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Abstract. In this paper, we develop a mathematical model with a Caputo fractional derivative under fuzzy sense for the
prediction of COVID-19. We present numerical results of the mathematical model for COVID-19 of most three infected
countries such as the USA, India and Italy. Using the proposed model, we estimate predicting future outbreaks, the effective-
ness of preventive measures and potential control strategies of the infection. We provide a comparative study of the proposed
model with Ahmadian’s fuzzy fractional mathematical model. The results demonstrate that our proposed fuzzy fractional
model gives a nearer forecast to the actual data. The present study can confirm the efficiency and applicability of the fractional
derivative under uncertainty conditions to mathematical epidemiology.
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1. Introduction

A novel coronavirus is an infectious disease.
In December 2019, the first case of coronavirus
(COVID-19) was reported in Wuhan, China. This
virus spread rapidly around China and many different
nations [1]. The World Health Organization (WHO)
named the epidemic disease as SARS-CoV-2 which
was caused by 2019-nCoV on 11 February 2020 [2,
3]. On 11 March 2020, WHO announced COVID-19
a pandemic by seeing its spread and risk to human
life on the earth [4]. On January 30, 2020, 7734 total
confirmed cases have been reached in China and 90
confirmed cases have been reached in other 13 coun-
tries together with the United States, India, Germany,
France, Canada, and United Arab Emirates [5, 6]. As
of July 31, 2020, 17,106,007 confirmed cases with
668,910 deaths have been reported globally [7].
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This virus spread from person to person through
direct conduct with contaminated surfaces and via the
inward breath of respiratory droplets from contami-
nated persons [8]. To avoid the spread of COVID-19,
the government has been imposing different control
measures such as lockdowns, banning travel, closing
schools and workplaces, limiting the size of gath-
erings, maintain social distancing, washing hands
regularly, and use a mask publically. To additionally
help in relieving the spread of COVID-19, contact
tracing of suspected contaminated cases has been
stepped up in many countries and asymptomatic and
symptomatic cases are immediately position in iso-
lation for brief treatment.

Mathematical models are a very important tool to
analyze the behavior of infection and forecast the
outbreak of infection [9–11]. In recent times, several
researchers have been developed many mathematical
models for the population dynamics of COVID-19
[12–18]. The fractional-order model has produced
better results in real-world phenomena than classi-
cal order models due to hereditary properties and
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the description of memory [19, 20]. Moreover, the
fractional-order model gives a degree of freedom in
fitting the data [21]. Recently a lot of researchers
are investigating mathematical models of COVID-19
involving fractional order. Khan et al. [22] provided
mathematical modeling of coronavirus (2019-nCoV)
based on the Atangana-Balenau fractional derivative.
Shaikh et al. [23] formulated a numerical model of
COVID-19 under Caputo-Fabrizio fractional deriva-
tive to evaluate the effectiveness of precautionary
measures and forecasting outbreaks. In [24], a frac-
tional dynamic system with time delay is formulated
to estimate the outbreak of COVID-19. Tuan et al.
[25] investigated the dynamic model for COVID-
19 under fractional derivative with Caputo sense. In
[26], the authors formulated the SEIRD model under
fractional derivative to investigate the outbreak of
COVID-19 in Italy.

In the dynamic models cited above, the researchers
used constant parameters. In general, they assumed
that each person could spread the disease and recover
from it at a constant rate. However, these assumptions
conflicted with the reality of the outbreak. Moreover,
some humans do not want to be declared their infected
information and some humans do not be aware of
they are infected. In that case, the parameters of the
dynamic model such as transmission rate, recovery
rate, and death rate are uncertain. To overcome this
situation, L.A. Zadeh introduced fuzzy sets in 1965
[27]. In mathematical models, fuzzy numbers are a
useful tool for representing uncertainty and interpret-
ing imprecise or subjective data. Many researchers
have been applied this fuzzy number to a wide range
of real-world problems such as fuzzy transportation
problems [28], fuzzy linear programming problems
[29–31], fuzzy integro-differential equations [32, 33].
Allaoui et al. [34] analyzed a mathematical model
for the epidemic prediction of COVID-19 involving
fuzzy parameters. Very recently, Ahmadian et al. [35]
discussed the dynamical model of COVID-19 under
a fuzzy fractional derivative for China.

Motivated by means of the above beneficial pur-
poses of fractional operators with uncertainty, in this
present work, we analyze the mathematical model
suggested by Allaoui et al. [34] under fractional
derivative with fuzzy parameters. The main aim of
this paper is to investigate the mathematical model to
find out about forecasting the outbreak of coronavirus
in the three most infected countries in the world such
as the USA, India, and Italy. The main work has been
done by ourselves in this paper which is mentioned
below:

1. The prediction of cumulative Infected cases,
Susceptible cases, Exposed cases, and Recov-
ered cases of COVID-19 for 10 months at
different values of fractional derivative have
been estimated.

