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Abstract. One of the fastest-growing fields in today’s world is data analytics. Data analytics paved the way for a significant
number of research and development in various fields including medicine and vaccine development, DNA analysis, artificial
intelligence and many more. Data plays a very important role in providing the required results and helps in making critical
decisions and predictions. However, ethical and legislative restrictions sometimes make it difficult for scientists to acquire
data. For example, during the COVID-19 pandemic, data was very limited due to privacy and regulatory issues. To address data
unavailability, data scientists usually leverage machine learning algorithms such as Generative Adversarial Networks (GAN)
to augment data from existing samples. Today, there are over 450 algorithms that are designed to re-generate or augment
data in case of unavailability of the data. With many algorithms in the market, it is practically impossible to predict which
algorithm best fits the problem in question, unless many algorithms are tested. In this study, we select the most common types
of GAN algorithms available for image augmentation to generate samples capable of representing a whole data distribution.
To test the selected models, we used two unique datasets, namely COVID-19 CT images and COVID-19 X-Ray images.
Five different GAN algorithms, namely CGAN, DCGAN, f-GAN, WGAN, and CycleGAN, were selected and applied to
the samples to see how each algorithm reacts to the samples. To evaluate their performances, Visual Turing Test (VTT) and
Fréchet Inception Distance (FID) were used. The VTT result shows that a human expert can accurately distinguish between
different samples that were produced. Hence, CycleGAN scored 80% in CT image dataset and 77% in X-Ray image dataset.
In contrast, the FID result revealed that CycleGAN had a high convergence and therefore generated high quality and clearer
images on both datasets compared to CGAN, DCGAN, f-GAN, and WGAN. This study concluded that the CycleGAN model
is the best when it comes to image augmentation due to its friendliness and high convergence.
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1. Introduction

Over the years, data has proven to be one of the
most crucial components of research, development
and innovation. With the advent of big data and data
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analytics, we have seen how data could be used to
make decisions, predict outcomes and solve some
of the unprecedented problems in various research
domains. Size of data plays a crucial role in deter-
mining the effectiveness of a given solution or on
the contrary, its ineffectiveness. To solve data-driven
problems, especially machine learning related prob-
lems, one needs an ample amount of data to make
accurate predictions and good decisions [1]. When
COVID-19 pandemic erupted in the last quarter of
2019, shortage of data for analysis, prediction, detec-
tion, projection and vaccine development was one
of the biggest challenges faced by researchers and
experts [2]. This is because having a large dataset
could help improve the accuracy of the results. For
many reasons, data is often difficult to acquire due
to insufficient amount of information available at the
time of the incident. In another report, we linked data
shortage to privacy issues, as some patients refused
to give access to their Chest X-rays or tomography
results [3].

Moreover, researchers have made several attempts
across the world to solve this challenge of lack
of data through a process known as data aug-
mentation. Data augmentation allows researchers,
especially data scientists to be able to use Artificial
Intelligence (AI) algorithms such as Restricted Boltz-
mann Machine (RBM) [4], Hidden Markov Model
(HMM) [5], Transfer Learning [6], Gaussian Mixture
Model (GMM) [7], Generative Adversarial Networks
(GAN) [8], Autoencoder [9], Deep Neural Networks
[10, 11] to solve data limitation problems. GAN is one
of the most successful models if we compare it with
other generative adversarial models for data regener-
ation, data transformation and data simulation. GAN
is a type of generative algorithm that trains under
the adversarial deep neural network. They can further
be described as unsupervised neural network models
that generate synthetic data after taking a given input
data [12]

Considering that generative models grow rapidly
in the recent times, there have been claims that there
are over 450 adversarial models that work on the
generative model architecture for multiple applica-
tions such as image generation, image translation,
photo blending, resolution enhancement, image and
video faking, 3D object generation, semantic seg-
mentation and many more [13]. Some of these works
include the model proposed by [8], which employs
a unique learning method, which allows it to gener-
ate any data distribution through adversarial means
randomly. The application of GAN and similar gen-

erative algorithms during COVID-19 pandemic have
contributed immensely in the effort to address data
shortage. For example, the COVID-19 X-ray images
first surfaced in March 2020; during that period,
the chest X-ray images were not up to 5000. This
shortage had dramatically affected the performance
of some of the early COVID-19 detection models
[14].

For that reason, a lot of research [14–20] were
conducted using different approaches to bring the
situation under control. Waheed et al. [21] in their
recent study proposed a CovidGAN which combines
Auxiliary classifier with GAN to generate synthetic
chest X-Ray images which helped in enhancing
the performance of CNN for COVID-19 Detection.
Classification using CNN alone gives about 85%
compared to CovidGAN, which gives 95% accuracy.
When it comes to addressing image samples with no
categories. Xu et al. [22] also proposed a GAN based
method known as SpecGAN to address this problem
using GAN with hyperspectral images. Their model
feeds random noise z and a class label vector y into
the generator. Their result helps improve HSI classi-
fication with high accuracy. Another example is the
result of a recent study that was published in Q1 of
2020 which addresses the problem of lack of data
using Deep Transfer learning with GoogleNet and
AlexNet to classify COVID-19 while generating data
samples at the same time. Their proposed work shows
a triggering accuracy of 99.9% [2].

Despite many generative models available for dif-
ferent applications, generative models have shown
low performance on certain image datasets. Some
of the challenges include vanishing gradient, mode
collapse, non-convergence, and problem with per-
spective [23]. Thus, researchers have proposed
modifications and extensions of the existing GAN
model such as CGAN [24], DCGAN [25], InfoGAN
[26], ACGAN [27], WGAN [28], COVIDGAN [21],
StyleGAN [29], and PGGAN [30] to address these
problems. These problems have left researchers with
another problem which is solving the conflict of
choice when it comes to choosing the best GAN
models for image augmentation. Each of the GAN
models mentioned above has their pros and cons
when applied to image data, as depicted in Fig. 6.
Thus, in this study, we selected some of the most
prominent generative models for image generation to
compare and analyze their strengths and weakness
using the COVID-19 CT-images and COVID-19 X-
Ray images as our case study. The main contributions
of this paper are:
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1. Using some select Generative Adversarial Net-
work Models to study how each COVID-19
image dataset reacts on the selected model.

