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parameters
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Abstract. When the target value (T) is located in the midpoint of the specification interval (m). Traditional process capability
indices (PCIs) are often employed for a process with a symmetric tolerance (T = m). In case a process with asymmetric
tolerance (T /= m) traditional PCIs can be misleading. Process capability indices (PCIs) with asymmetric tolerance have
been designed and successfully used in a crisp form in process capability analysis (PCA). These PCIs with asymmetric
tolerance can benefit from the use of fuzzy set theory to deal with ambiguity and to add greater flexibility and sensitivity to
mean variance, and target value (T), and specification limits (SLs). In order to produce fuzzy SLs of PCIs with asymmetric
tolerance fuzzy mean, fuzzy variance and the fuzzy target value have been used. Furthermore, these PCIs are graphically
represented. It is concluded that the intermediate values of fuzzy SLs can be explored, which is not achievable with crisp SLs.
Furthermore, it is recommended to utilize fuzzy SLs of PCIs with asymmetric tolerance to monitor goods that fall outside
specification limits due to their flexibility and sensitivity in a fuzzy environment. The proposed FPCIs were illustrated with
a real-life example using piston diameters that were produced in a factory.
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1. Introduction

Process capability indices are numerical instru-
ments that measure how effectively a process can
adhere to technical tolerances, client needs, and spec-
ifications. Lower and upper specification limits, LSL
and USL, as well as a target value T that falls within
these limits, make up a tolerance interval for a prod-
uct feature X. If the target value and the midpoint
of the specification limits coincide, a process is said
to have a symmetric tolerance. But there are enough
instances for the goal value to not be the midpoint
of the tolerance limits. The tolerance range in these
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circumstances is referred to as asymmetric. The new
class of indices for the process with asymmetric tol-
erance for crisp SLs was introduced by [1].

[2] analyzed PCIs based on different process fea-
tures and then present a new class of capability
indices to handle processes with asymmetric toler-
ances. Process yield, process centering, and process
characteristics linked to loss functions are compared
between the proposed new indices and the cur-
rent PCIs. The findings show that the new indices
outperform the pre-existing capability indices and
offer more accuracy in the current applications using
PCIs to gauge process potential and performance.
Asymmetric tolerance PCIs have been created and
effectively used to solve these issues. PCIs are very
useful statistics, however, due to the clear defini-
tions of the specification limits (SLs), mean, and
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variance, they have several restrictions that prohibit
a thorough and flexible study. The fuzzy set theory
is applied in this situation to enhance the flexibility
and information of PCIs with asymmetric tolerances.
It was concluded that when compared to the crisp
scenario, fuzzy estimations of PCIs with asymmetric
tolerances provide more information and flexibility to
assess the process performance. Fuzzy formulations
of the most often used PCIs with asymmetric toler-
ances and a real-life case study from an automobile
manufacturer were presented and compared to crisp
estimations of PCIs with asymmetric tolerances. It
was concluded that fuzzy estimations of PCIs with
asymmetric tolerances provided more information
and flexibility for evaluating process performance
[3]. A literature review on fuzzy process capabil-
ity indices (FPCIs) for PCA was presented [4]. This
study aims to give a thorough evaluation of pub-
lications that deal with FPCIs. These studies have
been examined based on some of their characteristics,
including the year, document type, journal name, and
nation. In this work, classifications for FPCI, appli-
cation area, fuzzy parameters, and type of fuzzy sets
have also been presented. There have also been some
statistical analyses performed. They wanted to show-
case the most recent developments in FPCI research
and offer a road map for researchers in this area. The
primary goal is to highlight potential future areas for
fuzzy PCA research. [5] proposed a fuzzy form of
loss-based process capability indices Le and Le

