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Fuzzy incidence coloring on cartesian
product of some fuzzy incidence graphs

V. Yamunaa and K. Arun Prakashb,∗
Department of Mathematics, Kongu Engineering College, Perundurai, Erode, Tamilnadu, India

Abstract. The Fuzzy Incidence Coloring (FIC) of a graph is a mapping of its Fuzzy Incidence set to a color set in which
adjacent Fuzzy Incidences (FIs) are colored with different colors. Using various sorts of fuzzy graph products, new graphs
can be created from two existing graphs. In this paper, we determined the Fuzzy Incidence Coloring Number (FICN) of
some cartesian product with two Fuzzy Incidence Paths (FIPs) (̃Pm × P̃n), two Fuzzy Incidence cycles (̃Cm × C̃n), two Fuzzy
Incidence complete graphs (̃Km × K̃n), FIP, and Fuzzy Incidence cycle (P̃m × C̃n), FIP and Fuzzy Incidence complete graph
(̃Pm × K̃n), Fuzzy Incidence cycle and Fuzzy Incidence complete graph (̃Cm × K̃n), respectively.
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1. Introduction

A graph is a simple model relation that represents
information between things skillfully. Objects and
relationships are represented by vertices and edges.
There is frequently uncertainty in the items or their
relationships, or between both objects and their rela-
tionships, while describing a graph. Fuzzy graph
models are well suited in this scenario. Mordeson
et al. [10] introduced various fuzzy graph operations
that can be used to generate new graphs from two
existing graphs, such as union, join, cartesian prod-
uct, and composition. Shovan Dogra [23] presented
various fuzzy graph products to identify the degree of
vertices, including modular, homomorphic, box dot,
and star fuzzy graph products. Talal AL-Hawary [26]
proposed three new operations: direct product, semi-
strong product, and strong product for fuzzy graphs
to be a complete fuzzy graph. Ghorai et al. [15] devel-
oped detour G-interior and detour G-boundary nodes
with applications in a bipolar fuzzy network. In a
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bipolar fuzzy environment, they have also investi-
gated a few graph indices [14]. The definition and
theory of bipolar fuzzy graphs were revised by Gho-
rai et al. [16], and they also provided some numerical
examples.

A FIG is a new approach to the degree to which an
edge and a vertex incident were defined by Dinesh
[5, 6]. FIGs, have long been acknowledged as an
effective and well-organized tool for capturing and
resolving a wide range of real-world scenarios involv-
ing ambiguous data and information. Because of
the importance of unpredictability and nonspecific
information in real-world problems that are usually
uncertain, it is highly difficult for an expert to describe
those difficulties using a fuzzy graph. As a result,
establishing a FIG, on which fuzzy graphs may not
produce appropriate results, can be utilized to address
the uncertainty associated with any unpredictable and
generic information of any real-world problem. Later,
Sunil Mathew et al. [24] presented FIG connectiv-
ity principles, which are useful in interconnection
networks with impacted flows. Because most inter-
connection networks do not follow the crisp rule,
fuzzy graph theory can be applied to improve per-
formance.
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One of the most important challenges in com-
binatorial optimization is graph coloring, which is
widely used to promote conflict resolution or the
optimal division of mutually exclusive events. Many
practical problems can be represented as coloring
problems. Any graph can be usually related to two
types of coloring namely, vertex coloring and edge
coloring. Vertex coloring is a function that gives dis-
tinct colors to adjacent vertices. Edge coloring is a
function that assigns distinct colors to the edges so
that the incident edges are colored differently. Many
researchers have experimented with some additional
graph colorings like, centre coloring, fractional color-
ing, dynamic coloring, harmonic coloration, rainbow
coloring, incidence coloring, and so on. Graph col-
oring is used in picture segmentation, image capture,
data mining, scheduling, allocation, networking, and
other real-time applications.

Any network that focuses on both data at the same
time is subjected to incidence coloring. Constructing
a wireless network in which a group of transceivers
is connected in space communication is one of the
major challenges in the frequency assignment prob-
lem. Each transceiver can send and receive data at
the same time, and nearby transceivers with different
frequencies avoid broadcast conflicts. As a result, the
incidence coloring of graphs to be used to charac-
terize the model such that neighborly incidences are
assigned different colors. The incidence chromatic
number is the least number of independent incidence
sets, and incidence coloring separates the entire graph
into disjoint separate incidence sets. Richard et al.
[17] demonstrated incidence coloring on graphs such
as trees, full graphs, and complete bipartite graphs,
and they hypothesized that every graph G could be
incidence colored with�+ 2 colors. Cheng et al. [4]
researched incidence coloring techniques for square
meshes, hexagonal meshes, and honeycomb meshes
with a minimum color requirement of �+ 1. The
chromatic number on some standard products of
graphs with some applications of product colorings
was introduced by Sandi Klavzar [22]. Incidence col-
oring on the cartesian product of some special classes
of graphs was extensively investigated by Alexander
et al. [1]. Petr Gregor et al. [13] introduced some suffi-
cient properties of the two-factor graphs of a cartesian
product graph which admits an incidence coloring
with at most �+ 2 colors.

Fuzzy coloring is used to deal with uncertainties
such as vagueness and ambiguity in coloring situa-
tions. Because there may be a variation in coloring
numbers between crisp and fuzzy graphs where crisp

graph coloring may not yield appropriate results in
the situation of uncertainty. Fuzzy coloring is cre-
ated to color political maps as well as a variety of
real-time scenarios like traffic light systems, immi-
gration, work scheduling, image classification, and
network communications. The process of coloring
the fuzzy graphs was implemented by Munoz et
al. [12]. Anjaly Kishore et al. [2] defined the chro-
matic number of fuzzy graphs and the chromatic
number of threshold graphs to make the coloring of
the fuzzy graph simple. The vertex coloring func-
tion uses the α-cut of a fuzzy graph to color all of
the graph’s vertices and the method of getting the
graph chromatic number was proposed by Arindam
Dey et al. [3]. The edge coloring of fuzzy graphs
was introduced by Rupkumar Mahapatra et al. [21]
in which the chromatic index and the strong chro-
matic index with related attributes were examined.
Furthermore, the edge coloring of fuzzy graphs has
been more effectively used to solve the issues in the
job-oriented websites and traffic light. Madhuman-
gal Pal et al. [9] addressed fresh ideas for coloring
fuzzy graphs, focusing mostly on vertex and edge
coloring and illuminating their discussion with exam-
ples. Additionally, he introduced a fuzzy fractional
chromatic number and proposed a new technique for
fuzzy fractional coloring of a fuzzy graph. He stud-
ied several fuzzy graph types and provided useful
examples. The representation of ecological problems,
social networks, telecommunications systems, link
prediction in fuzzy social networks, manufacturing
industry competition, bus network patrolling, image
contraction, cell phone tower installation, traffic sig-
naling, job selection, etc. are just a few examples of
real-world applications that are illustrated as fuzzy
graphs.

Rosyida et al. [18] created a novel method by tak-
ing the FCN of the cartesian product of complete
fuzzy graphs and path.The Fuzzy Chromatic Num-
ber (FCN) of the cartesian product of two fuzzy
graphs was developed by Rosyida et al. [19, 20], and a
relationship was found between the maximum FCN
of two fuzzy graphs and the FCN of the cartesian
product of those two fuzzy graphs. Additionally, in
accordance with the characteristics revealed by the
testing results, he created an algorithm to compute
the cartesian product FCN. In everyday life, a vari-
ety of instances involving human loss may occur. In
these cases, preserving human lives as well as pre-
venting such events is equally important. Although
these issues can be represented as graphs and solved
via fuzzy coloring, it is valid for any one criteria.
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To address such issues, a new FIC with a quick
turnaround time has been proposed. Some specific
results on chromatic FIs were studied by Liu Xikui et
al. [8]. We provided a new method based on FI such
that vehicle waiting times were minimized to reduce
the number of accidents and traffic jams as well as
bounds for many FIGs using FIC [27].

1.1. Novelty and motivation

Several research articles in the field of fuzzy graphs
have been distributed in various journals. In the
same way, there are few articles about FIGs. The
present research introduces a new type of coloring
known as Fuzzy Incidence Coloring (FIC) with an
edge having two incidences and each adjacent inci-
dence are colored with different colors in which the
amount of coloring of various types of FIGs is consid-
ered. To minimize the human loss during accidents
and to reduce the waiting time of vehicles in lanes
of traffic flow, Fuzzy Incidence Coloring Numbers
(FICNs) must be employed. Violence against illegal
border crossers is common near land and maritime
borders. Kidnapping, robbery, extortion, sexual vio-
lence, and death are all crimes committed against
illegal immigrants by cartels, smugglers, and even
corrupt government officials. Individuals are also
killed as a result of heat exhaustion, dehydration,
and drowning. As the government cracks down on
narcotics operations and other illicit activities, crimi-
nal groups turn to alternative sources of money, such
as human smuggling and sex trafficking. There has
already been research done in fuzzy graph theory,
demonstrating a set of techniques that can be success-
fully employed for modelling and dealing with illicit
human trafficking. Sunil Mathew et al. [25] used FIGs
with incidence blocks to study illicit international
migration. However, the proposed research cannot be
extended to more complicated structures with more
paths and cycles in the routes. As a result, we are inter-
ested in developing a more efficient structure that can
address these issues. In this article, we set the frame-
work for such applications by computing the FICN
for cartesian products of various graph combinations.
In computer science, geometry, algebra, number the-
ory, and combinatorial bayesian optimization, among
other fields, the cartesian product of fuzzy graphs has
been used to mimic real issues. We are therefore inter-
ested in looking at a few issues involving the cartesian
product of FIGs. It made us possible to discover the
FICN of the cartesian product of any two FIGs. We
are interested in learning more about the FICN of the

FIGs cartesian product because it is better suited to
handle ambiguous phenomena in practical situations.