2. Identifying the best candidate model for data
augmentation among the selected algorithms to
suit image augmentation when producing large
datasets.

3. Illustrating how Visual Turing Test can be
applied to the selected models to identify the
best algorithm that generated the best images.

1.1. Motivation

One of the obvious reasons that caused delay in the
creation and development of COVID-19 vaccine and
remedy was the lack of sufficient information (data)
about the virus [10]. At some point, only a few hos-
pitals and universities around the world (e.g., John
Hopkins University [31]) had information about the
virus. As such, it was very difficult to develop a cure.
Notwithstanding, lack of data should not be an excuse
that would halt the development of the cure. Thus,
researchers kept looking for alternatives to close the
gaps. One of the alternatives was to try every pos-
sible solution at hand. Hence, what motivated this
study is the fact that data samples have to be made
available for research and development. Finding the
best tool to achieve this objective is very important,
which is why this very study conducted a series of
tests and evaluation so as to discover the best tool for
data augmentation.

2. Background of the study

This section provides the reader with an overview
on COVID-19 and recent studies related to COVID-
19, the COVID-19 datasets, image augmentation and
its techniques.

2.1. COVID-19 overview

In December of 2019, a cluster of viral pneumonia
cases originated from a province in China, known as
the Wuhan province. Experts in the medical domains
believe that it was caused by a previously known virus
called the 2019 Novel Coronavirus, which was later
renamed by the WHO as Coronavirus disease 2019
(COVID-19) [32]. Coronaviruses are a large group of
viruses; consisting of a code of genetic materials sur-
rounded by an envelope-like protein spike (as shown
in Fig. 1). This envelope-like protein spike gives the

Fig. 1. Structure of the SARS-CoV-2 [33].

virus the look of a crown, and the word “crown” in
Latin is means corona. Hence the name coronavirus
gets its name. Moreover, there are different types of
coronaviruses that cause respiratory and sometimes
gastrointestinal diseases.

Previous respiratory disease can be traced from
the regular flu to pneumonia. In most people, the
symptoms tend to be mild. However, some types of
coronavirus can cause severe disease. This includes
the Severe Acute Respiratory Syndrome Coronavirus
(SARS-CoV) first identified in China in 2003 [33]
and the Middle East Respiratory Syndrome coron-
avirus (MERS-CoV), which was first identified in
Saudi Arabia in 2012. Coronavirus Disease 2019
(COVID-19) caused by the Severe Acute Respira-
tory Syndrome Coronavirus Type 2 (SARS-CoV-2)
was first identified in Wuhan, China. The disease was
initially detected in a group of people with pneumo-
nia who came in contact with seafood and certain
types of birds in Wuhan’s market in China. The dis-
ease has since spread from sick to others, including
family members and health care workers and is now
spreading like wildfire in the community worldwide.
A total of 218 countries and territories around the
world have reported a total of 90,022,800 confirmed
cases of the coronavirus and a death toll of 1,933,188
deaths [34].

Coronaviruses circulate among animals. These
viruses can often be transmitted from animals such as
Camel, Ducks, Bats, and Monkeys to humans through
a process called spillover [35]. However, this could
be due to a range of factors such as mutations in the
virus or increase contact between humans and ani-
mals. For instance, MERS-CoV was transmitted from
camels, SARS-CoV from Civet cats, and the carrier of
the SARS-CoV-2 is not known. Majority of patients
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Fig. 2. Common Symptoms for COVID-19. [39].

commonly start showing signs of five days after con-
tacting wit SARs-CoV02, however, the incubation
period of COVID-19 ranges from 2 to 14 days.

The exact means of how the virus is transmitted
remains a mystery. Still, the general notion is that
respiratory viruses are often transmitted via droplets
created when an infected patient sneezes or coughs
or through surfaces or anything that has been con-
taminated with the virus such as hands, door handles,
cups, money notes, Automatic Teller Machines so
on. Individuals at the risk of getting infected with the
coronavirus are those in close contact with animals
such as live animal market workers and those caring
for those who got infected, such as family members
or health care workers [34].

The symptoms of COVID-19 could be mild to
severe. However, amongst the symptoms are fever,
cough and shortness of breath. In more severe cases,
there could be pneumonia, kidney failure, diarrhoea,
and sudden death (Fig. 2). The death rate varies from
one geographical area to another, although it keeps
increasing since the time of its appearance. Preven-
tive measures so far have been nothing other than
standard hygiene measures such as avoiding close
contact through social distancing, covering the nose
and mouth when sneezing and coughing, using pro-
tective equipment such as face mask and face barriers,
washing hands regularly with soap and water and the
application of alcohol-based hand sanitisers [36].

To diagnose and detect COVID-19 symptoms,
researchers across the world have attempted to
developed groundbreaking solutions using various
techniques. Some of these techniques were purely
medical in nature while others adopt technology-
based approaches such as automated diagnosis
systems and artificial intelligence. Some of these
works include [37] where radiologists employ com-
puter tomography with ensemble machine learning to
classify clustered images of infected lungs. [38] sug-

gested a deep learning method using convolutional
neural Networks to design a framework that fuses the
features extracted from X-ray and CT images before
classification in an effort to ensure the accuracy of the
detection. Their model achieved an accuracy of 99%.
[6] goes to the next level when they concatenate two
different transfer learning frameworks to classify CT-
images and X-Ray images. The result of this study
shows that the approach performed excellently by
achieving 99.87% accuracy due to the concatenation
technique that was adopted.