2. Stability analysis has been provided for this
model in fuzzy fractional environment.

3. Our proposed model is compared with the fuzzy
fractional model suggested by Ahmadian et al.
[35]. The results are compared and elucidated
in detail.

This paper is organized as follows. Some impor-
tant results and concepts of fuzzy and fractional
calculus are recalled in Section 2. The mathematical
model under fuzzy fractional derivative for COVID-
19 and numerical solutions are presented in Section
3. The stability analysis of the solution of the pro-
posed model is given in Section 4. The comparison
results of our suggested model with the fuzzy frac-
tional model suggested by Ahmadian et al. [35] are
provided in Section 5. Numerical results and limita-
tions are given in Sections 6 and 7. The conclusion is
drawn in Section 8.

2. Preliminaries

In this section, we present some fundamental defi-
nitions and result from fuzzy calculus and fractional
calculus [29, 36–39].

2.1. Definition [36]

Let the function u : R → [0, 1] be a fuzzy number
that satisfies the following properties:

(1) u is normal, i.e, ∃x0 ∈ R for which u (x0) = 1.
(2) u is upper semi-continuous.
(3) u is fuzzy convex, i.e u (λx + (1 − λ) y) ≥

min {u (x) , u (y)} for all x, y ∈ R, λ ∈ [0, 1] .

(4) u is compactly supported. i.e supp (u) =
{x ∈ R|u (x) > 0} is compact.

Here the real numbers set is denoted by R.

2.2. Definition [36]

A fuzzy number is represented by the parametric
form

(
ur, ur

)
, 0 ≤ r ≤ 1 that satisfies the following

necessities:

(1) ur is an increasing bounded function and also
ur is a decreasing bounded function over [0,1].
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(2) ur is a continuous function at left and ur is a
continuous function at right over [0,1].

(3) ur ≤ ur, 0 ≤ r ≤ 1.

E represent the fuzzy numbers set with addition
and multiplication.

The difference between two fuzzy numbers u =(
ur, ur

)
and v = (

vr, vr

)
is defined by

D (u, v) = sup
0≤r≤1

{
max

{∣∣ur − vr

∣∣ , |ur − vr|
}}

2.3. Definition [36]

Let u, v ∈ E. If there exits w ∈ E such that u =
v + w, then w is called as H-difference of u and v

and it is denoted by u � v.

2.4. Definition [29, 37]

If A is a triangular fuzzy number then its member-
ship function is defined by

μA (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x ≤ x1

x−x1
x2−x1

if x1 < x ≤ x2

x−x3
x2−x3

if x2 < x ≤ x3

0 if x > x3

where x1, x2, x3 are real numbers with x1 ≤
x2 ≤ x3 and fuzzy number A is denoted by
A = (x1; x2; x3). The r- levels of the fuzzy
number A has the following form

[
Ar, Ar

] =
[(x2 − x1) r + x1, (x2 − x3) r + x3] for all r ∈ [0, 1].

2.5. Theorem [36]

Consider F : [a, b] → E be the continuous fuzzy
valued function which is denoted by

[Fr ( ) , Fr ( )
]

for each r ∈ [0, 1], then
b∫
a
F ( ) d exists, belongs to

E. Fr ( ) and Fr ( ) are integrable function on [a, b]
and [

b∫
a
F ( ) d

]r

=
[

b∫
a
Fr ( ) d ,

b∫
a
Fr ( ) d

]
2.6. Definition [36]

Consider F : [a, b] → E and 0 ∈ (a, b). F is said
to be generalized differentiable at 0 if there is an
element F′ ( 0) ∈ E and

1. The H-differences F ( 0 + η) � F ( 0),
F ( 0) � F ( 0 − η) exist, for each η > 0 tends

to 0 sufficiently and

lim
η→0

F ( 0 + η) � F ( 0)

η
= F′ ( 0)

= lim
η→0

F ( 0) � F ( 0 − η)

η

2. The H-differences F ( 0) � F ( 0 + η),
F ( 0 − η) � F ( 0) exist, for each η > 0 tends
to 0 sufficiently and

lim
η→0

F ( 0) � F ( 0 + η)

−η
= F′ ( 0)

= lim
η→0

F ( 0 − η) � F ( 0)

−η

2.7. Theorem [38]

Consider F : [a, b] → E be a fuzzy function and
also [F ( )]r = [Fr ( ) , Fr ( )

]
for 0 ≤ r ≤ 1.

1. When F is 1st - type differentiable on [a, b], Fr

and Fr are differentiable and also
[F′ ( )

]r =[
F′

r ( ) , F′
r ( )

]
2. When F is 2nd - type differentiable on [a, b], Fr

and Fr are differentiable and also
[F′ ( )

]r =[
F′

r ( ) , F′
r ( )

]
Now, the concept of the Caputo fuzzy frac-

tional derivative about order 0 < α ≤ 1 is defined by
Salahshour et al. [36].