The objective of this paper is to find the FICN
bounds for the cartesian product of FIGs. Section 1,
provides an introduction and literature survey of inci-
dence graphs, incidence coloring, FIC, and literature
field analysis. Preliminary is in Section 2. Section 3
deals with the definition and FICN of graphs, as well
as bounds on the cartesian product of some FIGs. The
comparative study, applications, advantages and lim-
itations, conclusion and scope of future research are
outlined in the last section.

2. Preliminaries

Basic definitions of incidence coloring, FIC, and
cartesian product of fuzzy graphs are found in this
section.

Definition: 2.1 [17]. LetG = (V,E) be a multigraph
of order n and of size m. Let I = {(v, e) : v ∈ V, e ∈
E, v is incident with e} be the set of incidences of
G. We say that two incidences (v, e) and (w, f ) are
neighborly (adjacent) provided one of the following
holds:

(i) v = w,
(ii) e = f ,

(iii) the edge {v,w} equals e or f .

The configurations associated with (i)–(iii) are pic-
tured in Fig. 2.1.

We define an incidence coloring ofG to be a color-
ing of its incidences in which neighborly incidences
are assigned different colors. The incidence color-
ing number of G, denoted by I (G), is the smallest
number of colors in an incidence coloring.

Definition 2.2 [11]. Let (V,E) be a graph. Then
G = (V,E, I) is called an incidence graph, where
I ⊆ V × E. We note that if V = {u, v} , E = {uv}
and I = {(v, uv)}, then (V,E, I) is an incidence graph
even though (u, uv) /∈ I.
Definition 2.3 [11]. Let G = (V,E, I) be an
incidence graph. If (u, vw) ∈ I, then (u, vw) is
called an incidence pair or simply a pair. If
(u, uv) , (v, uv) , (v, vw) , (w, vw) ∈ I, then uv and
vw are called adjacent edges.

Definition 2.4 [5]. Let G = (V,E) be a graph and
σ be a fuzzy subset of V and μ be a fuzzy subset of
E (E ⊆ V × V ). Letψ be a fuzzy subset of V × E. If
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Fig. 2.1. Incidence pairs.

ψ (v, e) ≤ σ (v) ∧ μ (e) for all v ∈ V and e ∈ E, then
ψ is called a Fuzzy Incidence (FI) of G.

Definition 2.5 [6]. Let G = (V,E) be a graph and
(σ,μ) be a fuzzy subgraph of G. If ψ is a Fuzzy
Incidence ofG, then G̃ = (σ,μ,ψ) is called a Fuzzy
Incidence Graph (FIG) of G.

Definition 2.6 [27]. An incidence coloring of Fuzzy
incidence Graph G̃ can be defined as a function Fc :
ψ (G) → N such that FC[ψ (v, e)] /= FC

[
ψ (u, f )

]
for any Fuzzy Incidences ψ (v, e) &ψ (u, f ) that are
adjacent. This implies that an incidence coloring
assigns distinct colors to its adjacent Fuzzy Inci-
dences.

Definition 2.7 [27]. Let G̃ = (σ,μ,ψ)
be a Fuzzy Incidence Graph. Let C =
{ϕi ∈ ψ (σ × μ) : 1 ≤ i ≤ k}. Let k ∈ N

i. ∨ϕ = ψ

ii. ϕiϕj = 0, 1 ≤ i, j ≤ k

iii. for each, u ∈ σ and for each pair of strongly
adjacent Fuzzy Incidences ψ toward u, ψ ∈
I (G). ϕi [ψ (v, e)] ∧ ϕj

[
ψ (u, f )

] = 0 ∀i

That C is said to be k- Fuzzy Incidence Coloring
(FIC).

Definition 2.8 [27]. The minimum number of colors
needed for an incidence coloring of a fuzzy graph
is known as Fuzzy Incidence Chromatic Number
(FICN) or Fuzzy Incidence Coloring Number of G̃
and denoted by χψ

(
G̃

)
.

Definition 2.9 [10]. Let G1 (σ1, μ1) and G2 (σ2, μ2)
be two fuzzy graphs with underlying vertex sets
V1 and V2 and edge sets E1 and E2 respectively.
Then cartesian product of G1andG2 is pair of
functions (σ1 × σ2, μ1 × μ2) with underlying vertex
set V = V1 × V2 = {(u1, v1) ; u1εV1andv1εV2},
and underlying edge set E = E1 × E2 =
{(u1, v1)(u2, v2); u1 = u2, (v1, v2)εE2 or(u1, u2)

εE1, v1 = v2} with

(σ1 × σ2) (u1, v1)

= σ1 (u1) ∧ σ2 (v1) , where u1εV1 and v1εV2

(μ1 × μ2) ((u1, v1) (u2, v2))

= σ1 (u1) ∧ μ2 (v1v2) , ifu1 = u2 and v1v2εE2

= μ1 (u1u2) ∧ σ2 (v1) , ifu1u2εE1 and v1 = v2

3. Fuzzy incidence coloring number on
cartesian product graphs

The FICN on the cartesian product of some
FIGs such as P̃m × P̃n, P̃m × C̃n, P̃m × K̃n,C̃m ×
C̃n, C̃m × K̃n, K̃m × K̃n are provided in this section.

Definition: 3.1. Let G̃1 (σ1, μ1, ψ1) and
G̃2 (σ2, μ2, ψ2) are two FIGs with V1 and V2
as vertex sets, E1 and E2 as edge sets, 	1
and 	2 as Fuzzy Incidence pair sets respec-
tively. The cartesian product of G̃1 and G̃2
is a function of (σ1 × σ2, μ1 × μ2, ψ1 × ψ2)
with vertex set V = V1 × V2 =
{(v1, t1) ; v1εV1andt1εV2}, edge set E = E1 × E2 =
{(v1, t1) (v2, t2) ; v1 = v2, (t1, t2)εE2or(v1, v2)ε
E1, t1 = t2}, incidence pair set 	 = 	1 ×	2 =
{[(v1, t1) , (v1, t1) (v2, t2)]; (v1, t1) εV1 × V2 and
(v1, t1) (v2, t2) εE1 × E2}.

and whose fuzzy subsets σ1 × σ2ofV,μ1 ×
μ2ofEandψ1 × ψ2of	 must defined as follows

• (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧
σ2 (t1) , where v1εV1 and t1εV2

• (μ1 × μ2) (v1, t1) (v2, t2) ≤ σ1 (v1) ∧
μ2 (t1, t2) , where t1 = t2 and (v1, v2)εE2

≤ μ1 (t1, t2) ∧ σ2 (v1) , where (t1, t2)εE1 and v1 = v2

•
(ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2)] ≤ [σ1 (v1) ∧ σ2 (t1)]

∧[σ1(v1) ∧ μ2 (t1, t2)], where v1εV1, t1εV2 and (t1, t2)εE2

Then the Fuzzy Incidence Graph
(̃G1 × G̃2) (σ1 × σ2, μ1 × μ2, ψ1 × ψ2) is said
to be the cartesian product of G̃1 (σ1, μ1, ψ1) and
G̃2 (σ2, μ2, ψ2). �
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An example for the Definition 3.1 is illustrated
below.

Example 3.1. Let P̃2 be the FIP with 2 vertices whose
degree 2 and C̃3 be the Fuzzy Incidence cycle with 3
vertices whose degree 2 are represented in Figs. 3.1
and 3.2.

Let V1, E1, FI1 are the vertex set, edge set and
Fuzzy Incidence pair set of P̃2 whose membership
values are listed below.

V1 t11 t12

σ1 0.7 0.6

E1 t11t12

μ1 0.6

FI1 (t11, t11t12) (t12, t11t12)

ψ1 0.6 0.6

Let V2, E2, FI2 are the vertex set, edge set and
Fuzzy Incidence pair set of C̃3 whose membership
values are listed below.

V2 t21 t22 t23

σ2 0.4 0.5 0.8

E2 t21t22 t22t23 t21t23

μ2 0.4 0.5 0.4

FI2 (t21, t21t22) (t22, t21t22) (t22, t22t23)

ψ2 0.4 0.4 0.5
FI2 (t23, t22t23) (t23, t21t23) (t21, t21t23)
ψ2 0.5 0.4 0.4

Now taking the cartesian product of FIP P̃2 and
Fuzzy Incidence cycle C̃3 such that P̃2 × C̃3 with 6
vertices along with its membership values is repre-
sented in Fig. 3.3 satisfying the following conditions

Fig. 3.1. FIP P̃2.

Fig. 3.2. Fuzzy Incidence cycle C̃3.

i. (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1)

ii. (μ1 × μ2) [(v1, t1) (v2, t2)] ≤ (σ1 × σ2) (v1, t1) ∧ (σ1 ×
σ2) (v2, t2)

iii. (ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2)] ≤ (σ1 × σ2) (v1, t1) ∧
(μ1 × μ2) [(v1, t1) (v2, t2)]

Here, (σ1 × σ2) (t11, t21) ≤ σ1 (t11) ∧ σ2 (t21) ≤
0.7 ∧ 0.4 ≤ 0.4

(σ1 × σ2) (t11, t22) ≤ σ1 (t11) ∧ σ2 (t22) ≤ 0.7 ∧ 0.5 ≤ 0.5

(σ1 × σ2) (t11, t23) ≤ σ1 (t11) ∧ σ2 (t23) ≤ 0.7 ∧ 0.8 ≤ 0.7

(σ1 × σ2) (t12, t21) ≤ σ1 (t12) ∧ σ2 (t21) ≤ 0.6 ∧ 0.4 ≤ 0.4

(σ1 × σ2) (t12, t22) ≤ σ1 (t12) ∧ σ2 (t22) ≤ 0.6 ∧ 0.5 ≤ 0.5

(σ1 × σ2) (t12, t23) ≤ σ1 (t12) ∧ σ2 (t23) ≤ 0.6 ∧ 0.8 ≤ 0.5

(μ1 × μ2) [(t11, t21) (t11, t22)] ≤ (σ1 × σ2) (t11, t21) ∧

(σ1 × σ2) (t11, t22) ≤ 0.4 ∧ 0.5 ≤ 0.4

(μ1 × μ2) [(t11, t21) (t11, t23)] ≤ (σ1 × σ2) (t11, t21)

∧(σ1 × σ2) (t11, t23) ≤ 0.4 ∧ 0.7 ≤ 0.4
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Fig. 3.3. Cartesian product of P̃2 × C̃3.