2.2. COVID-19 CT and X-ray images

Image recognition and image processing have con-
tributed to computer assisted diagnosis for early
detection of cancer and other complicated diseases
[37] and most recently COVID-19 and pneumonia
related illnesses. The combination of transfer learn-
ing and ensemble architecture has proven effective in
classifying clustered images of lung lobes. Transfer
learning techniques have displayed a staggering per-
formance and robustness when it comes to COVID-19
detection [6].

This study used two different sets of COVID-19
datasets, namely CT-Images and Chest X-ray images.
CT images and chest X-ray images have proven to
be very effective when it comes to diagnosis of dis-
eases and on one hand detection and prediction of
the diseases using diagnosis systems such as artifi-
cial intelligence supported systems [6, 38]. The first
dataset is the Chest X-ray dataset used in [40] for clas-
sification. The dataset contains a total of 5941 chest
X-ray images taken from 2839 patients. Out of the
total number of images, 1203 were normal images,
45 were COVID-19 images, 660 were non-covid
viral pneumonia, and 931 were bacterial pneumo-
nia images. The dataset is suitable for the present
study because it gives a 91.4% accuracy for two
classes and 83.5% accuracy for four classes, making
the dataset a potential candidate for data augmen-
tation as it contains only 5941 image samples. This
number is considerably low for training deep learning
algorithms.

The second dataset is a dataset used in [41], and
it contains about 4356 chest CT-scan images from
different patients. A total of 1735 the CT images
were taken from pneumonia patients while, 1325
were non-pneumonia patients. Lastly, the 1296 CT
images were taken from COVID-19 patients. This
dataset was previously used for classification. It gives
a remarkable result, including 86% accuracy for bac-
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Fig. 3. Sample examples from COVID-19 X-ray image dataset. (a)
COVID-19 infected (b) Pneumonia infected (c) Bacterial pneumo-
nia infected (d) Healthy. [40].

Fig. 4. Sample examples from COVID-19 CT image Dataset. (a)
Healthy lung (b) COVID-19 infected lungs (c) Pneumonia infected
lungs. [41].

terial pneumonia vs COVID-19 and 94% accuracy
for heathy versus COVID-19 [34]. This is a perfect
candidate for dataset regeneration because of its data
distribution and its small sample size. Figures 3 and
4 illustrate the images samples from the two datasets.

2.3. Image augmentation

Data augmentation is one of the milestone achieve-
ments in the field of artificial intelligence. It is
one of the techniques used to improve the perfor-

mance of trained models in machine learning [42].
Data augmentation gives data scientist the ability
to create artificial instances data by making certain
modifications to the existing data while retaining the
original datasets’ characteristics [10]. Data augmen-
tation increases and diversifies the training datasets
by applying different data transformation techniques,
especially when it comes to image datasets. Some of
these augmentation techniques include flipping the
image vertically or horizontally or zooming in and
zooming out and scaling or at times adding Gaussian
noise to distort high-frequency features of the image
as illustrated in Table 1.

Data augmentation has also proven to be handy
when it comes to reducing overfitting. Overfitting is
when there is an error in a model due to functions cor-
responding too closely to one particular side of the
data, also known as imbalance in data distribution.
One technique that can be applied to reduce overfit-
ting is to add more datasets to the training data by
augmenting the existing data to create a more bal-
anced data for better performance and training [10].

3. Generative adversarial networks

Generative Adversarial Networks (GANs) are
described as unsupervised neural network models
that generate synthetic data after taking a given input
data [12]. It is important to acknowledge that the
GAN was first introduced into the Deep Learning
domain by a group of experts headed by Ian Goodfel-
low in their 2014 paper titled Generative Adversarial
Nets [45]. Since then, lots of research have been done
using GAN for different applications and for solv-
ing different domain problem. It has been used in
different activities that involve computer vision, clas-
sification and data transformation. Generative models
have generally been grouped into two, one being the
deep learning models comprising the autoencoder
(AE) [27], GANs, and its derivative models. The sec-
ond group is the traditional generation algorithm that
is categorized based on machine learning. It involves
Hidden Markov Model (HMM) [26], Naı̈ve Bayes
Model (NBM) [25], and Boltzmann Machine (RBM)
[24]. GAN can be described as a form of genera-
tive model that is concerned with generating target
data through the use of latent variables. The model
involves game training that is carried out between
a Generator and Discriminator, where random vari-
ables that are known to obey Gauss distribution
generate target variables that have a real data distri-
bution. GANs are relatively simpler, more functional,
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Table 1
Image augmentation techniques tested on Ct-images

Technique Original vs Synthesized Images Description

Cropping Cropping images are used for images with mixed height and width
dimensions where the central patch of an image gets cropped [10].

Colour Space The digital image is encoded as a tensor of the dimension
(height×width×colour channels). Carrying out augmentations in colour
channels space is an effective strategy. The isolation of a single colour or
channels like R, G, or B is a simple colour augmentation [43].

Flipping Flipping horizontal axis is practiced more than the vertical axis flipping. It
is among the simplest augmentation techniques that can be practiced, it
has been found useful on datasets like ImageNet and CIFAR-10 [27].

Kernel Filters It involves sliding an n×n matrix across an image using a Gaussian blur
filter that produces a blurrier image or a high vertical or horizontal edge
filter that produces a sharper image along edges [10].

Mixing Images Mixing images by taking the mean of these images’ pixel values is an
augmentation strategy that is seen as counterintuitive. The images
produced do not show any significant transformation to the human eye
[44].

Noise Injection Noise injection is a technique that employs the injection of matrix that has
random values which are normally generated from a Gaussian
distribution.

Rotation This is achieved by rotating an image towards the left or right to an angle
between 1◦ and 359◦. The safety of rotation augmentations solely
depends on the rotation degree parameter.