′′
to

overcome uncertainty. These include L̃e and its gen-
eration L̃

′′
e . They measured both indices using fuzzy

data. The comparative study of both fuzzy indices L̃e

and L̃
′′
e showed better performance of L̃

′′
e in terms

of sensitivity. Fuzzy process capability indices were
developed based on non-normal distribution where
SLs and target values were used as a fuzzy number,
see, [6]. The degree of process conditions of the pro-
posed fuzzy process capability indices were verified
using a degree of belonging. A simulation study was
also used to look at the viability and efficacy of the
suggested approach. [7] proposed two fuzzy indices
based on fuzzy specification boundaries and target
value. In the situation where the specification limits
and the target value are fuzzy but the data is crisp, the
authors suggest two new fuzzy indices to address the
issue with them. The authors also provide an applica-
tion example to illustrate the utility and performance
of the suggested indices. Fuzzy process capability
indices based on fuzzy normal distribution were pro-
posed and applied [8]. Piston diameter measurements
are made using the FPCIs, FCIs, and FNCIs ratios.

The findings demonstrate that, when compared to the
crisp example, fuzzy estimations of PCIs, CIs, and
NCIs have significantly more value to evaluate the
process.

[9] suggested the intuitionistic fuzzy set-based
fuzzy model of the normal distribution. The neu-
trosophic process capability indices (NPCIs) were
proposed by [10]. It was concluded that these indices
performed better than conventional PCIs in a fuzzy
environment. [11] introduced a decision-making pro-
cess based on fuzzy inference to enhance process
capability analysis and illustrated with real life data.
The indices for one-sided single tolerance were intro-
duced by [12], and the usefulness of these indices was
demonstrated using a real-life example. More details
can be seen in [13–15].

Analyzing the PCA literature reveals that classi-
cal PCA is examined far too extensively. However,
there are very few studies that use fuzzy set exten-
sions. Therefore, the purpose of this work is to fill the
vacuum in the literature. In order to do this, classic
PCIs [12] have been examined and reorganized in this
study using triangular fuzzy number (TFNs). A fuzzy
formulation of these indices is proposed in the paper.
Additionally, newly developed fuzzy indices are pre-
sented numerically and graphically in the paper.

2. Methodology

Four traditional PCIs with asymmetric tolerance
are used in this investigation. These indices undergo
a fuzzy transformation. Fuzzy indices are used to
construct four theorems. The suggested indices are
applied to a sample of 200 piston diameters that were
produced in a factory situated in Turkey’s Konya
Industrial Area. The R package “Fuzzy numbers” is
used to calculate and visualize the result of theorems.
TFNs are used as membership functions. The R code
can be found in Appendix A.

3. Estimation of Cu
pmk and Cl

pmk with fuzzy
parameters

In this section, conventional process capability
indices are transformed into a fuzzy form using the
fuzzy parameters. Fuzzy indices are presented in the
form of theorems. All four Parameters (SLs, Target
value, Mean, Variance) are used as a triangular fuzzy
number. Lower and upper fuzzy specification lim-
its are presented as triangular fuzzy number (TFN),
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L̃SL = TFN (l1, l2 , l3), ŨSL = TFN (u1, u2 , u3)
respectively. Similarly, a fuzzy form of the target

value (t1, t2 , t3), mean (μ̃) and variance (σ̃2).

Theorem 3.1: Fuzzy Estimate of Cu
pmk

It is presented that crisp CPI Cu
pmk with asymmetric

tolerance can be converted into fuzzy form to make
its specification SLs more sensitive and elastic i.e.
C̃u

pmk (α) = C̃u
pmk(α)L, C̃u

pmk(α)R.

Proof. Formulation of the one-sided tolerance is an
upper limit U.

Cu
pmk = USL − T − max (μ − T, (T − μ) /k)

3
√

σ2 + (max (μ − T, (T − μ) /k)2

(1)

Cu
pmk = USL − T − A∗

u

3
√

σ2 + (
A∗

u

)2
(2)

Where T is the target value, USL upper specification
limit, mean, variance σ2, k constant, and

A∗
u = max (μ − T, (T − μ) /k) (3)

C̃u
pmk = ŨSL − T̃ − Ã∗

u

3
√

σ̃2 + (
Ã∗

u

)2
(4)