(μ1 × μ2) [(t11, t22) (t11, t23)] ≤ (σ1 × σ2) (t11, t22) ∧ (σ1 × σ2) (t11, t23)

≤ 0.5 ∧ 0.7 ≤ 0.5

(μ1 × μ2) [(t11, t21) (t12, t21)] ≤ (σ1 × σ2) (t11, t21) ∧ (σ1 × σ2) (t12, t21)

≤ 0.4 ∧ 0.4 ≤ 0.4

(μ1 × μ2) [(t12, t21) (t12, t22)] ≤ (σ1 × σ2) (t12, t21) ∧ (σ1 × σ2) (t12, t22)

≤ 0.4 ∧ 0.5 ≤ 0.4

(μ1 × μ2) [(t12, t21) (t12, t23)] ≤ (σ1 × σ2) (t12, t21) ∧ (σ1 × σ2) (t12, t23)

≤ 0.4 ∧ 0.5 ≤ 0.4

(μ1 × μ2) [(t11, t22) (t12, t22)] ≤ (σ1 × σ2) (t11, t22) ∧ (σ1 × σ2) (t12, t22)

≤ 0.5 ∧ 0.5 ≤ 0.5

(μ1 × μ2) [(t12, t22) (t12, t23)] ≤ (σ1 × σ2) (t12, t22) ∧ (σ1 × σ2) (t12, t23)

≤ 0.5 ∧ 0.5 ≤ 0.5

(μ1 × μ2) [(t11, t23) (t12, t23)] ≤ (σ1 × σ2) (t11, t23) ∧ (σ1 × σ2) (t21, t23)

≤ 0.7 ∧ 0.5 ≤ 0.5

(ψ1 × ψ2) [(t11, t21) , (t11, t21) (t11, t22)] ≤ (σ1 × σ2) (t11, t21) ∧ (μ1 × μ2) [(t11, t21) (t11, t22)]

≤ 0.4 ∧ 0.4 ≤ 0.2
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(ψ1 × ψ2) [(t11, t22) , (t11, t21) (t11, t22)] ≤ (σ1 × σ2) (t11, t22) ∧ (μ1 × μ2) [(t11, t21) (t11, t22)]

≤ 0.5 ∧ 0.4 ≤ 0.4

(ψ1 × ψ2) [(t11, t21) , (t11, t21) (t11, t23)] ≤ (σ1 × σ2) (t11, t21) ∧ (μ1 × μ2) [(t11, t21) (t11, t23)]

≤ 0.4 ∧ 0.4 ≤ 0.3

(ψ1 × ψ2) [(t11, t23) , (t11, t21) (t11, t23)] ≤ (σ1 × σ2) (t11, t23) ∧ (μ1 × μ2) [(t11, t21) (t11, t23)]

≤ 0.7 ∧ 0.4 ≤ 0.4

(ψ1 × ψ2) [(t11, t22) , (t11, t22) (t11, t23)] ≤ (σ1 × σ2) (t11, t22) ∧ (μ1 × μ2) [(t11, t22) (t11, t23)]

≤ 0.5 ∧ 0.5 ≤ 0.5

(ψ1 × ψ2) [(t11, t23) , (t11, t22) (t11, t23)] ≤ (σ1 × σ2) (t11, t23) ∧ (μ1 × μ2) [(t11, t22) (t11, t23)]

≤ 0.7 ∧ 0.5 ≤ 0.5

(ψ1 × ψ2) [(t11, t21) , (t11, t21) (t12, t21)] ≤ (σ1 × σ2) (t11, t21) ∧ (μ1 × μ2) [(t11, t21) (t12, t21)]

≤ 0.4 ∧ 0.4 ≤ 0.4

(ψ1 × ψ2) [(t12, t21) , (t11, t21) (t12, t21)] ≤ (σ1 × σ2) (t12, t21) ∧ (μ1 × μ2) [(t11, t21) (t12, t21)]

≤ 0.4 ∧ 0.4 ≤ 0.3

(ψ1 × ψ2) [(t12, t21) , (t12, t21) (t12, t22)] ≤ (σ1 × σ2) (t12, t21) ∧ (μ1 × μ2) [(t12, t21) (t12, t22)]

≤ 0.4 ∧ 0.4 ≤ 0.3

(ψ1 × ψ2) [(t12, t22) , (t12, t21) (t12, t22)] ≤ (σ1 × σ2) (t12, t22) ∧ (μ1 × μ2) [(t12, t21) (t12, t22)]

≤ 0.5 ∧ 0.4 ≤ 0.3

(ψ1 × ψ2) [(t12, t21) , (t12, t21) (t12, t23)] ≤ (σ1 × σ2) (t12, t21) ∧ (μ1 × μ2) [(t12, t21) (t12, t23)]

≤ 0.4 ∧ 0.4 ≤ 0.4

(ψ1 × ψ2) [(t12, t23) , (t12, t21) (t12, t23)] ≤ (σ1 × σ2) (t12, t23) ∧ (μ1 × μ2) [(t12, t21) (t12, t23)]

≤ 0.5 ∧ 0.4 ≤ 0.4

(ψ1 × ψ2) [(t11, t22) , (t11, t22) (t12, t22)] ≤ (σ1 × σ2) (t11, t22) ∧ (μ1 × μ2) [(t11, t22) (t12, t22)]

≤ 0.5 ∧ 0.5 ≤ 0.3

(ψ1 × ψ2) [(t12, t22) , (t11, t22) (t12, t22)] ≤ (σ1 × σ2) (t12, t22) ∧ (μ1 × μ2) [(t11, t22) (t12, t22)]

≤ 0.5 ∧ 0.5 ≤ 0.3
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(ψ1 × ψ2) [(t12, t22) , (t12, t22) (t12, t23)] ≤ (σ1 × σ2) (t12, t22) ∧ (μ1 × μ2) [(t12, t22) (t12, t23)]

≤ 0.5 ∧ 0.5 ≤ 0.5

(ψ1 × ψ2) [(t12, t23) , (t12, t22) (t12, t23)] ≤ (σ1 × σ2) (t12, t23) ∧ (μ1 × μ2) [(t12, t22) (t12, t23)]

≤ 0.5 ∧ 0.5 ≤ 0.4

(ψ1 × ψ2) [(t11, t23) , (t11, t23) (t12, t23)] ≤ (σ1 × σ2) (t11, t23) ∧ (μ1 × μ2) [(t11, t23) (t12, t23)]

≤ 0.7 ∧ 0.5 ≤ 0.4

(ψ1 × ψ2) [(t12, t23) , (t11, t23) (t12, t23)] ≤ (σ1 × σ2) (t12, t23) ∧ (μ1 × μ2) [(t11, t23) (t12, t23)]

≤ 0.5 ∧ 0.5 ≤ 0.5

Proposition 3.1. The cartesian product of any two FIGs is also a FIG.

Proof. Let G̃1 (σ1, μ1, ψ1) and G̃2 (σ2, μ2, ψ2) are two FIGs then to prove the cartesian product of G̃1 × G̃2 is
also a FIG.

Let σ1, σ2 be the Fuzzy Incidence subsets of the vertex sets V1, V2, μ1, μ2 be the Fuzzy Incidence subsets of
the edge sets E1, E2, and ψ1, ψ2 be the Fuzzy Incidence subsets of the Fuzzy Incidence pair sets 	1, 	2.

By Definition 3.1, the cartesian product of FIGs,

(σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1) , where v1εV1 and t1εV2

(μ1 × μ2) [(v1, t1) (v2, t2)] ≤ σ1 (v1) ∧ μ2 (t1, t2)

≤ σ1 (v1) ∧ {σ2 (t1) ∧ σ2 (t2)}
≤ {σ1 (v1) ∧ σ2 (t1)} ∧ {σ1 (v1) ∧ σ2 (t2)}
≤ (σ1 × σ2) (v1, t1) ∧ (σ1 × σ2) (v2, t2) , where v1 = v2 ∈
V1, (t1, t2) ∈ E2ort1 = t2 ∈ V2, (v1, v2) ∈ E1.

(ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2) ]≤ [σ1 (v1) ∧ σ2 (t1)] ∧ [σ1(v1) ∧ μ2 (t1, t2)]

≤ [σ1 (v1) ∧ σ2 (t1) ]∧[σ1 (v1) ∧ {σ2 (t1) ∧ σ2 (t2)}]

≤ (σ1 × σ2) (v1, t1) ∧ {[σ1 (v1) ∧ σ2 (t1) ]∧[σ1 (v1) ∧ σ2 (t2)]}

≤ (σ1 × σ2) (v1, t1) ∧ {(σ1 × σ2) (v1, t1) ∧ (σ1 × σ2) (v1, t2)}

≤ (σ1 × σ2) (v1, t1) ∧ (μ1 × μ2) [(v1, t1) (v2, t2)] ,

wherev1εV1, t1εV2 and (t1, t2)εE2.

Thus σ = σ1 × σ2 is the Fuzzy Incidence subset of the vertex set V = V1 × V2, μ = μ1 × μ2 is the Fuzzy
Incidence subset of the edge set E = E1 × E2andψ1 × ψ2 is the Fuzzy Incidence subset of the Fuzzy Incidence
pair set 	 = 	1 ×	2. Therefore (̃G1 × G̃2) (σ1 × σ2, μ1 × μ2, ψ1 × ψ2) is a FIG.
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Hence the cartesian product of any two FIGs is also
a FIG.�

Theorem 3.1. The FICN for the cartesian product of
FIPs P̃m and P̃n is

χψ

(
P̃m × P̃n

)
=

{
4, ifm = 2orn = 2

6ifm ≥ 3, n ≥ m
.