Random erasing Random erasing is meant for solving the problem of image recognition due
to blurriness in some part of an object (occlusion). Random erasing
prevents the occlusion by enforcing the model to identify more
descriptive features of an image and prevents the image from fitting into
some visual features in an image

Translation This involves shifting images to the left, right, up or down to avoid
positional bias in the image data.

and possess more application scenario than the tra-
ditional machine learning algorithm. It also has a
greater performance as compared to the traditional
algorithms when dealing with larger datasets.

Ian Goodfellow describes the generative model as
an analogous to a group of counterfeiters who are
trying to produce fake currency and spend it without
being detected. Meanwhile, he describes the discrim-
inant model as an analogous law enforcement officer
trying to detect counterfeit money when out for use
[45]. In essence, we can say that the generative model
finds a way to generate interesting information from
the given values. Simultaneously, the Discriminator
tries to recognize the generated information from the

original input [46]. For learning to occur over the
generator’s distribution pg over data x, input noise
variables pz(z), are defined. Next, a mapping to data
space is represented as G(z; θg) where G s a dis-
tinguishable function that is often represented by a
multilayer perceptron alongside parameters θg. More
so, another multilayer perceptron D(x; θd) is defined
to output a single scalar. Also, D(x) denotes the prob-
ability that the value of x came from the original data
instead of pg. Here, D is trained to increase or maxi-
mize the probability of giving the accurate or correct
label to training data and the samples from G. In
the end, G is trained to minimize log(1 − D(G(z)))
[45].
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3.1. GAN evolution

The GANs’ evolution can be briefly described in
the following stages, as illustrated in Fig. 5. The
most important parts of each stage are DCGAN
and WGAN, as an important generative model is
represented in DCGAN. This model has an easier
operation mode than the other developed models
before it, and it is more stable. The development of
WGAN has upgraded the level of GAN, as it can get
samples that are of relatively high quality [29]. Var-
ious GAN models were produced sequentially and
employed in different computer vision fields based
on the requirements of various tasks and scenarios.

Also, it has great performance in other impor-
tant fields that include art, security encryption and
even medical fields. Images that have high fidelity
and low gap were first generated by BigGAN [47],
leaps and bounds were used to enhance its correct-
ness, which was an important event in the history of
the development of GAN. StyleGAN [29] is also a
great advancement in GAN’s study. It has brought
about a new record in tasks involving face genera-
tion. The style transfer, otherwise called style mixing
is the fundamental part of the algorithm. Other than

generating faces, it can generate bedrooms, cars, and
other high-quality images. In the cases of face age-
ing and other industries, Age-cGAN [48] is another
vital model applicable in cases involving face ageing
and even in some industries to find missing children
cross-age face recognition or entertainment.

Nonetheless, a study conducted on GANs has
revealed that in addition to the fast development
in image and video processing, it can as well
function in speech processing, text processing, and
signal processing fields which include speech super-
resolution, text-synthesized images, ECG, and EEG
signal recognition [43].

3.1. GAN architecture

The GAN architecture represents the topological
structure that made up what we describe as the gen-
erative adversarial networks. Like many algorithms
out there, GAN also has its complex architecture
that comprises two basic elements: the generator
model and the discriminator model as highlighted
previously. Both the former and the latter can be
implemented using any neural network such as Deep
Neural Network, a Convolutional Neural Network or

Fig. 5. GAN stages of evolution.
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Fig. 6. Initial GAN architecture.

a Recurrent Neural Network. However, the Discrim-
inator uses a fully well-connected layers with one or
more classifiers at the end [49].

Furthermore, the Generator and Discriminator start
to train alongside each other. The generator aims at
producing a set of data that would look almost exactly
to a real one. The Discriminator’s role is to be able
to detect the difference between the newly gener-
ated data from the real or original data. Normally,
the Discriminator has to train for a few moments
before starting the adversarial training. As illustrated
in Fig. 6, the generator is given some input samples. It
learns the features and generates fake samples based
on the learned features. The original as well as the
fake samples are forwarded to the Discriminator. The
Discriminator uses that forwarded data to predict the
probability of the samples being fake or original. Both
the Discriminator and the Generator compete against
one another using the game theory concept (“Game
theory is the study of models of strategic interaction
among rational decision-makers” [50]). At the same
time, vectors of noise are given along with the train-
ing samples to the generator. However, the generator
learns the features in the samples and then generates
data samples which match the properties of the given
input.

3.1.1. The generator
A differentiable function, G is used to represent the

generator, which deals with a collection of random
variables denoted by z from an initial distribution,
these are then mapped to a pseudo-sample distri-
bution denoted by G(z), via a neural network. This
process is referred to as upsampling process [51]. A
random variable, or a random variable in latent space,
referred to as Gaussian noise is commonly used by
input z. The G and D parameters are repeatedly updat-
ing while the training of GAN progresses. The D
parameters become fixed while G is trained. The data
it generates is shown to be of a false nature, hence
input into D. The error is therefore estimated between
the sample label and outputs of D(G(z)) which is the

Discriminator Between the output of the discrimina-
tor D(G(z)), the parameters of G is updated by an
error backpropagation algorithm. G establishes some
limitations on input variables that can be in input to
both the first and last layers. Nonetheless, noise can
be inserted through hidden layers, using summation
product. GAN imposes no constraint on the input
dimension of z that normally happens to be a 100-
dimensional vector. Moreover, as feedback is passed
via the Discriminator will reinstall the gradients to
get the G and D parameters updated, G is expected
to be easily differentiated. The Generator loss can be
computed as follows:

L
GAN

G
= −Ex∼pz

[
log (D (G (z)))

]
(1)