2.8. Definition [36]

Assume that F : [a, b] → E and F ∈ CF [a, b] ∩
LF [a, b], where 0 < α ≤ 1. Then we can say F is a
Caputo’s H-differentiable at when

(
CDαF

)
( ) = 1

� (1 − α)
∫
a

F′ (t)

( − t)α
dt, 0 < α ≤ 1

Also if F is 1st - type differentiable, then we call
F as Caputo 1st - type differentiable and if F is 2nd
- type differentiable, then we call F as Caputo 2nd -
type differentiable, where CF [a, b] and LF [a, b] are
the spaces of fuzzy continuous functions and fuzzy
Lebesque integrable functions on [a, b] respectively.

2.9. Theorem [36]

Consider 0 < α ≤ 1 and F ( ) ∈ CF [a, b], then
the fuzzy Caputo’s fractional derivative is defined by
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[(
CDαF

)
( )

]r

=
[

1

� (1 − α)
∫
a

F′
r (t)

( − t)α
dt,

1

� (1 − α)
∫
a

F′
r (t)

( − t)α
dt

]

for 1st - type differentiable.[(
CDαF

)
( )

]r

=
[

1

� (1 − α)
∫
a

F′
r (t)

( − t)α
dt,

1

� (1 − α)
∫
a

F′
r (t)

( − t)α
dt

]

for 2nd - type differentiable.

3. Fuzzy fractional model

In this present work, we investigate the SEIR model
proposed by Allaoui et al. [34]. In this model, the total
population is divided into four compartments: Sus-
ceptible cases (S), Exposed cases (E), Infected cases
(I), Removed cases (R), and also N represent the total
population, where N = S + E + I + R. The authors
presented the transmission model for the COVID-
19 pandemic in the sense of ordinary derivatives as
follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S′ (t) = − μ
N

S (t) (βE (t) + I (t))

E′ (t) = μ
N

S (t) (βE (t) + I (t)) − γE (t)

I ′ (t) = γE (t) − σI (t)

R′ (t) = σI (t)

(1)

where
μ = transmission rate of infected people.
γ = per-capita infectious rate.
σ = per-capita death rate.
Also, the author investigated this model with

fuzzy parameters in [34]. Numerical models with
non-integer operators give a better understanding of
phenomena. Now, we replace the ordinary deriva-
tive with the Caputo fractional derivative under fuzzy
sense in the model (1). Then we propose a system of
a fuzzy fractional differential equation as follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cDαS̃ (t) = − μ̃
N

S̃ (t)
(
β̃Ẽ (t) + Ĩ (t)

)
cDαẼ (t) = μ̃

N
S̃ (t)

(
β̃Ẽ (t) + Ĩ (t)

) − γ̃Ẽ (t)
cDαĨ (t) = γ̃Ẽ (t) − σ̃Ĩ (t)

cDαR̃ (t) = σ̃Ĩ (t)

(2)

Table 1
Number of infected, deaths and recovered cases of Covid-19 up

to July 31, 2020

Total cases USA India Italy

Infected 4,707,099 1,697,054 247,537
Deaths 156,771 36,551 35,141
Recovered 2,327,572 1,095,647 199,974

where, for r ∈ [0, 1]

[
S̃ (t)

]r = [
Sr (t) , Sr (t)

]
[
Ẽ (t)

]r = [
Er (t) , Er (t)

]
[
Ĩ (t)

]r = [
Ir (t) , Ir (t)

]
[
R̃ (t)

]r = [
Rr (t) , Rr (t)

]

The total infected, deaths, and recovered cases of
COVID-19 for three countries up to July 31, 2020,
are presented in Table 1 which are collected from the
website https://www.worldometers.info/coronavirus
[40].

In this research, we will consider the initial param-
eter in Table 2.

The initial parameters for the fuzzy fractional
model can be written as the following triangular fuzzy
number:

For the USA

S (0) = (264, 702, 120; 264, 802, 120; 264, 902, 120)

E (0) = (59, 065, 860; 59, 165, 860; 59, 265, 860)

I (0) = (4, 706, 599; 4, 707, 099; 4, 707, 599)

R (0) = (2, 327, 472; 2, 327, 572; 2, 327, 672)

γ = (0.069; 0.079; 0.089) ,

σ = (0.023; 0.033; 0.043) ,

μ = (2.1; 2.2; 2.3) and β = (0.036; 0.037; 0.038)

https://www.worldometers.info/coronavirus
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Table 2
The initial value of parameters for the model