Proof. Let (̃Pm × P̃n) (σ,μ,ψ) be a cartesian prod-
uct of FIPs P̃m (σ1, μ1, ψ1) and P̃n (σ2, μ2, ψ2).
Let σ1 = {v1, v2, v3, . . . , vm} be a vertex set of
degree 2 with m vertices and σ2 = {t1, t2, t3, . . . , tn}
be a vertex set of degree 2 with n vertices. Let
μ1 = {v1v2, v2v3, . . . , vm−1vm} be the set of edges
incident with σ1 and μ2 = {t1t2, t2t3, . . . , tn−1tn}
be the set of edges incident with σ2. Let ψ1 =
{(v1, v1v2) , (v2, v1v2) , . . . , (vm, vm−1vm)} be the
set of Fuzzy Incidence pairs of σ1 and μ1 and ψ2 =
{(t1, t1t2) , (t2, t1t2) , . . . , (tn, tn−1tn)} be the set of
Fuzzy Incidence pairs of σ2 and μ2.

By Definition 3.1 and Proposition 3.1, the cartesian
product of any two FIGs must satisfies the following

i. (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1)
ii. (μ1 × μ2) [(v1, t1) (v2, t2)] ≤ (σ1 ×
σ2) (v1, t1) ∧ (σ1 × σ2) (v2, t2)

iii. (ψ1 × ψ2) [(v1, t1), (v1, t1)(v2, t2)
≤ (σ1 × σ2)(v1, t1) ∧ (μ1 ×
μ2)[(v1, t1)(v2, t2)]

Let the adjacent FIs of
ψ[(v1, t1), (v1, t1)(v1t1, v1t2)] are ψ[(v1, t2),
(v1, t1)(v1t1, v1t2)], ψ[(v1, t2), (v1, t2)(v1t2, v2t2)],
ψ[(v1, t1), (v1, t1)(v1t1, v2t1)], ψ[(v2, t1),
(v1, t1)(v1t1, v1t2)], . . . . By Definition 2.7, color 1
for the FI ψ[(v1, t1), (v1, t1)(v1t1, v1t2) and distinct
colors for the adjacent incidences. It is impossible
to color adjacent FIs in the same color. Color all
of the FIs of the cartesian product of the FIG with
minimum colors in the same way. Since the two
FIPs P̃m and P̃n with m and n vertices have a vertex
degree of 2. Any coloring for the cartesian product of
two FIPs will result in m× n mesh, whose adjacent
FIs to be colored with different colors. The cartesian
product of two FIPs falls in two cases.

• If m = 2orn = 2 :
• Here the products will result as a single row or

single column mesh such that by coloring the
adjacent FIs it is sufficient to have exactly 4

colors. Thus χψ
(
P̃m × P̃n

)
= 4ifmorn = 2.

• If m ≥ 3andn ≥ m:

Here is the cartesian product graph with m× n

rows and columns as a mesh. In this graph, the number
of rows or columns is 3 and above such that exactly
6 colors are needed to color all the adjacent inci-

dences of the mesh. Thus χψ
(
P̃m × P̃n

)
= 6ifm ≥

3andn ≥ m. �

Example 3.2. Let us consider two FIPs P̃3 and P̃4
with 3 and 4 vertices respectively represented in
Figs. 3.4 and 3.5.

Applying cartesian product of two FIPs P̃3andP̃4
such that P̃3 × P̃4 is represented in Fig. 3.6 satisfying
the following conditions

Fig. 3.4. FIP P̃3.

Fig. 3.5. FIP P̃4.
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Fig. 3.6. Cartesian product of FIPs P̃3 × P̃4.

i. (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1)

ii. (μ1 × μ2) [(v1, t1) (v2, t2)] ≤ (σ1 × σ2) (v1, t1) ∧ (σ1 ×
σ2) (v2, t2)

iii. (ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2) ≤ (σ1 × σ2) (v1, t1) ∧
(μ1 × μ2) [(v1, t1) (v2, t2)]

The membership values of the vertices, edges for
the cartesian product of P̃3 × P̃4 is represented below

V (t11, t21) (t11, t22) (t11, t23) (t11, t24) (t12, t21) (t12, t22)

σ 0.3 0.4 0.4 0.4 0.3 0.6

V (t12, t23) (t12, t24) (t13, t21) (t13, t22) (t13, t23) (t13, t24)

σ 0.4 0.6 0.3 0.5 0.4 0.5

E (t11, t21) (t11, t22) (t11, t21) (t12, t21) (t11, t22) (t11, t23) (t11, t22) (t12, t22)

μ 0.3 0.3 0.3 0.4

E (t11, t23) (t11, t24) (t11, t23) (t12, t23) (t11, t24) (t12, t24) (t12, t21) (t12, t22)

μ 0.4 0.4 0.4 0.3

E (t12, t21) (t13, t21) (t12, t22) (t12, t23) (t12, t22) (t13, t22) (t12, t23) (t12, t24)

μ 0.2 0.4 0.5 0.4

E (t12, t23) (t13, t23) (t12, t24) (t13, t24) (t13, t21) (t13, t22) (t13, t22) (t13, t23)

μ 0.2 0.5 0.3 0.4

E (t13, t23) (t13, t24)

μ 0.4

The membership functions of the FIs are repre-
sented as ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 in Table 3.1. ****

Thus

ϕ1 (ψi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.2, i = 1, 5

0.4, i = 11, 27

0.3, i = 16, 18

0.5, i = 32

;

ϕ2 (ψi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.2, i = 2

0.1, i = 6

0.3, i = 10, 12, 28

0.4, i = 21

ϕ3 (ψi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.2, i = 3, 7

0.3, i = 8, 26, 29

0.5, i = 16, 18

0.4, i = 23, 33

;

ϕ4 (ψi) =
{

0.2, i = 4, 9

0.4, i = 15, 19, 22, 30

ϕ5 (ψi) =
{

0.1, i = 25

0.4, i = 13, 20, 31
;
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Table 3.1
Membership functions of Fuzzy Incidence pairs of P̃3 × P̃4

Fuzzy incidences ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 Max

ψ [(t11, t21) , (t11, t21) (t11, t22)] 0.2 0 0 0 0 0 0.2
ψ [(t11, t21) , (t11, t21) (t12, t21)] 0 0.2 0 0 0 0 0.2
ψ [(t12, t21) , (t11, t21) (t12, t21)] 0 0 0.2 0 0 0 0.2
ψ [(t12, t21) , (t12, t21) (t12, t22)] 0 0 0 0.2 0 0 0.2
ψ [(t12, t21) , (t12, t21) (t13, t21)] 0.2 0 0 0 0 0 0.2
ψ [(t13, t21) , (t12, t21) (t13, t21)] 0 0.1 0 0 0 0 0.1
ψ [(t13, t21) , (t13, t21) (t13, t22)] 0 0 0.2 0 0 0 0.2
ψ [(t11, t22) , (t11, t21) (t11, t22)] 0 0 0.3 0 0 0 0.3
ψ [(t11, t22) , (t11, t21) (t12, t22)] 0 0 0 0.2 0 0 0.2
ψ [(t11, t22) , (t11, t21) (t11, t23)] 0 0.3 0 0 0 0 0.3
ψ [(t12, t22) , (t11, t22) (t12, t22)] 0.4 0 0 0 0 0 0.4
ψ [(t12, t22) , (t12, t21) (t12, t22)] 0 0.3 0 0 0 0 0.3
ψ [(t12, t22) , (t12, t22) (t12, t23)] 0 0 0 0 0.4 0 0.4
ψ [(t12, t22) , (t12, t22) (t13, t22)] 0 0 0.5 0 0 0 0.5
ψ [(t13, t22) , (t12, t22) (t13, t22)] 0 0 0 0.4 0 0 0.4
ψ [(t13, t22) , (t13, t21) (t13, t22)] 0.3 0 0 0 0 0 0.3
ψ [(t13, t22) , (t13, t22) (t13, t23)] 0 0 0 0 0 0.4 0.4
ψ [(t11, t23) , (t11, t22) (t11, t23)] 0.3 0 0 0 0 0 0.3
ψ [(t11, t23) , (t11, t23) (t11, t24)] 0 0 0 0.4 0 0 0.4
ψ [(t11, t23) , (t11, t23) (t12, t23)] 0 0 0 0 0.4 0 0.4
ψ [(t12, t23) , (t11, t23) (t12, t23)] 0 0.4 0 0 0 0 0.4
ψ [(t12, t23) , (t12, t22) (t12, t23)] 0 0 0 0.4 0 0 0.4
ψ [(t12, t23) , (t12, t22) (t12, t24)] 0 0 0.4 0 0 0 0.4
ψ [(t12, t23) , (t12, t23) (t13, t23)] 0 0 0 0 0 0.2 0.2
ψ [(t13, t23) , (t12, t23) (t13, t23)] 0 0 0 0 0.1 0 0.1
ψ [(t13, t23) , (t13, t22) (t13, t23)] 0 0 0.3 0 0 0 0.3
ψ [(t13, t23) , (t13, t23) (t13, t24)] 0.4 0 0 0 0 0 0.4
ψ [(t11, t24) , (t11, t23) (t11, t24)] 0 0.3 0 0 0 0 0.3
ψ [(t11, t24) , (t11, t24) (t12, t24)] 0 0 0.3 0 0 0 0.3
ψ [(t12, t24) , (t11, t24) (t12, t24)] 0 0 0 0.4 0 0 0.4
ψ [(t12, t24) , (t12, t23) (t12, t24)] 0 0 0 0 0.4 0 0.4
ψ [(t12, t24) , (t12, t24) (t13, t24)] 0.5 0 0 0 0 0 0.5
ψ [(t13, t24) , (t12, t24) (t13, t24)] 0 0 0.4 0 0 0 0.4
ψ [(t13, t24) , (t13, t23) (t13, t24)] 0 0 0 0 0 0.4 0.4

ϕ6 (ψi) =
{

0.2, i = 24

0.4, i = 17, 34

As a result, the partitions satisfy the FIC defini-
tion’s criteria by [27]. In Fig. 3.7, the FIs in ϕ1 are
colored blue, ϕ2 are colored pink, ϕ3 are colored
green, ϕ4 are colored brown, ϕ5 are colored violet,
and ϕ6 are colored orange.