3.1.2. The discriminator
The goal of discriminator D is to determine

whether the input is from a real sample and provides
a feedback mechanism that refines weight parame-
ters of G. When the input is real sample x, the output
of D approaches to 1. Otherwise, the output of D
approaches to 0. When the Discriminator is trained,
the G is fixed. D obtains the positive sample x from
the real dataset and the negative sample G(z) gen-
erated by the generator. Both of them are input into
D, and the output of D and sample labels are used
to calculate the error. Finally, the error backpropaga-
tion algorithm is used to update the parameters of the
Discriminator. The Discriminator can be illustrated
in the following quotation:

L
GAN

D
= − Ex∼pdata

[
log(D(x))

]

− Ez∼pz

[
log(1 − D(G(z)))

] (2)

3.1.3. The loss function
GAN’s loss function depends on the minimax of

two gamers that involves two neural networks that
compete with the framework of a zero-sum game
[35]. It is expected of the Discriminator to differen-
tiate between the input data and the true one, then
use the backpropagation algorithm in optimizing the
weight of the network model. X and θ(D) are the input
parameters of discrimination while the loss function
of the Discriminator is given by the equation below:

V (D, θ(D)) = − Ex∼Pr(x)
[
log D(x)

]
− Ez∼pg(z)

[
log(1 − D(z))

]
.

(3)

Among these, Pr and Pg denote the data distribu-
tions for actual samples and false samples generated



M. Ubale Kiru et al. / Comparative analysis of some selected generative adversarial network 7161

by the generator, respectively. Z and θ(G) are the input
parameters of the generator, and the loss function is
given by the equation below:

V (G, θ(G)) = −Ez∼pg

[− log(D(G(z)))
]
. (4)

The weight of θ(D) is optimized by a discrimina-
tor, and that of θ(G) is optimized by a generator via
loss function. When the discriminators and genera-
tors are being trained the model parameters of the
two remains the same. And the training continues till
the two network structures attain a Nash equilibrium
[36]. Two distinct types of network structures are
being trained by the GAN model using an adversarial
model; the last objective function of GAN model is
given by the equation below:

min

G

max V

D
(G, D) = min

G

max E

D
x ∼ pr(x)

[
log D(x)

]

+Ez∼pg(z)

[
log(1 − D(G(z)))

]
(5)

4. GAN models for image augmentation

The GAN is a great algorithm, and it has dramat-
ically changed the paradigm of image augmentation
and image transformation over the years since its
release in 2014. It has significantly gained statisti-
cal advantages over its pairs such as RBM, HMM,
GMM, and Autoencoder. However, the framework
suffers from a great deal of issues such as vanishing
gradient, poor diversity and difficulty to train in cer-
tain conditions. A lot of efforts have been made over
the last few years to obtain a better representation of
GAN through different optimization techniques by
proposing new architectures with improved and sta-
bled structure. Some of these models are described
below:

4.1. Conditional Generative Adversarial
Network (CGAN)

CGAN is a modified GAN model propounded by
Mehdi Mirza and Simon Osindero in their 2014 paper
titled “Conditional Generative Adversarial Nets”
[24]. Contrary to the original GAN, CGAN is a model
that employs a supervised method of enhancing the
ability to control generated results. In CGAN, the ran-
dom noise z and the category label c are assumed to be
the inputs of the generator and the generated fake/real
sample, category label is used as the discriminator

Fig. 7. CGAN architecture.

input, so as to comprehend the relationships between
images and labels. To guide the data generation, a
condition variable, y is introduced to the modelling,
and conditions are included in the model with n extra
information y as seen in Fig. 7.

In a broader sense, the generator model takes as
input noise pz(z), and y combined in a joint hidden
layer. While the discriminator model takes x and y as
input as well as a discriminative function in the case
of a multilayer perceptron. The architecture can be
expressed as:

min

G

max

D
V (D, G) = Ex∼pdata(x)

[
log D(x|y)

]

+ Ez∼pz(z)
[
log(1 − D)(G(z|y))

] (6)

4.2. Deep Convolutional Generative Adversarial
Networks (DCGAN)

After a year of publication of the GAN paper, the
researchers realized that the model was not stable and
that a large amount of training on it was needed. Rad-
ford et al. [25] brought forward an advanced version
of GAN architecture in the year 2015 and it was called
DCGAN Fig. 8. The authors of this version used
deep convolutional networks (CNNs) in enhancing
the architecture of the original GAN. Until now, the
DCGAN’s network structure has a wide coverage and
is considered the best GAN architecture and a signif-
icant event in the history of GAN. In the DGGAN
setup, the convolutional layer is used almost entirely
by DCGAN, contrary to the fully connected layer that
is being used by the original GAN. The Discriminator
is roughly proportional to the generator; the whole
network lacks pooling layers and up-sampling lay-
ers. Batch Normalization Algorithm is applied by the
DCGAN in problem-solving that involves vanishing
gradient. Both the generator model and the discrim-
inator model are presented with their loss function
below:
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Fig. 8. DCGAN architecture.

L
DCGAN

G
= Ez∼pz(z)

[
log(D(G(z)))

]

L
DCGAN

D
= Ex∼pdata(x)

[
log(D(x))

]

+Ez∼pz(x)
[
log(1 − D(G(z)))

]
(7)

4.3. f-GAN

The original GAN has an objective function,
which is to minimize the JS divergence that exists
between two distributions. The JS divergence is
among the many methods that can be adapted to mea-
sure the distance between two given distributions.
Various objective functions can arise from defin-
ing various distance metrics. [52] employed the use
of f-divergence in GAN (f-GAN) to train genera-
tive neural samplers. The f-divergence is a function
Df(P||Q) used to measure the variation between two
probability distributions given as P and Q as illus-
trated in the equation below:

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
(8)

According to the structure of f-divergence, f-GAN
generalizes other divergences in such a way that the
corresponding GAN objective can be obtained for a
particular divergence. However, to initiate the f-GAN
objective, we adopt two commonly used techniques
from convex optimization, i.e. the Fenchel conjugate
as well as duality [52]. In essence, a lower bound
to the f-divergence is collected through its Fenchel
conjugate as in the below equation:

Df (p, q) ≥ sup

T ∈ T

(
Ex∼p [T (x)] − Ex∼q

[
f ∗(T (x))

])
(9)

Many similar divergences like [53] KL-
divergence, Hellinger distance, and total variation
distance, are exceptional cases of f-divergence
concurrent to a specific choice of various distance

Fig. 9. WGAN architecture.

metrics distributions were applied to GAN training
stability in order to enhance it.

