class, and finally,
8(d) shows the feature maps of normal class at the
SCS layer. The SCS-Net feature map visualization
demonstrates that the model can recognize features
that can distinguish between the classes of covid-19,
pneumonia, tuberculosis, and normal class.

Finally, our technique is cost-effective and time-
efficient, and healthcare practitioners can quickly
adopt it, enabling faster covid-19 screening processes
and earlier isolation of patients. If a CXR image is
available, real-time screening of covid-19 patients
using SCS-Net techniques may be achievable with
minimal human intervention. Furthermore, AI-based
screens can be tailored to the level of understanding
of the end user, and technicians may not be required to
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Fig. 8. Feature map visualization of SCS layer.

be trained in complex computational procedures. The
following are the study’s drawbacks, which present
the immediate potential for additional research.

• The model is accomplished on a minimal dataset
and may be tested with a diverse dataset in the
future.

• Different image modalities of covid-19 disease
will be trained and tested in SCS-Net.

5. Conclusion and future scope

Even without user intercession, covid-19 detec-
tion using computational methods from CXR images
can accomplish with an accuracy of 97.67% and
a kappa score of 93.70% in binary and multiclass
classification models of 94.05% and a kappa score
of 90.70%, respectively. These systems are sophis-
ticated to operate with smaller datasets, and such
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Table 5
Performance Analysis of binary and multiclass classification of SCS-Net

Experiment Classes Precision Recall F1-score Kappa score Accuracy Parameter
(%) (%) (%) (%) (%)

Binary Class Covid-19 98.0 93.0 95.0 93.70 97.67 16,038
Normal 98.0 99.0 98.0

Multiclass Covid-19 84.0 89.0 86.0 90.70 94.05 30,620
Normal 94.0 94.0 94.0

Pneumonia 96.0 96.0 96.0
Tuberculosis 95.0 91.0 93.0

methods are critical in situations where test kits are
scarce. This work proposed SCS-Net using sharpened
cosine similarity to perform binary class (covid-19
and normal and multiclass datasets (covid-19, Nor-
mal, Tuberculosis, and Pneumonia). It proves that
the SCS-Net model provides better accuracy, recall,
precision, F1-Score, and Kappa score with few train-
ing parameters. The SCS-Net better discriminates the
covid-19 cases in both binary and multiclass exper-
iments. It can be achieved by the best combinations
of SCS layers and model parameters for training the
SCS-Net architecture. As a result, for the initial eval-
uation of covid-19, the SCS-Net can be useful for
radiologists and other healthcare professionals. The
SCS-Net has much practical application potential and
can help front-line medical staff diagnose covid-19
accurately and quickly.

In the future, the proposed work can be extended
to use different image modalities like CT scans, CXR
images, and ultrasound to predict covid-19. The GAN
will be incorporated in SCS-Net model to tackle
dataset balance issue. The vision transformers model
may also be explored in the future to classify covid-
19 diseases. Furthermore, we will strive to test our
model with diverse datasets.
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