There fore χψ
(
P̃3 × P̃4

)
= 6.

Theorem 3.2. The FICN for the cartesian product
of the FIP P̃m with m ≥ 2 vertices and the Fuzzy

Incidence cycle withn ≥ 3 vertices isχψ
(
P̃m × C̃n

)
≤ 8.

Proof. Let P̃m (σ1, μ1, ψ1) be the FIP with m ver-
tices such that m ≥ 2, C̃n (σ2, μ2, ψ2) be the Fuzzy
Incidence cycle with n vertices such that n ≥ 3, and(
P̃m × C̃n

)
(σ,μ,ψ) be the cartesian product of FIP

and cycle with mn vertices.
Assume that σ1 = {v1, v2, v3, . . . , vm} be the

vertex set of degree �′
m = 2 of FIP and σ2 =

{t1, t2, t3, . . . , tn} be a vertex set of degree �′
n = 2

of Fuzzy Incidence cycle. μ1andμ2 are the edge sets
of P̃mandC̃n incident with σ1andσ2, ψ1 be the set of
FIs of σ1andμ1, ψ2 be the set of FIs of σ2andμ2.

By Proposition 3.1, the cartesian product of any
two FIGs must satisfy the following conditions

i. (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1)

ii. (μ1 × μ2) [(v1, t1) (v2, t2)] ≤ (σ1 × σ2) (v1, t1) ∧ (σ1 ×
σ2) (v2, t2)

iii. (ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2) ≤ (σ1 × σ2) (v1, t1) ∧
(μ1 × μ2) [(v1, t1) (v2, t2)]

Thus σ = σ1 × σ2 is the vertex set of the cartesian
product of FIP and Fuzzy Incidence cycle with mn
vertices and maximum degree �′ = 4.μ = μ1 × μ2
be the edge set incident with σ and ψ = ψ1 × ψ2 be
the FI set of σandμ.
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Fig. 3.7. FIC on the cartesian product of FIPs P̃3 × P̃4.

Color all of the adjacent FIs of the cartesian product
of the FIG with minimum colors by Definition 2.7.

By Theorem 3.1, the cartesian product for any two
FIPs with �′ = 4 needs exactly 6 colors. Since the
cartesian product between any two FIGs will be con-
structed as a mesh initially then the edges may be
incident with vertices if the graph is a Fuzzy Incidence
cycle.

Thus the FICN of the cartesian product between
FIP and Fuzzy Incidence cycle has its upper bound

8, i.e.χψ
(
P̃m × C̃n

)
≤ 8.

For every m ≥ 2, n ≥ 3χψ
(
C̃m × P̃n

)
≤ 8. �

Theorem 3.3. If C̃mandC̃n are the Fuzzy Incidence
cycles with ′m′ and ′n′ vertices, then, the lower

bound of FICN is χψ
(
C̃m × C̃n

)
≤ 8, where m ≥

3 and n ≥ m.

Proof: Let C̃m (σ1, μ1, ψ1) and C̃n (σ2, μ2, ψ2) be
the Fuzzy Incidence cycles with vertices m ≥
3andn ≥ m.

Applying the cartesian product on C̃m and C̃n we
get C̃m × C̃n as a FIG on mn vertices satisfies as per
Definition 3.1 and Proposition 3.1.

Suppose in C̃m × C̃n there exist m indepen-
dently fuzzy cycles with n vertices such that C̃1,
C̃2, . . . ., C̃m. Consider the cycle C̃1 for any m ver-
tices, by Definition 2.7 assigning distinct colors
alternatively to its adjacent incidences. In such a way

Fig. 3.8. Fuzzy incidence cycle C̃4.

use the combinations of the colors applied in C̃1 for
the remaining cycles existing in the cartesian prod-
uct C̃m × C̃n without repeating the same color in its
adjacent incidences.

The FICN required to color the cartesian product
of C̃m × C̃n withm ≥ 3andn ≥ m needs a minimum
of eight colors.

Hence χψ
(
C̃m × C̃n

)
≤ 8. �

Example 3.3. Let us consider two Fuzzy Incidence
cycles C̃4 and C̃3 with 4 and 3 vertices whose degree
is 2 represented in Figs. 3.8 and 3.9.

Applying the cartesian product of Fuzzy Incidence
cycles C̃4andC̃3 such that C̃4 × C̃3 is represented in
Fig. 3.10 satisfying the following conditions

i. (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1)
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Fig. 3.9. Fuzzy incidence cycle C̃3.

ii. (μ1 × μ2) [(v1, t1) (v2, t2)] ≤ (σ1 × σ2) (v1, t1) ∧ (σ1 ×
σ2) (v2, t2)

iii. (ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2) ≤ (σ1 × σ2) (v1, t1) ∧
(μ1 × μ2) [(v1, t1) (v2, t2)]

The membership values of the vertex set, edge set
for the cartesian product of C̃4 × C̃3 with degree 4 is
represented below.

Table 3.2 represents the membership functions of
the fuzzy incidences as ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 andϕ7.

V (t11, t21) (t11, t22) (t11, t23) (t12, t21) (t12, t22) (t12, t23)

σ 0.4 0.5 0.6 0.4 0.4 0.4

V (t13, t21) (t13, t22) (t13, t23) (t14, t21) (t14, t22) (t14, t23)

σ 0.4 0.5 0.6 0.3 0.3 0.3

E (t11, t21) (t11, t22) (t11, t21) (t12, t21) (t11, t21) (t11, t23) (t11, t21) (t14, t21)

μ 0.4 0.4 0.4 0.3

E (t11, t22) (t11, t23) (t11, t22) (t12, t22) (t11, t22) (t14, t22) (t11, t23) (t12, t23)

μ 0.5 0.4 0.3 0.4

E (t11, t23) (t14, t23) (t12, t21) (t12, t22) (t12, t21) (t13, t21) (t12, t21) (t12, t23)

μ 0.3 0.4 0.4 0.4

E (t12, t22) (t12, t23) (t12, t22) (t13, t22) (t12, t23) (t13, t23) (t13, t21) (t14, t21)

μ 0.4 0.4 0.4 0.3

E (t13, t21) (t13, t22) (t13, t21) (t13, t23) (t13, t22) (t13, t23) (t13, t22) (t14, t22)

μ 0.4 0.4 0.5 0.3

E (t13, t23) (t14, t23) (t14, t21) (t14, t22) (t14, t21) (t14, t23) (t14, t22) (t14, t23)

μ 0.3 0.3 0.3 0.3

Thus,

ϕ1 (ψi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.3, i = 1, 36, 44

0.4, i = 16, 18, 29

0.5, i = 9

0.2, i = 37

;

Fig. 3.10. Cartesian product of C̃4 × C̃3.
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Table 3.2
Membership functions of the Fuzzy Incidences pairs of C̃4 × C̃3

Fuzzy incidences ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 Max

ψ [(t11, t21) , (t11, t21) (t11, t22)] 0.3 0 0 0 0 0 0 0.3
ψ [(t11, t21) , (t11, t21) (t11, t23)] 0 0 0.4 0 0 0 0 0.4
ψ [(t11, t21) , (t11, t21) (t12, t21)] 0 0 0 0 0 0.4 0 0.4
ψ [(t11, t21) , (t11, t21) (t14, t21)] 0 0 0 0 0 0 0.3 0.3
ψ [(t11, t22) , (t11, t21) (t11, t22)] 0 0.4 0 0 0 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t11, t23)] 0 0 0 0 0 0.5 0 0.5
ψ [(t11, t22) , (t11, t22) (t12, t22)] 0 0 0.4 0 0 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t14, t22)] 0 0 0 0.3 0 0 0 0.3
ψ [(t11, t23) , (t11, t22) (t11, t23)] 0.5 0 0 0 0 0 0 0.5
ψ [(t11, t23) , (t11, t23) (t12, t23)] 0 0.4 0 0 0 0 0 0.4
ψ [(t11, t23) , (t11, t21) (t11, t23)] 0 0 0 0.4 0 0 0 0.4
ψ [(t11, t23) , (t11, t23) (t14, t23)] 0 0 0 0 0.3 0 0 0.3
ψ [(t12, t21) , (t11, t21) (t12, t21)] 0 0.4 0 0 0 0 0 0.4
ψ [(t12, t21) , (t12, t21) (t12, t22)] 0 0 0.3 0 0 0 0 0.3
ψ [(t12, t21) , (t12, t21) (t12, t23)] 0 0 0 0 0 0 0.3 0.3
ψ [(t12, t21) , (t12, t21) (t13, t21)] 0.4 0 0 0 0 0 0 0.4
ψ [(t12, t22) , (t12, t21) (t12, t22)] 0 0 0 0 0 0.4 0 0.4
ψ [(t12, t22) , (t11, t22) (t12, t22)] 0.4 0 0 0 0 0 0 0.4
ψ [(t12, t22) , (t12, t22) (t12, t23)] 0 0.4 0 0 0 0 0 0.4
ψ [(t12, t22) , (t12, t22) (t13, t22)] 0 0 0 0 0.4 0 0 0.4
ψ [(t12, t23) , (t12, t22) (t12, t23)] 0 0 0.3 0 0 0 0 0.3
ψ [(t12, t23) , (t11, t23) (t12, t23)] 0 0 0 0 0 0.4 0 0.4
ψ [(t12, t23) , (t12, t21) (t12, t23)] 0 0 0 0 0.3 0 0 0.3
ψ [(t12, t23) , (t12, t23) (t13, t23)] 0 0 0 0.4 0 0 0 0.4
ψ [(t13, t21) , (t12, t21) (t13, t21)] 0 0 0 0 0 0.3 0 0.3
ψ [(t13, t21) , (t13, t21) (t13, t22)] 0 0 0 0 0.3 0 0 0.3
ψ [(t13, t21) , (t13, t21) (t13, t23)] 0 0 0 0.4 0 0 0 0.4
ψ [(t13, t21) , (t13, t21) (t14, t21)] 0 0.3 0 0 0 0 0 0.3
ψ [(t13, t22) , (t13, t21) (t13, t22)] 0.4 0 0 0 0 0 0 0.4
ψ [(t13, t22) , (t13, t22) (t13, t23)] 0 0 0 0.5 0 0 0 0.5
ψ [(t13, t22) , (t12, t22) (t13, t22)] 0 0 0.4 0 0 0 0 0.4
ψ [(t13, t22) , (t13, t22) (t14, t22)] 0 0 0 0 0 0.3 0 0.3
ψ [(t13, t23) , (t13, t22) (t13, t23)] 0 0 0 0 0.5 0 0 0.5
ψ [(t13, t23) , (t13, t21) (t13, t23)] 0 0 0.4 0 0 0 0 0.4
ψ [(t13, t23) , (t12, t23) (t13, t23)] 0 0.4 0 0 0 0 0 0.4
ψ [(t13, t23) , (t13, t23) (t14, t23)] 0.3 0 0 0 0 0 0 0.3
ψ [(t14, t21) , (t13, t21) (t14, t21)] 0.2 0 0 0 0 0 0 0.2
ψ [(t14, t21) , (t11, t21) (t14, t21)] 0 0 0 0.3 0 0 0 0.3
ψ [(t14, t21) , (t14, t21) (t14, t22)] 0 0 0 0 0 0.3 0 0.3
ψ [(t14, t21) , (t14, t21) (t14, t23)] 0 0 0 0 0.3 0 0 0.3
ψ [(t14, t22) , (t14, t21) (t14, t22)] 0 0.2 0 0 0 0 0 0.2
ψ [(t14, t22) , (t13, t22) (t14, t22)] 0 0 0 0 0.3 0 0 0.3
ψ [(t14, t22) , (t11, t22) (t14, t22)] 0 0 0 0 0 0 0.3 0.3
ψ [(t14, t22) , (t14, t22) (t14, t23)] 0.3 0 0 0 0 0 0 0.3
ψ [(t14, t23) , (t14, t22) (t14, t23)] 0 0 0 0 0 0.3 0 0.3
ψ [(t14, t23) , (t14, t21) (t14, t23)] 0 0.3 0 0 0 0 0 0.3
ψ [(t14, t23) , (t13, t23) (t14, t23)] 0 0 0 0.3 0 0 0 0.3
ψ [(t14, t23) , (t11, t23) (t14, t23)] 0 0 0.3 0 0 0 0 0.3