4.4. Wasserstein Generative Adversarial
Networks (WGAN)

WGAN principally upgraded GAN from the loss
function viewpoint. Theoretically, it highlighted the
cause of the instability of GAN training, which is,
the cross-entropy is found to be inappropriate for
measuring the distance between distributions that
have disjoint parts [54]. The WGAN put forward
another approach to be used in measuring distance,
which is the Earth Moving Distance, otherwise called
Wasserstein distance or optimal transmission dis-
tance. It describes the least transmission quality that
can convert the probability distribution, q to proba-
bility quality, p (known as the probability density in
discrete cases) [28]. Notation (10) was suggested to
measure the distance between real images and fake
images:

W(Pr, Pθ) = inf

γ ∼ �(pr, pg)
E(x,y)∼γ

[‖ x − y ‖]γ ∼ �(pr, pg)

(10)

Based on the above, �(pr, pg) is the representative
of all possible joint distributions that are combined
by both pr and, pg. The Wasserstein distance is bet-
ter than both the KL and JS divergence in that, it
can reflect the distance between two distributions
despite being disjoint. Both the theoretical derivation
and interpretation of WGAN are not straightforward.
The authors of WGAN [28] declared that applying
Wasserstein distances is expected to meet a strong
continuity condition which is the Lipchitz continuity.
See Fig. 9 WGAN architecture below:

4.5. CycleGAN

CycleGAN is an unsupervised GAN type that
enables image to image operations in a circular fash-
ion such as image translation as illustrated in Fig. 10.
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Fig. 10. CycleGAN architecture.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei
A. Efros, were the first to propound the CycleGAN.
Two adversarial mappings make up the architecture
as follows: G:X->X. G is in charge of generating out-
puts from X, while the Y determines whether they are
real or false. F, on the other hand, is in charge of gen-
erating outputs from Y while X determines whether
they are real or false. However, GAN ensures that the
cyclic loss that is experienced while input is being
translated from X to Y and all over again is mini-
mal. CycleGAN evokes a property described as cycle
consistency which denotes that if we can traverses X
to Y through G, hence we should likewise be able
to traverses Y to X through F. The loss function is
expressed as follows:

min

F, G, Dx, Dy
LGAN (G, D, X, Y )

+ LGAN (G, D, X, Y ) + λ(EX[‖ F (G(X)) − X‖1]

+ EY [‖ G(F (Y )) − Y‖1])
(11)

5. Experiments

This section discusses the setup environment and
how the experiments were conducted, and the eval-
uation techniques used to measure the algorithms’
performance.

5.1. Experimental setup

The experiment was conducted on a 9th Generation
Core i7 Intel Machine with GTX 2060 ti 6GB GPU
support. We developed and trained our models in a
TensorFlow and Keras environment using two unique
datasets, namely Chest X-ray dataset from [17] and
chest CT-scan images from [18]. Fifty image sam-
ples were randomly selected from each dataset and

were reshuffled for processing. All the images were
of 28x28 pixels and a greyscale value assigned to each
pixel.

This study aims to generate realistic-looking syn-
thesized CT scan images and X-Ray images to
serve as a representative of the original samples.
We compared the generated sample images using
different discriminators. By combining the different
GAN architectures, visual attributes of reconstructed
images were created. The five architectures used are
regular GAN models including CGAN, DCGAN,
f-GAN, WGAN and CycleGAN as illustrated in
Fig. 11. We compare each model’s outcome in terms
of how their different GAN architecture plays a role
in synthesizing the newly generated samples. The
generators and discriminators are the same as the con-
volutional neural networks we found in many studies.
In all the training sessions, we used optimizers such
as Adam’s optimizer [55] to minimize the loss func-
tions using a learning rate of 10-5 and a batch size of
64. For the Adam’s optimizer to work perfectly, we
applied 0.5 for β1 likewise 0.9 for β2 when training
models like WGAN and CGAN. All five models were
trained in 60 epochs in all the two datasets. This is
because gradient descent apply iterative algorithms
[51].

For the implementation part, we divided tasks into
three: The first task was to write the basic functions
to generate real data distribution of each dataset. Sec-
ondly, we wrote the lines for the Generator model and
then the Discriminator model. Furthermore, lastly, we
wrote the lines to be used by the data and the networks
to carry out the training in an adversarial manner. For
each model used, we started with vectorization pro-
cess to ensure that all images are of the same size.
Depending on which model is to be run, some mod-
els like DCGAN have to run using convolutional and
deconvolutional neural networks for the Generator
and the Discriminator. We started by using a feedfor-
ward neural network to initialize each generator, and
the input assigned to the network is random noise.
At the last layer of each network, shape matching the
input datasets’ dimension is expected as the outcome.
These tasks’ primary objective is to learn how each
GAN model trains the data and regenerate the new
set of data on each GAN model.

5.1.1. Evaluation metrics
To evaluate the different GAN models’ perfor-

mance, namely, CGAN, DCGAN, f-GAN, WGAN
and CycleGAN, on the two datasets, this study
employs two commonly used evaluation technique,
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Fig. 11. Comparison of five different GAN models on two different datasets.

Table 2
Visual turning test possible questions

Nature of Question Questions Notation

Existence “Is there an instance of an object of type t with attributes A partially visible in region w that was
not previously instantiated?”