Initial USA India Italy
Parameters

Population (N) 331,002,651 1,380,004,385 60,461,826
S(0) (0.8 × N) 264,802,120 1,104,003,508 48,369,460
I(0) 4,707,099 1,697,054 247,537
R(0) 2,327,572 1,095,647 199,974
E(0) 59,165,860 273,208,176 11,644,855
σ 0.033 0.021 0.141
γ 0.079 0.006 0.021

For r ∈ [0, 1], r− cuts are defined by

[S (0)]r = [264, 702, 120 + 100, 000r;

264, 902, 120 − 100, 000r]

[E (0)]r = [59, 065, 860 + 100, 000r;

59, 265, 860 − 100, 000r]

[I (0)]r = [4, 706, 599 + 500r; 4, 707, 599 − 500r]

[R (0)]r = [2, 327, 472 + 100r; 2, 327, 672 − 100r][
γ
]r = [0.069 + 0.01r; 0.089 − 0.01r]

[σ]r = [0.023 + 0.010r; 0.043 − 0.010r]

[μ]r = [2.1 + 0.1r; 2.3 − 0.1r] and

[β]r = [0.036 + 0.001r; 0.038 − 0.001r]

For India

S (0) = (1, 103, 003, 508; 1, 104, 003, 508; 1, 105, 003, 508)

E (0) = (273, 108, 176; 273, 208, 176; 273, 308, 176)

I (0) = (1, 696, 554; 1, 697, 054; 1, 697, 554)

R (0) = (1, 095, 547; 1, 095, 647; 1, 095, 747)

γ = (0.005; 0.006; 0.007) ,

σ = (0.011; 0.021; 0.031)

For r ∈ [0, 1], r− cuts are defined by

[S (0)]r = [1, 103, 003, 508 + 1, 000, 000r;

1, 105, 003, 508 − 1, 000, 000r]

[E (0)]r = [273, 108, 176 + 100, 000r;

273, 308, 176 − 100, 000r]

[I (0)]r = [1, 696, 554 + 500r; 1, 697, 554 − 500r]

[R (0)]r = [1, 095, 547 + 100r; 1, 095, 747 − 100r][
γ
]r = [0.005 + 0.001r; 0.007 − 0.001r]

[σ]r = [0.011 + 0.01r; 0.031 − 0.01r]

For Italy

S (0) = (48, 269, 460; 48, 369, 460; 48, 469, 460)

E (0) = (11, 544, 855; 11, 644, 855; 11, 744, 855)

I (0) = (247, 037; 247, 537; 248, 037)

R (0) = (199, 874; 199, 974; 200, 074)

γ = (0.019; 0.021; 0.023)

σ = (0.131; 0.141; 0.151)

For r ∈ [0, 1], r− cuts are defined by

[S (0)]r = [48, 269, 460 + 100, 000r;

48, 469, 460 − 100, 000r]

[E (0)]r = [11, 544, 855 + 100, 000r;

11, 744, 855 − 100, 000r]

[I (0)]r = [247, 037 + 500r; 248, 037 − 500r]

[R (0)]r = [199, 874 + 100r; 200, 074 − 100r][
γ
]r = [0.019 + 0.002r; 0.023 − 0.002r]

[σ]r = [0.131 + 0.01r; 0.151 − 0.01r]

Figures 1(a)–4(f), 5(a)–8(f) and 9(a)–12(f) show
the predictions of Infected people, Exposed people,
Suspectible people, and Recovered people over the
10 months for USA, India, and Italy for distinct
values of r with α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 respec-
tively. In Fig. 1(a)-1(f), we plotted numerical results
of Infected people of USA for some fractional order
α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 with different values of
r which demonstrates that the cumulative number
of Infected cases decreases when fractional-order �
decreases. In Fig. 5(a)-5(f), we plotted numerical
results of infected people of India for some fractional
order α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 with different val-
ues of r which shows that as the non-integer order
� goes down, the increment of infection is also
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Fig. 1. Numerical results of the number of Infected cases I (t) in USA for some values of fractional order and distinct values of r =
0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.

reduced. Similarly, Fig. 9(a)-9(f) shows that as the
fractional order α decrease, the cumulative number
of infected people in Italy gets lower. Tables 3–5
shows the predicted number of infected cases in USA
for the months January, March, and May. Similarly,
Tables 6–8 shows the predicted number of infected
cases in India for the months January, March, and
May. The prediction of the number of infected cases
in Italy for the months January, March, and May is
provided in Tables 9–11.

From Tables 6, 7, and 8, we can observe that the
number of people infected with COIVD-19 predicted

for the end of months January, March, and May for
India might be as high as between 0.9024 × 107 and
1.2216 × 107 at α = 0.8, between 0.9656 × 107 and
1.3213 × 107 at α = 0.7 and between 2.1215 × 107

and 3.0738 × 107 at α = 1. From this, the predicted
values of infected cases for India obtained by our
proposed model are much closed to the actual data.
Similarly, we can see that the predicted number of
infected cases with COIVD-19 for the end of months
January, March, and May for other two countries
USA and Italy are extremely close to the actual
data. As a result, our proposed model is well-trained
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Fig. 2. Numerical results of the number of Exposed cases E (t) in USA for some values of fractional order and distinct values of r =
0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.

and capable of predicting novel coronaviruses in the
future.