ϕ2 (ψi) =

⎧⎪⎨⎪⎩
0.4, i = 5, 10, 13, 19, 35

0.3, i = 28, 46

0.2, i = 41

ϕ3 (ψi) =
{

0.4, i = 2, 7, 31, 34

0.3, i = 14, 21, 48
;

ϕ4 (ψi) =

⎧⎪⎨⎪⎩
0.3, i = 8, 38, 47

0.4, i = 11, 24, 27

0.5, i = 30

ϕ5 (ψi) =

⎧⎪⎨⎪⎩
0.3, i = 12, 22, 25, 40, 42

0.4, i = 17

0.5, i = 33
;
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Fig. 3.11. FIC on cartesian product of C̃4 × C̃3.

ϕ6 (ψi) =

⎧⎪⎨⎪⎩
0.4, i = 3, 17, 22

0.5, i = 6

0.3, i = 25, 32, 39, 45

ϕ7 (ψi) = {0.3, i = 4, 15, 43

According to the definition of FIC by Yamuna et al.
[27], the partitions set of cartesian product C̃4 × C̃3
fulfills. In Fig. 3.11, the FIs in ϕ1 are colored blue,
ϕ2 are colored pink, ϕ3 are colored violet, and ϕ4 are
colored green. ϕ5 is colored red, ϕ6 is colored brown,
and ϕ7 is colored orange as provided.

By Theorem 3.3, χψ
(
C̃m × C̃n

)
≤ 8.

Hence χψ
(
C̃4 × C̃3

)
= 7 ≤ 8.

Theorem 3.4. If P̃m × K̃n is a cartesian product of
FIP and Fuzzy Incidence complete graph, then the

FICN is m+ n ≤ χψ

(
P̃m × K̃n

)
≤ m+ n+ 2.

Proof. Let P̃m (σ1, μ1, ψ1) be a FIP with m ≥ 2 ver-
tices having degree�′

m = 2 and K̃n (σ2, μ2, ψ2) be a
Fuzzy Incidence complete graph with n ≥ 3 vertices
having degree �′

n = n− 1.
Now by the Definition 3.1 and Proposition 3.1, the

cartesian product on FIP P̃m and Fuzzy Incidence
complete graph K̃n we obtain P̃m × K̃n as a FIG with
mn vertices having a degree �′ = n.

By Yamuna et al. [27], w.k.t the FICN for a Fuzzy
Incidence complete graph is �′ + 1. In the cartesian
product P̃m × K̃n, σ = σ1 × σ2 is the vertex set of
degree�′,μ = μ1 × μ2 is the set of edges incidence
with σ and ψ = ψ1 × ψ2 is the set of FIs in which
the adjacent FIs to be colored by distinct colors.

By Definition 2.7, color the first FI of ψ by color
1. No two FIs can be colored with the same color.
Using distinct colors color all the remaining adjacent
FIs of P̃m × K̃n. In such a way color all the adjacent
FIs using minimum colors.

We conclude that the FICN of a cartesian product
of a FIP with m ≥ 2 vertices and a Fuzzy Incidence
complete graph with n ≥ 3 vertices ranges between

m+ n ≤ χψ

(
P̃m × K̃n

)
≤ m+ n+ 2.

Theorem 3.5. The FICN for the cartesian product of
Fuzzy Incidence cycle and Fuzzy Incidence complete

graph is χψ
(
C̃m × K̃n

)
≥ m+ n− 1.

Proof. Let C̃m (σ1, μ1, ψ1) be a Fuzzy Incidence
cycle consisting of m number of vertices and each
vertex in C̃m is adjacent to m− 1 vertices. We know
that Fuzzy Incidence cycle denotes a closed path
with non-repeated vertices having a maximum degree
�′
m = 2.
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Let K̃n (σ2, μ2, ψ2) be a Fuzzy Incidence complete
graph consisting of n vertices and each vertex of K̃n is
adjacent to n− 1 vertices. Since in Fuzzy Incidence
complete graph every vertex hasann− 1 degree such
that its maximum vertex degree is �′

n = n− 1.
Now by Definition 3.1, the cartesian product of

(̃Cm × K̃n) (σ,μ,ψ) is a Fuzzy Incidence Graph with
mn vertices having a maximum degree �′ = n+ 1.

Apply the coloring for the set of each Fuzzy Inci-
dence pair of C̃m × K̃n using minimum colors such
that none of the adjacent incidences are colored by
the same color.

By Definition 2.7, color the first Fuzzy Incidence
of ψ in C̃m × K̃n by color 1 and the next incidence
by color 2, similarly color all the remaining adja-
cent Fuzzy Incidences of ψ in C̃m × K̃n by using
minimum distinct colors.

Hence, we conclude that the FICN for the carte-
sian product of C̃m × K̃n with mn vertices having a

maximum degree �′ = n+ 1 is χψ
(
C̃m × K̃n

)
≥

m+ n− 1. �

Theorem 3.6. The FICN for a cartesian prod-
uct of two Fuzzy Incidence complete graphs is

χψ

(
K̃m × K̃n

)
≤ m+ n+ 2.

Proof. As every Fuzzy Incidence pair of the carte-
sian product of two Fuzzy Incidence complete graphs
,̃ Km × K̃n with mn vertices will result in a Fuzzy
Incidence complete graph.

By Yamuna et al. [27], the FICN of a Fuzzy Inci-
dence complete graph with n vertices and maximum
degree �′ = n− 1 is �′ + 1.

Here are the two Fuzzy Incidence complete graphs
withmandn vertices having maximum degree�′

m =
m− 1 and �′

n = n− 1 such that the cartesian prod-
uct graph K̃m × K̃n with mn vertices will exist with
maximum degree �′ = m+ n+ 2.

Now coloring all the adjacent FIs of the cartesian
product graph K̃m × K̃n using minimum distinct col-

ors will result in an FICN χψ

(
K̃m × K̃n

)
≤ m+

n+ 2. �

Example 3.4. Let us consider two Fuzzy Incidence
complete graphs with 4 vertices whose degree is 4 −
1 namely K̃4andK̃4 as represented in Figs. 3.12 and
3.13.

Now taking the cartesian product of K̃4andK̃4 we
obtain the membership values of the vertex set V, edge
set E and the Fuzzy Incidence pair sets FI satisfying
the following conditions

(i) (σ1 × σ2) (v1, t1) ≤ σ1 (v1) ∧ σ2 (t1)

(ii) (μ1 × μ2) [(v1, t1) (v2, t2)] ≤ (σ1 × σ2) (v1, t1) ∧ (σ1 × σ2) (v2, t2)

(iii) (ψ1 × ψ2) [(v1, t1) , (v1, t1) (v2, t2) ≤ (σ1 × σ2) (v1, t1) ∧
(μ1 × μ2) [(v1, t1) (v2, t2)]

V (t11, t21) (t11, t22) (t11, t23) (t11, t24)

σ 0.6 0.4 0.6 0.5

V (t12, t21) (t12, t22) (t12, t23) (t12, t24)

σ 0.5 0.4 0.5 0.5

V (t13, t21) (t13, t22) (t13, t23) (t13, t24)

σ 0.6 0.4 0.6 0.5

V (t14, t21) (t14, t22) (t14, t23) (t14, t24)

σ 0.5 0.4 0.5 0.5

The cartesian product graph K̃4 × K̃4 is repre-
sented in Fig. 3.14 with membership values of vertex
sets and edge sets.