Where T̃ is the fuzzy target value, ŨSL is
the fuzzy upper specification limit, fuzzy mean
μ̃, fuzzy variance σ̃2, k constant, and Ã∗

u =
max

(
μ̃ − T̃ ,

(
T̃ − μ̃

)
/k

)
α − cut of fuzzy estimate C̃u

pmk

C̃u
pmk (α) = ŨSL (α) − ]T (α) − Ã∗

u (α)

3
√

σ̃2 (α) + (
Ã∗

u (α)
)2

(5)

C̃u
pmk (α) = C̃u

pmk(α)L, C̃u
pmk(α)R (6)

C̃u
pmk(α)L = ŨSL(α)L − ]T (α)L − Ã∗

u(α)R

3
√

σ̃2(α)R + (
Ã∗

u(α)R
)2

,

C̃u
pmk(α)R = ŨSL(α)R − ]T (α)R − Ã∗

u(α)L

3
√

σ̃2(α)L + (
Ã∗

u(α)L
)2

(7)

Theorem 3.2. Fuzzy Estimation of Cl
pmk

It is shown that crisp CPI Cl
pmk with asymmetric

tolerance can be transformed into a fuzzy form to

make its specification SLs more sensitive and flexible.

C̃l
pmk (α) =

(
C̃l

pmk(α)L , C̃l
pmk(α)R

)
.

Proof. Formulation of the one-sided tolerance is a
lower limit L.

Cl
pmk = T − LSL − max (μ − T, (T − μ) /k)

3
√

σ2 + (max (μ − T, (T − μ) /k)2
(8)

Cl
pmk = T − LSL − A∗

l

3
√

σ2 + (
A∗

l

)2
(9)

Note that all parameters and values are treated as a
triangular fuzzy number.

C̃l
pmk = T̃−L̃SL − Ã∗

l

3
√

σ̃2 + (
Ã∗

l

)2
(10)

α − cut of fuzzy estimate C̃l
pmk in fuzzy interval

C̃l
pmk (α) =

^T (α) −L̃SL (α) − Ã∗
l (α)

3
√

σ̃2 (α) + (
Ã∗

l (α)
)2

(11)

C̃l
pmk(α)L =

^T (α)L−L̃SL(α)L − Ã∗
l (α)R

3
√

σ̃2(α)R + (
Ã∗

l (α)R
)2

,

C̃l
pmk(α)R =

^T (α)R−L̃SL(α)R − Ã∗
l (α)L

3
√

σ̃2(α)l + (
Ã∗

l (α)L
)2

(12)

C̃l
pmk (α) =

(
C̃l

pmk(α)L , C̃l
pmk(α)R

)
(13)

Theorem 3.3. Fuzzy Estimate of Cu
p (u , v)

In this theorem, it is proved that that crisp
Cu

p (u , v) with asymmetric tolerance can be
changed into fuzzy form to make its specification SLs
more sensitive and flexible.

C̃u
p (u , v) =

(
C̃u

p(u , v)L (α)
)

, C̃u
p(u , v)R (α)).

Proof. The general formulation of the one-sided tol-
erance is an upper limit U.

Cu
p (u , v)

= USL − T − umax (μ − T, (T − μ) /k)

3
√

σ2 + v (max(μ − T, (T − μ) /k)2
(14)
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Cu
p (u , v) = USL − T − uA∗

u

3
√

σ2 + v
(
A∗

u

)2
(15)

The fuzzy form of the index is C̃u
p (u , v)

= ŨSL − T̃ − uÃ∗
u

3
√

σ̃2 + v
(
Ã∗

u

)2
(16)

α − cut of fuzzy estimate C̃u
p (u , v)

C̃u
p(u , v)L (α) = ŨSL(α)L − ^T (α)L− − uÃ∗

l (α)R

3
√

σ̃2(α)R + v
(
Ã∗

l (α)R
)2

,

C̃u
p(u , v)R (α) = ŨSL(α)R − ^T (α)R− − uÃ∗

l (α)L

3
√

σ̃2(α)l + v
(
Ã∗

l (α)L
)2

(17)

C̃u
p (u , v) =

(
C̃u

p(u , v)L (α)
)

, C̃u
p(u , v)R (α))

(18)

Theorem 3.4. Fuzzy Estimate of Cl
p (u , v)

It is verified that that crisp CPI Cl
p (u , v) with

asymmetric tolerance can be reformed into a vague
form to make its specification SLs more sensitive and
elastic.