From the outcomes of figures and tables referenced
here, we can express that as the fractional deriva-
tive order α decrease, the number of infected people
decrease significantly. Moreover, the fuzzy fractional
derivative model gives more accurate results than the
classical derivative model and permits better examine
the obtained results.

4. Stability analysis

The equilibrium points are found by setting
Dα

t S̃ (t) = 0, Dα
t Ẽ (t) = 0, Dα

t Ĩ (t) = 0, Dα
t R̃ (t)=0.

i.e, − μ̃

N
S̃ (t)

(
β̃Ẽ (t) + Ĩ (t)

) = 0

μ̃

N
S̃ (t)

(
β̃Ẽ (t) + Ĩ (t)

) − γ̃Ẽ (t) = 0
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Fig. 3. Numerical results of the number of Susceptible cases S (t) in USA for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.

γ̃Ẽ (t) − σ̃Ĩ (t) = 0

σ̃Ĩ (t) = 0

This implies, we have Ĩ (t) = Ẽ (t) = 0.
The Jacobian matrix of model (2) can be computed

as follows.

⎛⎜⎜⎜⎜⎝
− μ̃

N

(
β̃Ẽ(t) + Ĩ(t)

)
− μ̃β̃

N
S̃(t) − μ̃

N
S̃(t) 0

μ̃
N

(
β̃Ẽ(t) + Ĩ(t)

)
μ̃β̃
N

S̃(t) − γ̃
μ̃
N

S̃(t) 0

0 γ̃ −σ̃ 0

0 0 σ̃ 0

⎞⎟⎟⎟⎟⎠
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Fig. 4. Numerical results of the number of Recovered cases R (t) in USA for some values of fractional order and distinct values of r =
0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.

The Jacobian matrix at the equilibrium point is
given by

J =

⎛⎜⎜⎜⎜⎜⎝
0 − μ̃β̃

N
S̃(t) − μ̃

N
S̃(t) 0

0 μ̃β̃
N

S̃(t) − γ̃
μ̃
N

S̃(t) 0

0 γ̃ −σ̃ 0

0 0 σ̃ 0

⎞⎟⎟⎟⎟⎟⎠

The characteristic equation of the matrix J is
obtained by

λ2
(
λ2 + Aλ + B

)
= 0 (3)

Where, A = γ̃ − μ̃β̃
N

S̃ (t) + σ̃

B = γ̃ σ̃ − μ̃β̃σ̃

N
S̃ (t) − μ̃γ̃

N
S̃ (t)
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Fig. 5. Numerical results of the number of Infected cases I (t) in INDIA for some values of fractional order and distinct values of r =
0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 6. Numerical results of the number of Exposed cases E (t) in INDIA for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 7. Numerical results of the number of Susceptible cases S (t) in INDIA for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 8. Numerical results of the number of Recovered cases R (t) in INDIA for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 9. Numerical results of the number of Infected cases I (t) in ITALY for some values of fractional order and distinct values of r =
0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 10. Numerical results of the number of Exposed cases E (t) in ITALY for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 11. Numerical results of the number of Susceptible cases S (t) in ITALY for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Fig. 12. Numerical results of the number of Recovered cases R (t) in ITALY for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 from August 1, 2020, to May 31, 2021.
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Table 3
Predicted cumulative number of Infected cases I (t) in USA until January 31, 2021

t = 6 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
r = 0 3.2220 4.4239 3.7896 5.2634 4.4136 6.1839 5.0868 7.1725
r = 0.2 3.3236 4.2833 3.9136 5.0904 4.5621 5.9756 5.2614 6.9265
r = 0.4 3.4271 4.1456 4.0402 4.9211 4.7137 5.7718 5.4396 6.6860
r = 0.6 3.5327 4.0108 4.1693 4.7556 4.8684 5.5726 5.6214 6.4509
r = 0.8 3.6403 3.8790 4.3010 4.5937 5.0264 5.3778 5.8071 6.2212
r = 1 3.7501 3.7501 4.4354 4.4354 5.1875 5.1875 5.9967 5.9967

Table 4
Predicted cumulative number of Infected cases I (t) in USA until March 31, 2021

t = 8 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
r = 0 4.4379 6.3340 5.5649 8.0705 6.9136 10.156 8.4970 12.609
r = 0.2 4.5964 6.1104 5.7734 7.7741 7.1824 9.7720 8.8370 12.121
r = 0.4 4.7585 5.8921 5.9870 7.4849 7.4581 9.3970 9.1860 11.644
r = 0.6 4.9245 5.6790 6.2058 7.2029 7.7408 9.0310 9.5440 11.180
r = 0.8 5.0943 5.4710 6.4300 6.9278 8.0307 8.6750 9.9110 10.728
r = 1 5.2681 5.2681 6.6597 6.6597 8.3279 8.3280 10.288 10.288