Table 3.3 represents the membership functions of
the FIs as ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ9 and ϕ10.
***

Fig. 3.12. Fuzzy Incidence complete graph K̃4.

Fig. 3.13. Fuzzy Incidence complete graph K̃4.
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E (t11, t21) (t11, t22) (t11, t21) (t11, t23) (t11, t21) (t11, t24) (t11, t21) (t12, t21)

μ 0.4 0.6 0.5 0.5

E (t11, t21) (t13, t21) (t11, t21) (t14, t21) (t11, t22) (t11, t23) (t11, t22) (t11, t24)

μ 0.6 0.5 0.4 0.4

E (t11, t22) (t12, t22) (t11, t22) (t13, t22) (t11, t22) (t14, t22) (t11, t23) (t11, t24)

μ 0.4 0.4 0.4 0.5

E (t11, t23) (t12, t23) (t11, t23) (t13, t23) (t11, t23) (t14, t23) (t11, t24) (t12, t24)

μ 0.5 0.6 0.5 0.5

E (t11, t24) (t13, t24) (t11, t24) (t14, t24) (t12, t21) (t12, t22) (t12, t21) (t12, t23)

μ 0.5 0.5 0.4 0.5

E (t12, t21) (t12, t23) (t12, t21) (t13, t21) (t12, t21) (t14, t21) (t12, t22) (t12, t23)

μ 0.5 0.5 0.5 0.4

E (t12, t22) (t12, t24) (t12, t22) (t13, t22) (t12, t22) (t14, t22) (t12, t23) (t12, t24)

μ 0.4 0.4 0.4 0.5

E (t12, t23) (t13, t23) (t12, t23) (t14, t23) (t12, t24) (t13, t24) (t12, t24) (t14, t24)

μ 0.5 0.5 0.5 0.5

E (t13, t21) (t13, t22) (t13, t21) (t14, t21) (t13, t21) (t13, t23) (t13, t21) (t13, t24)

μ 0.4 0.5 0.6 0.5

E (t13, t22) (t13, t23) (t13, t22) (t13, t24) (t13, t22) (t14, t22) (t13, t23) (t13, t24)

μ 0.4 0.4s 0.4 0.5

E (t13, t23) (t14, t23) (t13, t24) (t14, t24) (t14, t21) (t14, t22) (t14, t21) (t14, t23)

μ 0.5 0.5 0.4 0.5

E (t14, t21) (t14, t24) (t14, t22) (t14, t23) (t14, t22) (t14, t24) (t14, t23) (t14, t24)

μ 0.5 0.4 0.4 0.5

Thus

ϕ1 (ψi) =
{

0.4, i = 1, 14, 32, 57, 83

0.5, i = 22, 29, 40, 66, 68, 75, 96
;

ϕ2 (ψi) =

⎧⎪⎨⎪⎩
0.6, i = 2, 61

0.5, i = 15, 20, 38, 53, 74, 87

0.4, i = 45, 55, 80

ϕ3 (ψi) =

⎧⎪⎨⎪⎩
0.5, i = 3, 43, 72, 78, 90

0.4, i = 10, 26, 39, 56, 84

0.6, i = 64
;

ϕ4 (ψi) =
{

0.5, i = 4, 21, 37, 47, 50, 65, 93

0.4, i = 8, 31, 60, 76, 86

ϕ5 (ψi) =
{

0.6, i = 5

0.5, i = 41, 67, 92
;

ϕ6 (ψi) =

⎧⎪⎨⎪⎩
0.5, i = 6, 24, 41, 44, 71, 89

0.4, i = 10, 26, 39, 56, 84

0.6, i = 64

ϕ7 (ψi) =
{

0.4, i = 7, 33, 59, 82

0.5, i = 41, 67, 92
;

ϕ8 (ψi) =
{

0.4, i = 9, 11, 35, 51, 63, 70, 81

0.5, i = 18, 23, 28, 73, 91

ϕ9 (ψi) =

⎧⎪⎨⎪⎩
0.5, i = 30, 48, 88

0.4, i = 36

0.6, i = 49

ϕ10 (ψi) =

⎧⎪⎨⎪⎩
0.4, i = 12, 34, 95

0.5, i = 27, 69, 77

0.6, i = 13

The above set of partitions of cartesian product
K̃4 × K̃4 satisfies the definition of FIC by [27]. In
Fig. 3.15, the FIs in ϕ1 colored pink, ϕ2 colored
brown, ϕ3 colored yellow, ϕ4 colored blue, ϕ5 col-
ored dark green, ϕ6 colored orange, ϕ7 colored violet,
ϕ8 colored light green, ϕ9 colored navy blue and ϕ10
colored red.

Therefore, by Theorem 3.6 the FICN of the carte-

sian product χψ
(
K̃m × K̃n

)
≤ m+ n+ 2.

i.e χψ
(
K̃4 × K̃4

)
≤ 4 + 4 + 2

Thus, the minimum colors required to color the
graph K̃4 × K̃4 is 10.

4. Comparative study

Rosyida et al. [20] constructed the formula for the
FCN for the cartesian product between two fuzzy
graphs provided with algorithm. Using the cartesian
product of a fuzzy path and a fuzzy cycle, Jethruth
Emelda Mary et al. [7] determined the boundaries for
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Fig. 3.14. Cartesian product of K̃4 × K̃4.

Fig. 3.15. FICN on cartesian product of K̃4 × K̃4.

the FCN of a fuzzy graph. Because of this, the FCN
for the cartesian product of fuzzy path with vertices
and fuzzy cycle with vertices will either be three or

two. Three ifm is even, n is odd,two ifm is odd, n is
even, two ifm andn are even, three ifm andn are odd.
Therefore, when the model is taken into account in
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Table 3.3
Membership functions of FIs on K̃4 × K̃4

Fuzzy Incidences ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 Max

ψ [(t11, t21) , (t11, t21) (t11, t22)] 0.4 0 0 0 0 0 0 0 0 0 0.4
ψ [(t11, t21) , (t11, t21) (t11, t23)] 0 0.6 0 0 0 0 0 0 0 0 0.6
ψ [(t11, t21) , (t11, t21) (t11, t24)] 0 0 0.5 0 0 0 0 0 0 0 0.5
ψ [(t11, t21) , (t11, t21) (t12, t21)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t11, t21) , (t11, t21) (t13, t21)] 0 0 0 0 0.6 0 0 0 0 0 0.6
ψ [(t11, t21) , (t11, t21) (t14, t21)] 0 0 0 0 0 0.5 0 0 0 0 0.5
ψ [(t11, t22) , (t11, t21) (t11, t22)] 0 0 0 0 0 0 0.4 0 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t11, t23)] 0 0 0 0.4 0 0 0 0 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t11, t24)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t12, t22)] 0 0 0.4 0 0 0 0 0 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t13, t22)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t11, t22) , (t11, t22) (t14, t22)] 0 0 0 0 0 0 0 0 0 0.4 0.4
ψ [(t11, t23) , (t11, t21) (t11, t23)] 0 0 0 0 0 0 0 0 0 0.6 0.6
ψ [(t11, t23) , (t11, t22) (t11, t23)]. 0.4 0 0 0 0 0 0 0 0 0 0.4
ψ [(t11, t23) , (t11, t23) (t11, t24)] 0 0.5 0 0 0 0 0 0 0 0 0.5
ψ [(t11, t23) , (t11, t23) (t12, t23)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t11, t23) , (t11, t23) (t13, t23)] 0 0 0 0 0 0.6 0 0 0 0 0.6
ψ [(t11, t23) , (t11, t23) (t14, t23)] 0 0 0 0 0 0 0 0.5 0 0 0.5
ψ [(t11, t24) , (t11, t21) (t11, t24)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t11, t24) , (t11, t22) (t11, t24)] 0 0.5 0 0 0 0 0 0 0 0 0.5
ψ [(t11, t24) , (t11, t23) (t11, t24)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t11, t24) , (t11, t24) (t12, t24)] 0.5 0 0 0 0 0 0 0 0 0 0.5
ψ [(t11, t24) , (t11, t24) (t13, t24)] 0 0 0 0 0 0 0 0.5 0 0 0.5
ψ [(t11, t24) , (t11, t24) (t14, t24)] 0 0 0 0 0 0.5 0 0 0 0 0.5
ψ [(t12, t21) , (t11, t21) (t12, t21)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t12, t21) , (t12, t21) (t12, t22)] 0 0 0.4 0 0 0 0 0 0 0 0.4
ψ [(t12, t21) , (t12, t21) (t12, t23)] 0 0 0 0 0 0 0 0 0 0.5 0.5
ψ [(t12, t21) , (t12, t21) (t12, t24)] 0 0 0 0 0 0 0 0.5 0 0 0.5
ψ [(t12, t21) , (t12, t21) (t13, t21)] 0.5 0 0 0 0 0 0 0 0 0 0.5
ψ [(t12, t21) , (t12, t21) (t14, t21)] 0 0 0 0 0 0 0 0 0.5 0 0.5
ψ [(t12, t22) , (t12, t21) (t12, t22)] 0 0 0 0.4 0 0 0 0 0 0 0.4
ψ [(t12, t22) , (t11, t22) (t12, t22)] 0.4 0 0 0 0 0 0 0 0 0 0.4
ψ [(t12, t22) , (t12, t22) (t12, t23)] 0 0 0 0 0 0 0.4 0 0 0 0.4
ψ [(t12, t22) , (t12, t22) (t12, t24)] 0 0 0 0 0 0 0 0 0 0.4 0.4
ψ [(t12, t22) , (t12, t22) (t13, t22)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t12, t22) , (t12, t22) (t14, t22)] 0 0 0 0 0 0 0 0 0.4 0 0.4
ψ [(t12, t23) , (t11, t23) (t12, t23)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t12, t23) , (t11, t21) (t12, t23)] 0 0.5 0 0 0 0 0 0 0 0 0.5
ψ [(t12, t23) , (t12, t22) (t12, t23)] 0 0 0.4 0 0 0 0 0 0 0 0.4
ψ [(t12, t23) , (t12, t23) (t12, t24)] 0.5 0 0 0 0 0 0 0 0 0 0.5
ψ [(t12, t23) , (t12, t23) (t13, t23)] 0 0 0 0 0 0.5 0 0 0 0 0.5
ψ [(t12, t23) , (t12, t23) (t14, t23)] 0 0 0 0 0.5 0 0 0 0 0 0.5
ψ [(t12, t24) , (t11, t24) (t12, t24)] 0 0 0.5 0 0 0 0 0 0 0 0.5
ψ [(t12, t24) , (t12, t21) (t12, t24)] 0 0 0 0 0 0.5 0 0 0 0 0.5
ψ [(t12, t24) , (t12, t22) (t12, t24)] 0 0.4 0 0 0 0 0 0 0 0 0.4
ψ [(t12, t24) , (t12, t23) (t12, t24)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t12, t24) , (t12, t24) (t13, t24)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t12, t24) , (t12, t24) (t14, t23)] 0 0 0 0 0 0 0 0 0.5 0 0.5
ψ [(t13, t21) , (t11, t21) (t13, t21)] 0 0 0 0 0 0 0 0 0.6 0 0.6
ψ [(t13, t21) , (t12, t21) (t13, t21)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t13, t21) , (t13, t21) (t13, t22)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t13, t21) , (t13, t21) (t13, t23)] 0 0 0 0 0 0.6 0 0 0 0 0.6
ψ [(t13, t21) , (t13, t21) (t13, t24)] 0 0.5 0 0 0 0 0 0 0 0 0.5
ψ [(t13, t21) , (t13, t21) (t14, t21)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t13, t22) , (t11, t22) (t13, t22)] 0 0.4 0 0 0 0 0 0 0 0 0.4
ψ [(t13, t22) , (t12, t22) (t13, t22)] 0 0 0.4 0 0 0 0 0 0 0 0.4
ψ [(t13, t22) , (t13, t21) (t13, t22)] 0.4 0 0 0 0 0 0 0 0 0 0.4