C̃l
p (u , v)=

(
C̃i

p(u , v)L (α)
)

, C̃l
p(u , v)R (α)).

Proof. We get the general formulation if the one-sided
tolerance is a lower limit L.

C̃l
p (u , v)= T − LSL − umax (μ − T, (T − μ) /k)

3
√

σ2 + v(max(μ − T, (T − μ) /k)2

(19)

C̃l
p (u , v) = T − LSL − uA∗

l

3
√

σ2 + v
(
A∗

l

)2
(20)

C̃l
p (u , v) = T̃−L̃SL − uÃ∗

l

3
√

σ̃2 + v
(
Ã∗

l

)2
(21)

α − cut of fuzzy estimate C̃l
p (u , v) in fuzzy interval

C̃l
p (u , v) =

^T (α) −L̃SL (α) − Ã∗
l (α)

3
√

σ̃2 (α) + (
Ã∗

l (α)
)2

(22)

C̃l
p(u , v)L =

^T (α)L−L̃SL(α)L − Ã∗
l (α)R

3
√

σ̃2(α)R + (
Ã∗

l (α)R
)2

,

C̃l
p(u , v)R =

^T (α)R−L̃SL(α)R − Ã∗
l (α)L

3
√

σ̃2(α)l + (
Ã∗

l (α)L
)2

(23)

C̃l
p (u , v) =

(
C̃l

p(u , v)L , C̃l
p(u , v)R

)
(24)

3.5. Example

In this real-life example, fuzzy values of
parameters discussed by [8] are used to calcu-
late the values of proposed theorems. μ̃σ̃ (α)[
μ

l,̃σ,
, μ

r,̃σ

]
=(130 : 1775, 130.1800, 130.1825),

σ̃2 (α)
[

(n−1)S2

[1−α]χ2
R 0.005+α[n−1]

,
(n−1)S2

[1−α]χ2
L 0.005+α[n−1]

]
=(0.000071, 0 : 000090, 0 : 000118), upper specifi-
cation limit ŨSL = TFN (u1, u2 , u3)=(130.1725,
130.3766, 130.3878), lower specification
limit L̃SL = TFN (l1, l2 , l3)=(130.1154,
130.1367, 130.1556), fuzzy target value
TFN (t1, t2 , t3)=(130.1574, 130.35005, 130.2106).
Four theorems (3.1, 3.2, 3.3, 3.4) have (1.4375,
1.5123, 1.5716), (1.5723, 1.63503, 1.7106), (1.2410,
1.5102, 1.6428), and (1.0614, 1.1050, 1.3712)
results, respectively. At � = 1, the values of fuzzy
PCIs become crisp and match those of conventional
PCIs. The minimum and maximum FPCI values are
also achieved at α = 0.

4. Results and discussion

Figure 1 shows the process capability index Cu
pmk

demonstrated in theorem 3.1 in the form of a trian-
gular fuzzy number. The results indicate membership
for intermediate values between 1.44 to 1.57 at dif-
ferent levels of �. The maximum membership is
achieved at 1.51. Figure 2 shows the process capa-
bility index C̃l

p (u , v) as a triangular fuzzy number,
which is verified in theorem 3.4 (1.0614, 1.1050,
1.3712). Other indices Cl

pmk and Cu
p (u , v), as

proved in theorems 3.2 and 3..3, can be graphi-
cally shown as a triangle fuzzy number (1.5723,
1.63503, 1.7106) and (1.2410, 1.5102, 1.6428) cor-
respondingly. It improves the indexes’ flexibility and
sensitivity. In traditional process capability indices,
this feature is not available. When traditional process
capability indices are used in a fuzzy context, the
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Fig. 1. Triangular fuzzy number of Cupmk (Theorem 3.1).

Fig. 2. Triangular fuzzy number of C̃lp (u, v) (Theorem 3.4).

results can be misleading.