Table 5
Predicted cumulative number of Infected cases I (t) in USA until May 31, 2021

t = 10 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
r = 0 5.8635 8.6235 7.7922 11.678 10.269 15.628 13.391 20.633
r = 0.2 6.0927 8.2968 8.1136 11.217 10.711 14.991 13.987 19.771
r = 0.4 6.3280 7.9783 8.4440 10.768 11.166 14.371 14.600 18.932
r = 0.6 6.5694 7.6680 8.7834 10.330 11.634 13.767 15.232 18.116
r = 0.8 6.8171 7.3656 9.1322 9.9050 12.115 13.180 15.883 17.323
r = 1 7.0712 7.0712 9.4906 9.4910 12.610 12.610 16.552 16.552

Table 6
Predicted cumulative number of Infected cases I (t) in INDIA until January 31, 2021

t = 6 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
r = 0 0.79048 1.0591 0.9024 1.2216 1.0264 1.4018 1.1625 1.5993
r = 0.2 0.81378 1.0279 0.9299 1.1844 1.0586 1.3578 1.1997 1.5478
r = 0.4 0.83709 0.9972 0.9574 1.1476 1.0907 1.3143 1.2369 1.4970
r = 0.6 0.86042 0.9668 0.9849 1.1113 1.1229 1.2714 1.2742 1.4470
r = 0.8 0.88376 0.9368 1.0125 1.0755 1.1551 1.2291 1.3114 1.3975
r = 1 0.90713 0.9071 1.0401 1.0401 1.1873 1.1873 1.3488 1.3488

Table 7
Predicted cumulative number of Infected cases I (t) in INDIA March 31, 2021

t = 8 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
r = 0 0.9656 1.3213 1.1472 1.5901 1.3594 1.9051 1.6050 2.2705
r = 0.2 0.9958 1.2793 1.1843 1.5373 1.4046 1.8395 1.6596 2.1899
r = 0.4 1.0259 1.2379 1.2215 1.4852 1.4500 1.7749 1.7145 2.1106
r = 0.6 1.0562 1.1970 1.2587 1.4339 1.4955 1.7113 1.7695 2.0325
r = 0.8 1.0865 1.1567 1.2961 1.3834 1.5412 1.6486 1.8247 1.9557
r = 1 1.1169 1.1169 1.3336 1.3336 1.5870 1.5870 1.8802 1.8802
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Table 8
Predicted cumulative number of Infected cases I (t) in INDIA until May 31, 2021

t = 10 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
I
(
×107

)
Ī
(
×107

)
r = 0 1.1433 1.5917 1.4072 1.9890 1.7301 2.4781 2.1215 3.0738
r = 0.2 1.1806 1.5379 1.4549 1.9185 1.7907 2.3866 2.1976 2.9563
r = 0.4 1.2180 1.4850 1.5028 1.8492 1.8515 2.2967 2.2742 2.8409
r = 0.6 1.2555 1.4329 1.5509 1.7809 1.9126 2.2082 2.3513 2.7275
r = 0.8 1.2932 1.3816 1.5992 1.7138 1.9741 2.1213 2.4289 2.6162
r = 1 1.3310 1.3310 1.6478 1.6478 2.0360 2.0360 2.5070 2.5070

On substituting the values of all parameters and
solving the characteristic Equation (3), we obtain
eigenvalues that are λ1 = λ2 = 0 and the roots of the
equation λ2 + Aλ + B = 0.

Since the two roots of the equation λ2 + Aλ + B =
0 are negative, the system is asymptotically stable.

5. Comparison of results

In this section, we compare our model with Ahma-
dian’s fuzzy fractional model of coronavirus in [35]
which is based on the fractional model in [23].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t S̃(t) = 	 − λS̃ − ωS̃(Ĩ+βÃ)

N
γS̃Q̃

Dα
t Ẽ(t) = ωS̃(Ĩ+βÃ)

N
+ γS̃Q̃ − (1 − ϕ)δẼ − ϕμẼ − λẼ

Dα
t Ĩ(t) = (1 − ϕ)δẼ − (σ + λ)Ĩ

Dα
t Ã(t) = ϕμẼ − (ρ + λ)Ã

Dα
t R̃(t) = σĨ + ρÃ − λR̃

Dα
t Q̃(t) = κĨ + υÃ − ηQ̃

(4)

where N represents the whole variety of people, N

is isolated into five-compartment: Susceptible cases
(S), Exposed cases (E), Infected cases (I), Asymptoti-
cally infected cases (A) and Eliminated or Recovered
cases (R). The human beings in the store or market
are represented by Q. For r ∈ [0, 1]