(Continued)
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Table 3.3
(Continued)

Fuzzy Incidences ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 Max

ψ [(t13, t22) , (t13, t22) (t13, t23)] 0 0 0 0 0 0.4 0 0 0 0 0.4
ψ [(t13, t22) , (t13, t22) (t13, t24)] 0 0 0 0 0 0 0.4 0 0 0 0.4
ψ [(t13, t22) , (t13, t22) (t14, t22)] 0 0 0 0.4 0 0 0 0 0 0 0.4
ψ [(t13, t23) , (t11, t23) (t13, t23)] 0 0.6 0 0 0 0 0 0 0 0 0.6
ψ [(t13, t23) , (t12, t23) (t13, t23)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t13, t23) , (t13, t22) (t13, t23)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t13, t23) , (t13, t21) (t13, t23)] 0 0 0.6 0 0 0 0 0 0 0 0.6
ψ [(t13, t23) , (t13, t23) (t13, t24)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t13, t23) , (t13, t23) (t14, t23)] 0.5 0 0 0 0 0 0 0 0 0 0.5
ψ [(t13, t24) , (t11, t24) (t13, t24)] 0 0 0 0 0.5 0 0 0 0 0 0.5
ψ [(t13, t24) , (t12, t24) (t13, t24)] 0.5 0 0 0 0 0 0 0 0 0 0.5
ψ [(t13, t24) , (t13, t21) (t13, t24)] 0 0 0 0 0 0 0 0 0 0.5 0.5
ψ [(t13, t24) , (t13, t22) (t13, t24)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t13, t24) , (t13, t23) (t13, t24)] 0 0 0 0 0 0.5 0 0 0 0 0.5
ψ [(t13, t24) , (t13, t24) (t14, t24)] 0 0 0.5 0 0 0 0 0 0 0 0.5
ψ [(t14, t21) , (t11, t21) (t14, t21)] 0 0 0 0 0 0 0 0.5 0 0 0.5
ψ [(t14, t21) , (t12, t21) (t14, t21)] 0 0.5 0 0 0 0 0 0 0 0 0.5
ψ [(t14, t21) , (t13, t21) (t14, t21)] 0.5 0 0 0 0 0 0 0 0 0 0.5
ψ [(t14, t21) , (t14, t21) (t14, t22)] 0 0 0 0.4 0 0 0 0 0 0 0.4
ψ [(t14, t21) , (t14, t21) (t14, t23)] 0 0 0 0 0 0 0 0 0 0.5 0.5
ψ [(t14, t21) , (t14, t21) (t14, t24)] 0 0 0.5 0 0 0 0 0 0 0 0.5
ψ [(t14, t22) , (t11, t22) (t14, t22)] 0 0 0 0 0 0.4 0 0 0 0 0.4
ψ [(t14, t22) , (t12, t22) (t14, t22)] 0 0.4 0 0 0 0 0 0 0 0 0.4
ψ [(t14, t22) , (t13, t22) (t14, t22)] 0 0 0 0 0 0 0 0.4 0 0 0.4
ψ [(t14, t22) , (t14, t21) (t14, t22)] 0 0 0 0 0 0 0.4 0 0 0 0.4
ψ [(t14, t22) , (t14, t22) (t14, t23)] 0.4 0 0 0 0 0 0 0 0 0 0.4
ψ [(t14, t22) , (t14, t22) (t14, t24)] 0 0 0.4 0 0 0 0 0 0 0 0.4
ψ [(t14, t23) , (t14, t21) (t14, t23)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t14, t23) , (t14, t22) (t14, t23)] 0 0 0 0.4 0 0 0 0 0 0 0.4
ψ [(t14, t23) , (t11, t23) (t14, t23)] 0 0.5 0 0 0 0 0 0 0 0 0.5
ψ [(t14, t23) , (t12, t23) (t14, t23)] 0 0 0 0 0 0 0 0 0.5 0 0.5
ψ [(t14, t23) , (t13, t23) (t14, t23)] 0 0 0 0 0 0.5 0 0 0 0 0.5
ψ [(t14, t23) , (t14, t23) (t14, t23)] 0 0 0.5 0 0 0 0 0 0 0 0.5
ψ [(t14, t24) , (t11, t24) (t14, t24)] 0 0 0 0 0 0 0 0.5 0 0 0.5
ψ [(t14, t24) , (t12, t24) (t14, t24)] 0 0 0 0 0.5 0 0 0 0 0 0.5
ψ [(t14, t24) , (t13, t24) (t14, t24)] 0 0 0 0.5 0 0 0 0 0 0 0.5
ψ [(t14, t24) , (t14, t21) (t14, t24)] 0 0 0 0 0 0 0.5 0 0 0 0.5
ψ [(t14, t24) , (t14, t22) (t14, t24)] 0 0 0 0 0 0 0 0 0 0.4 0.4
ψ [(t14, t24) , (t14, t23) (t14, t24)] 0.5 0 0 0 0 0 0 0 0 0 0.5

FIGs, these results are not efficient. In order to achieve
FICN we have implemented the new notion, which
is the extension of incidence coloring with ambigu-
ity scenarios. The cartesian product between the FIP
with m ≥ 2 vertices and Fuzzy Incidence cycle with
n ≥ 2 vertices is ≤ 8. Even though there are more
colors than there are in FC, it takes less time. This
idea is highly useful in situations where preserving
lives is necessary. Because of this, the findings for the
cartesian product between any two FIGs in the present
article are significant for two-way communication in
critical situations.

5. Applications

The FIC is crucial in sorting out risk variables that
arise in many real-time applications, including traf-
fic systems, immigration, network communications,
defence, and cyber security. Approximately twice as
many lives are saved by it as by the FC. It does so
quickly and efficiently. Our defence systems wish to
safeguard at the border in a in a twofold way, sav-
ing lives of people and the security systems of our
country to prevent severe losses. This is true when
safety measures are to be implemented to protect the
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public from other countries. The vertex and edge are
the camps at the boundary line and the path between
them, respectively. A FIG is created by connecting
each camp to the other via the path. If all the camps are
considered, it will be laborious and time-consuming.
The cartesian product between any two neighbouring
FIGs may produce a number of paths depending on
the vertices and the graphs properties, allowing us to
avoid the complexity. Along with the boundary lines
that the soldiers in those two squads drew, this causes
the paths already there in that network to condense.
To protect our country and its security systems, it will
be simple to stop any unauthorised access made by
other nations in this situation with minimal time by
the FIC on the cartesian product of two FIGs.

6. Advantages and limitations

In comparison to FC, the time required is relatively
little, making it possible to safeguard security systems
and save lives without incurring any damage.

For these processes, more labour and technology
are needed when the graph is complex. With less time
spent, this technique can save lives.

7. Conclusion

The FICN for the cartesian product between FIGs
has been investigated in this study.

The goal of this research is

• To figure out the FICN bounds for the cartesian
product of two FIGs.

• To provide FIC to the cartesian product with two
FIPs, two Fuzzy Incidence cycles, two Fuzzy
Incidence complete graphs, FIP and Fuzzy Inci-
dence cycle, FIP and Fuzzy Incidence complete
graph, Fuzzy Incidence cycle and Fuzzy Inci-
dence complete graph.

The achievements and significance of this study
offered bounds for several cartesian products of FIGs
with FIC.

8. Future work

Although we have dealt with one of the operations,
such as cartesian product on some FIGs, there are few
scopes for further research which could be undertaken
by researchers. More discoveries on FIC with bounds

for different types of products such as tensor prod-
uct, normal product, modular product, homomorphic
product, box dot product, and star product on FIGs
can be introduced. FIC can be applied to medical
image diagnosis, wireless communication networks
and also for allocating jobs on a website. Applications
such as illicit migration, human trafficking can also be
addressed. The algorithm and programme created by
Yamuna et al. [27] for FIC on cycles with any vertices
will be expanded in subsequent studies such that the
cartesian product of any number of vertices of any
two FIGs in order to meet the application problem
indicated in this article.
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