5. Comparative study

Grau, (2009) suggested PCIs with asymmetric tol-
erance when the parameters are crisp. However, these
conventional PCIs are not suitable when parameters
and data are fuzzy. When the data are fuzzy, the
evaluation of fuzzy PCIs is more appropriate than
traditional PCIs. The benefit of the suggested FPCIs
is discussed in this section using fuzzy SLs. The rec-
ommended FPCIs are compared to two current PCIs
proposed by [12] under classical statistics. To com-

pare the effectiveness of the suggested FPCIs, the
fuzzy values of all parameters were used. Figures 1
and 2 graphically display the FPCI values. Results in
(theorems) show that, in contrast to [12] PCIs, the pro-
posed FPCIs give fuzzy values of SLs. Furthermore,
the proposed FPCIs will aid in enhancing the sen-
sitivity and flexibility of tolerance limits. Likewise,
comparison study shows, FPCIs with asymmetric
tolerance can produce intermediate values. Addi-
tionally, the suggested FPCIs are more suitable and
realistic to apply in a fuzzy environment.

6. Conclusion

PCIs with fuzzy asymmetric tolerance are found to
be more sensitive and flexible in a fuzzy environment
than traditional PCIs with asymmetric tolerance. The
fuzzy form of PCIs with asymmetric tolerance is
numerically and graphically demonstrated in this
paper. It shows how fuzzy set theory can make
indices’ SLs more flexible and sensitive to varia-
tion. In comparison to existing PCIs with asymmetric
tolerance, the applications of the suggested FPCIs
reveal that the proposed FPCIs work better in moni-
toring the process. SLs with intermediate values can
be investigated. Theorems based on triangular fuzzy
numbers are proposed. The asymmetric fuzzy PCIs
tolerances include the membership value along with
the crisp values of 1.00 and display all PCIs that
can exist. These outcomes are clearly more beneficial
than using only one result by providing a wide vari-
ety of perspectives on process engineers adhering to
process mean and variance. In the future, trapezoidal
numbers can also be used to fuzzify the same indices.
Additionally, other crisp indices can also benefit from
using this fuzzification technique to increase their
flexibility, sensitivity, and reduce information loss.
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Appendix A

R Code

R CODES
#R CODES THEORAM 1
#Fuzzynumbers pacage p = 13
rm(list = ls())
alpha<- c(0.3, 0.5, 0.7,0.8)
P3<-as.PiecewiseLinearFuzzyNumber(
TrapezoidalFuzzyNumber(1.2025,1.41003,1.41003,1.7016),
knot.n=4, knot.alpha=alpha)
P3
## Piecewise linear fuzzy number with 3 knot(s),
## support = [1,7],
## core = [2.5,4].
plot(P3, type=’b’, from = -1, to = 9, xlim = c(0,2.5))
abline(h = alpha, col=’gray’, lty = 2)
#abline(v = P3[’knot.left’], col=’gray’, lty = 3, lw = 3)
#abline(v = P3[’knot.right’], col=’gray’, lty = 3,lw=3)
text(2.0, alpha, sprintf(’a=%g’, alpha), pos = 3)
####################################################
#R CODES THEORAM 4
#Fuzzynumbers pacage p = 13
rm(list = ls())
alpha<- c(0.3, 0.5, 0.7,0.8)
P3<-as.PiecewiseLinearFuzzyNumber(
TrapezoidalFuzzyNumber(1.3071, 1.3503,1.3503,1.4106),
knot.n=4, knot.alpha=alpha)
P3
## Piecewise linear fuzzy number with 3 knot(s),
## support = [1,7],
## core = [2.5,4].
plot(P3, type=’b’, from = -1, to = 9, xlim = c(0,3))
abline(h = alpha, col=’gray’, lty = 2)
#abline(v = P3[’knot.left’], col=’gray’, lty = 3, lw = 3)
#abline(v = P3[’knot.right’], col=’gray’, lty = 3,lw=3)
text(2.0, alpha, sprintf(’a=%g’, alpha), pos = 3)