Qexist

Uniqueness “Is there a unique instance of an object of type t with attributes A partially visible in region w that
was not previously instantiated?”

Quniq

Attribute “{’Does object ot have attribute a?’, ‘Does object ot have attribute a1 or attribute a2?’, ‘Does
object ot have attribute a1 and attribute a2?’}”

Qatt(ot)

Relationship “Does object ot have relationship r with object ot’?” Qrel (ot, ot′ )

i.e., qualitative and quantitative. Qualitative evalua-
tion technique relies on human experts to observe the
produced images and make their assessment based
on the quality of the images using a technique called
Visual Turing test as proposed by Geman et al., in
their paper [56]. According to the author, Visual Tur-
ing test “Is an operator-assisted device that produces a
stochastic sequence of binary questions from a given
test image”. In essence, the engine creates an array of
questions that seem to have unpredictable answers.
Here, the task of a human operator is to supply the
correct answers to the posed questions or reject it
if it seems ambiguous. Visual Turing test basically
has four types of questions which must return an
answer or term the questions scenario as ambiguous
(see Table 2):

To fulfil the VTT requirements, a medical expert
was asked to differentiate between the original
images and the synthesized images in random order
80%. On the other hand, quantitative evaluation is
also applied to abolish any possibility of doubt. This
technique relies on calculating specific numerical
scores used to assess the quality of the synthesized
data. Some of these quantitative approaches include
average Log-likelihood, Coverage metric, inception

score, Fréchet Inception Distance, Boundary Distor-
tion, Precision, Recall and F1 score and many others.

In this study, we used Fréchet Inception Distance
(FID) for the evaluation of the generated outcomes.
The FID was proposed by [57] in their study titled
GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium. The FID sug-
gested that to justify the quality of generated data
samples; first, they have to be embedded into a feature
space allocated by an inception net. Second, display-
ing the embedded layer as a multivariate Gaussian,
then the covariance and the mean are estimated for
both generated image samples and the original image
samples [57]. FID is represented as follows:

FID(x, g) = ||μx − μg||22 + Tr(�x + �g −
2(�x�g)

1
2 ), where (μx, �x) and (μg, �g) are the

covariance and the mean of the image samples
embeddings from the sample and model distribution
respectively.

6. Results and discussion

As highlighted above, the experiment was con-
ducted on two unique datasets, namely the CT-Images
and X-Ray Images for both COVID-19 infected and
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non-infected victims. As mentioned in Section VI,
this study utilizes two evaluation approach qualitative
and quantitative approaches. In terms of the quality of
the synthesized images, results are judged based on
human visual observation using visual Turing test.
In this study, a medical expert was shown 50 real

images and 50 synthesized images generated by the
models, as seen in Table 3. The images were later
selected at random and turned over to the medical
expert for analysis. Images that scored > 50% indi-
cate a superior outcome. The results are presented in
Table 4.

Table 3
Comparing different CT-image datasets and X-Ray datasets results based on each model’s performance. On the left are the original images

before augmentation. On the right are the synthesized images produced from the originals

Datasets Models Original images Synthesized images

CT-Images CGAN

DCGAN

F-GAN

WGAN

(Continued)
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Table 3
(Continued)

Datasets Models Original images Synthesized images

CycleGAN

X-Ray Images
CGAN

DCGAN

F-GAN

(Continued)

6.1. Visual turing test results

Based on the results seen in Table 4, it quite
tough for a human expert to accurately distinguish
the differences due to lower resolution or loss in the

appearance. However, distinguishing DCGAN is a lot
easier compared to the rest. CycleGAN gives tough
time. It confused the expert into thinking if they have
any difference between DCGAN and CycleGAN.
Finally, CycleGAN comes on top with a promising
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Table 3
(Continued)

Datasets Models Original images Synthesized images

WGAN

CycleGAN

Table 4
Results from Visual Turing Test by a physician for differentiating real vs synthesized images. Note that images which scored 50% and

above indicate good result as agreed in previous studies [58]

Dataset GANs Model Real as Real Real as Synth Synth as Real Synth as Synth Accuracy (%)

CT-Images CGAN 26 24 7 40 71
DCGAN 25 25 4 45 73
F-GAN 22 28 7 41 66
WGAN 13 34 9 44 54

CycleGAN 29 17 10 42 80
X-Ray Images CGAN 25 22 5 45 70

DCGAN 25 24 4 46 72
F-GAN 23 25 7 44 60
WGAN 15 30 9 40 59

CycleGAN 34 15 8 38 77

result of 80% in CT image dataset and 77% in the
X-Ray image dataset.

It is also important to note that CGAN can generate
more realistic multi-sequence CT-Images that show
promising results and have not confused experts in
distinguishing from the real ones. In general, WGAN
displays a low performance (with 54% for CT images
and 59% for X-Ray images) as well as mode collapse
when compared with others in terms of intensity. Our
study indicates that human experts are reliable eval-
uation tools, but for a more objective and unbiased
evaluation, we must use other computational evalu-
ation techniques to assess our models for efficiency
and performance.

6.2. Fréchet inception distance measure

As clearly mentioned in Section VI, FID allows
us to measure the quality of the generated samples
as they are embedded into a feature space denoted
by a certain layer of inception network [59]. How-
ever, this gives us a continuous multivariate Gaussian
embedded layer. The mean and the covariance are
estimated for both real data and the synthesized data.
The FID distance utilized to measure the quality of
the synthesized samples, as illustrated below:

FID(x, g) =
∣∣|μx − μg|

∣∣2

2
+ Tr

(
�x + �g − 2

(
�x�g

) 1
2

)
(12)
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Figure 12 indicate that FID is a very sensitive eval-
uation measure. It shows the distortions of various
images. Various GAN models demonstrated different
properties, from the left to the right and top to bot-
tom of the chart. It is apparent that Gaussian noise has
affected the synthesis process in some of the images.
The noise increases and gives a more Gaussian blur in
some of the images. Based on the image, the (μx, �x),
and

(
μg, �g

)
are the covariance and mean of the gen-

erated samples and model distribution. Here, lower
FID denotes smaller distances between the generated
samples and the original samples. It is apparent that
FID does well in discriminating the new samples from
the original samples.