[
S̃ (t)

]r = [
Sr (t) , Sr (t)

]
[
Ẽ (t)

]r = [
Er (t) , Er (t)

]
[
Ĩ (t)

]r = [
Ir (t) , Ir (t)

]
[
Ã (t)

]r =
[
A−

r
(t) , Ār (t)

]
[
R̃ (t)

]r = [
Rr (t) , Rr (t)

]
[
Q̃ (t)

]r =
[
Q

r
(t) , Qr (t)

]

Here, we analyze model (4) for India. For this,
we reflect on consideration on all parametric values
from the literature [23] where the following data are
considered from March 14, 2020, till March 26, 2020.

The whole population of India N =
1, 352, 600, 000, E (0) = 1, 724, 266, I (0) = 745,
A (0) = 413, R (0) = 66, S (0) = 1, 350, 900, 000
and Q (0) = 10, 000. The parameter values
are 	 = 53, 320.19, λ = 1

69.50×365 , ω = 0.05,
β = 0.02844, δ = 0.0717876, μ = 0.05,
ϕ = 0.8243, γ = 0.121 × 10−7, σ = 0.09871,
ρ = 0.854302, κ = 0.000398, υ = 0.001 and
η = 0.01 r− levels for the initial parameters are
defined by

[S (0)]r = [1, 350, 800, 000 + 100, 000r;

1, 351, 000, 000 − 100, 000r]

[E (0)]r = [1, 624, 266 + 100, 000r;

1, 824, 266 − 100, 000r]

[I (0)]r = [645 + 100r; 845 − 100r]

[A (0)]r = [313 + 100r; 513 − 100r]

[R (0)]r = [56 + 10r; 76 − 10r]

[Q (0)]r = [9900 + 100r; 10, 100 − 100r]

6. Numerical results and discussion

In Fig. 13(a) and 13(b), we have plotted numerical
results of infected cases of Ahmadian’s model (4) for
India at α = 1 and α = 0.9 with different values of r.
Table 12 shows the comparison between the numer-
ical solution of infected cases of COVID-19 for our
proposed model (2) and Ahmadian’s model (4).

The reported cases and fitted curve of the pro-
posed model for COVID-19 in India from August
2020 to May 2021 for α = 0.8 at r = 0 are plot-
ted in Fig. 14. Figure 14 shows that the numerical
results of the proposed model (2) correspond well
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Table 9
Predicted cumulative number of Infected cases I (t) in ITALY until January 31, 2021

t = 6 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
r = 0 1.0340 1.2949 1.1730 1.4852 1.3255 1.6939 1.4908 1.9196
r = 0.2 1.0555 1.2638 1.1986 1.4479 1.3555 1.6496 1.5255 1.8678
r = 0.4 1.0774 1.2333 1.2246 1.4111 1.3860 1.6060 1.5607 1.8168
r = 0.6 1.0995 1.2032 1.2509 1.3750 1.4168 1.5632 1.5964 1.7668
r = 0.8 1.1219 1.1737 1.2775 1.3395 1.4481 1.5211 1.6326 1.7176
r = 1 1.1446 1.1446 1.3046 1.3046 1.4798 1.4798 1.6694 1.6694

Table 10
Predicted cumulative number of Infected cases I (t) in ITALY until March 31, 2021

t = 8 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
r = 0 1.2742 1.6429 1.5126 1.9816 1.7912 2.3794 2.1123 2.8399
r = 0.2 1.3044 1.5988 1.5507 1.9252 1.8387 2.3084 2.1707 2.7516
r = 0.4 1.3351 1.5554 1.5895 1.8698 1.8871 2.2387 2.2302 2.6651
r = 0.6 1.3662 1.5129 1.6290 1.8155 1.9364 2.1704 2.2909 2.5804
r = 0.8 1.3979 1.4711 1.6691 1.7622 1.9866 2.1034 2.3528 2.4973
r = 1 1.4301 1.4301 1.7100 1.7100 2.0377 2.0377 2.4160 2.4160

Table 11
Predicted cumulative number of Infected cases I(t) in ITALY until May 31, 2021

t = 10 α = 0.7 α = 0.8 α = 0.9 α = 1
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
I
(
×106

)
Ī
(
×106

)
r = 0 1.5359 2.0309 1.9068 2.5727 2.3676 3.2522 2.9327 4.0920
r = 0.2 1.5763 1.9716 1.9608 2.4927 2.4392 3.1458 3.0263 3.9525
r = 0.4 1.6174 1.9135 2.0161 2.4144 2.5125 3.0417 3.1222 3.8159
r = 0.6 1.6594 1.8565 2.0725 2.3377 2.5874 2.9398 3.2203 3.6823
r = 0.8 1.7022 1.8006 2.1301 2.2625 2.6640 2.8400 3.3209 3.5516
r = 1 1.7458 1.7458 2.1889 2.1889 2.7423 2.7423 3.4238 3.4238