To answer the key question, i.e. which model
performs the best among the five models, namely
CGAN, DCGAN, f-GAN, WGAN and CycleGAN, is
answered in Table 5. In terms of quality of the images
generated by each model, CycleGAN shows the high
convergence and therefore generated high quality

and clearer samples on both datasets than CGAN,
DCGAN, f-GAN, and WGAN. The samples gen-
erated by CycleGAN are easily distinguished from
the rest because CycleGAN updates itself using both
forward cycle consistency loss and backward cycle
consistency loss. On the contrary, WGAN shows the
lowest accuracy in terms of the quality and slow in
terms of the convergence rate on both datasets. The
low convergence and low quality are associated with
its gradient disappearance due to inappropriate prun-
ing techniques. Hence, we learned in this study that
WGAN could do a lot better if further training is done
with more parameters, in that the convergence rate is
improved.

Also, our results of CGAN, DCGAN, and f-GAN
show that they can generate good samples in specific
categories with a much-improved convergence rate.
With CGAN, we noticed a direct addition of condi-
tional information alongside random variable to the
input through the generator to improve the output.

Fig. 12. FID results showing distortion levels at various phases.
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Table 5
This is the FID result of the five different models and their reaction to the different datasets at various Epoch. Note that, the lower the FIDS,

the higher the performance

Datasets Models FID=Epoch 10 FID=Epoch 20 FID=Epoch 30 FID=Epoch 40 FID=Epoch 50 FID=Epoch 60

CT-Images CGAN 89.32 70.33 58.34 51.87 31.67 22.45
DCGAN 70.34 64.78 59.89 43.67 34.56 15.56
F-GAN 89.76 75.65 64.90 45.10 36.12 28.43
WGAN 96.05 88.80 65.43 58.90 44.56 37.34

CycleGAN 89.23 77.63 50.43 31.56 16.54 8.21
X-Ray

CGAN 88.45 66.66 59.98 53.67 35.22 23.90
DCGAN 79.21 64.90 58.12 40.12 32.12 17.45
F-GAN 90.38 81.89 71.89 49.89 38.45 30.13
WGAN 95.46 82.45 61.90 53.88 42.67 34.80

CycleGAN 86.43 79.58 55.76 33.86 18.98 11.52

Meanwhile, DCGAN shows more promising results
plus an improved resolution made possible by using
Convolutional Neural Networks layer almost entirely
while utilizing its batch normalization algorithm to
address the vanishing gradient, which substituted
deterministic spatial pooling function. This gives
the network its freedom to learn from its spatial
downsampling. However, both CT-images and X-
Ray images respond positively to the training, having
generated finer images that are almost close to the
original. Nonetheless, the low performance comes
from the model collapse and the need to adjust the
parameters in different phases.

f-GAN experiment, on the contrary, indicates that
the quality of the synthesized images is lower than
that of DCGAN since it does not apply batch nor-
malization. f-GAN does good in minimizing the JS
divergence that exists between two distributions. This
gives f-GAN more advantaged over DCGAN. The f-
divergence is a function Df(P||Q) used to measure
the variation between two probability distributions.
Hence, it created clear images at epoch 50. Nonethe-
less, differences in learned distributions arise when
the generator is not good enough.

7. Conclusion

To sum up, this article studied data augmenta-
tion and the role of Generative Adversarial Networks
algorithms in data augmentation and recreation. In
trying to do so, we tested five common GAN mod-
els namely CGAN, DCGAN, f-GAN, WGAN and
CycleGAN on two different datasets namely COVID-
19 CT-images and COVID-19 X-Ray images; in an
effort to understand how each GAN model reacts
to each dataset. The study reviewed different data
augmentation techniques and their effect on data
transformation and syncretization.

The results of this study show an interesting
finding. There are over 400 GAN architectures in
the market for different purposes and not all GAN
architectures can be applied for all purposes. Some
architectures are more suitable for image translation,
some for image resolution improvement, and some
for data augmentation. In addition, some models work
better with some specific types of data, while others
showed a staggering low performance. Our first result
from Visual Turing Test reveals that human expert
can accurately distinguish between different results
and produce the best samples. Hence, CycleGAN
comes on top with a promising result of 80% in CT
image dataset and 77% in X-Ray image dataset. Our
second result from FID evaluation shows that Cycle-
GAN showed the highest convergence and therefore
generated high quality and clearer samples on both
datasets than CGAN, DCGAN, f-GAN, and WGAN.
The samples generated by CycleGAN are easily dis-
tinguished from the rest because CycleGAN updates
itself using both forward and backward cycle consis-
tency loss.

On the contrary, WGAN shows the lowest accuracy
in terms of the quality and slow in terms of the con-
vergence rate on both datasets. The low convergence
and low quality are associated with its gradient dis-
appearance due to inappropriate pruning techniques.
Hence, we learned that WGAN could do a lot better
if further training is done with more parameters, in
that the convergence rate is improved.

Future direction

While artificial intelligence’s fundamental princi-
ple is to remove humans out of the picture, qualitative
evaluation such as Visual Turing test should be
replaced with a more systematic evaluation system
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to evaluate each model neutrally and fairly to avoid
human bias. Also, other evaluation techniques can
be applied to eliminate any form of doubts. Machine
learning needs to be more accurate when dealing with
medical data. A minor error can jeopardize the whole
result and lead to fatalities.
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