Fig. 13. Numerical results of the number of Infected people I (t) in INDIA for some values of fractional order and distinct values of
r = 0, 0.2, 0.4, 0.6, 0.8, 1.0 up to mid-Nov 2020.
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Fig. 14. The Reported cases from August 1, 2020, to March 15,
2021, and the fitted curve of the proposed model for COVID-19 in
India from August 1, 2020, to May 31, 2021, dashed-dotted line
represents Reported cases and solid line represents fitted curve.

with the real data for α = 0.8. In Table 12, the pro-
posed model gives that the prediction of cumulative
infected cases in India at the end of November may
reach between 7.2557 × 106 and 9.5793 × 106 for
α = 0.9 and also 7.8317 × 106 and 1.0393 × 107 for
α = 1. But Ahmadian’s model gives that the predic-
tion of cumulative infected cases in India at the end
of November may reach between 2.2288 × 107and
4.4432 × 107 for α = 0.9 and also 8.8004 × 107 and
1.7126 × 108 for α = 1. So, we can see that our
proposed model offers better prediction effects of
infected cases than Ahmadian’s model. The main
advantage of our proposed model is that our math-
ematical model contains fewer parameters compare
to Ahmadian’s model. So, we have less computa-
tion work. Also, our model gives a superior fit to the
actual data. We truly hope that our model could help
the decision-making of epidemic prevention and con-
trol strategy for governments of different countries in
COVID-19. The Government of India has forced 21
days cross country lockdown from 25 March 2020
and asymptomatic and symptomatic cases are quickly

position in isolation. The impact of these prevention
measures suggests that the spread of the virus can be
decreased significantly.

7. Limitations

This model used to be designed to see transmission
dynamics so does not to depict infection serious-
ness and demise. Without external births and deaths,
the population’s size is assumed to be stable. This
assumption is likely to have a significant impact given
the time frame for investigating epidemics here. Fur-
ther, this model does not separate the asymptomatic
from pre-symptomatic. To overcome these limita-
tions, we can extend the proposed model with more
compartments such as symptomatic, asymptomatic,
and quarantined cases to describe the dynamics of the
COVID-19 epidemic process.

8. Conclusion

In this paper, we studied the mathematical model
of Caputo fractional derivative under fuzzy sense for
the prediction of COVID-19. The data up to July 31,
2020, was utilized for finding parameters of the model
with the best fit. Firstly, numerical simulations have
been performed to predict COVID-19 cases in USA,
India, and Italy over 10 months. Moreover, we have
presented the results of the fractional-order model
with the results of the integer-order model. The graph-
ical representations are exhibited for the different
values of � using MATLAB. The results confirmed
that the fuzzy fractional-order model gives a supe-
rior fit to the real information with considerably less
error than the integer-order model. Secondly, stabil-
ity analysis has been provided for the proposed model
in fuzzy environment. Lastly, the results of our sug-
gested model have been compared with Ahmadian’s
fuzzy fractional model. It is proven that the number
of infected humans will increase with an increment

Table 12
Comparison between the numerical solution of infected people of the proposed model and Ahmadian’s model for India

t (month) Our proposed model (r = 0) t (days) Ahmadian’s model (r = 0)

α = 1
[
I (τ) , Ī (τ)

]
α = 0.9

[
I (τ) , Ī (τ)

]
α = 1

[
I (τ) , Ī (τ)

]
α = 0.9

[
I (τ) , Ī (τ)

]
1 [3.0833 × 106, 3.6234 × 106] [3.1451 × 106, 3.7110 × 106] 150 [1.8801 × 107, 3.7915 × 107] [5.5340 × 106, 1.1314 × 107]

2 [4.5589 × 106, 5.6972 × 106] [4.4873 × 106, 5.6012 × 106] 180 [3.4366 × 107, 6.8303 × 107] [9.4863 × 106, 1.9250 × 107]

3 [6.1371 × 106, 7.9449 × 106] [5.8485 × 106, 7.5439 × 106] 210 [5.6988 × 107, 1.1194 × 108] [1.4997 × 107, 3.0157 × 107]

4 [7.8317 × 106, 1.0393 × 107] [7.2557 × 106, 9.5793 × 106] 240 [8.8004 × 107, 1.7126 × 108] [2.2288 × 107, 4.4432 × 107]
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in contact rate. Therefore, if we need to end this out-
break pandemic we have to be quarantined to decrease
the conduct rate. In future studies, we can combine
more compartments such as symptomatic, asymp-
tomatic, and quarantined cases into our present model
so that the model can give better depict the spread of
infectious diseases and forecast the future trends and
also investigate the applicability of the present model
in various epidemic viruses.
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