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Evaluation of missile electromagnetic
launch system based on effectiveness

Qiaoyang Li∗, Guiming Chen, Ziqi Li, Yi Zhang and Lingliang Xu
Xi’an Research Institute of High-Tech, Xi’an, China

Abstract. To solve the problems of strong infrared radiation, poor continuous combat capability of the system, serious
ablation of the launching device, and environmental pollution of the existing missile launching system, electromagnetic
launch system (EMLS) has been studied for missile launch system. Combining the situation that the current research on
missile electromagnetic launch system (MEMLS) mainly focuses on the key technical points and the deficiencies in the
previous research on MEMLS, this paper establishes an effectiveness prediction model based on GRA-PCA-LSSVM, and
discusses the investment efficiency of the system based on DEA. The experimental results prove that the established model
is reasonable, effective and superior, and provides a reference for the further improvement and development of MEMLS.

Keywords: MEMLS, Grey relation analysis (GRA), Principal component analysis (PCA), Least square support vector machine
(LSSVM), Data Envelopment Analysis (DEA)

1. Introduction

Electromagnetic launch system (EMLS) is a
launching technology that uses electromagnetic
energy to convert it into payload kinetic energy [1].
EMLS can convert electrical energy into the kinetic
energy required by the load in a short time, and push
objects to reach a certain speed quickly [2]. Since it
can effectively solve the problems of strong infrared
radiation, poor continuous combat capability of the
system, serious ablation of the launcher, and envi-
ronmental pollution of the existing system, missile
electromagnetic launch system (MEMLS) is a current
research hotspot.

The current research on MEMLS concentrates on
technical points such as pulse energy storage power
supply, pulse power discharge, motor control, etc.
There are few studies on the whole system evaluation.
The author has studied the effectiveness evaluation
method of MEMLS and proposed a new evaluation
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model for the two-level indicators of the system [3].
However, the system has many evaluation indicators
and the model is quite complex, so the effective-
ness value of the design scheme cannot be calculated
quickly, and the investment efficiency of the design
scheme is not discussed.

Aiming at the problem of too many evaluation
indexes, Wang used gray correlation analysis (GRA)
and support vector machine (SVM) to study and opti-
mize the performance of asphalt pavement [4]; Yu
proposed an improved principal component analysis
(PCA) model to study the fault detection of nuclear
power station sensors [5]. For the study of predic-
tion model, Chung used multi-channel convolutional
neural network optimized by genetic algorithm to
predict the stock market [6]; Stoichev used multi-
ple regression model to study the pollution of metals
and quasi metals in surface sediments [7]; Liu used
SVM model optimized by particle swarm optimiza-
tion to analyze and predict PM2.5 [8]. To solve the
problem of investment efficiency, Yeung used data
envelopment analysis (DEA) to study the efficiency
of Brazilian courts [9]; Yang used DEA to evaluate the
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efficiency of China’s industrial waste gas treatment
[10].

Existing research models only solve part of the
problems, and there are few in the field of MEMLS.
This paper evaluates MEMLS based on effectiveness,
focusing on the rapid calculation of effectiveness
model and system investment efficiency. The main
innovations are as follows.

(1) From the perspective of the system, this paper
conducts further research on the effectiveness calcu-
lation model of MEMLS, which makes up for the lack
of most research focusing on specific technologies.

(2) This paper establishes the effectiveness calcula-
tion model of GRA-PCA-LSSVM, which can quickly
calculate the effectiveness value of MEMLS.

(3) This paper uses the DEA model to study the
investment efficiency of MEMLS, and proposes sug-
gestions for improvement of the design scheme.

(4) This paper supplements the deficiencies of the
previous research, which is innovative and practical.

The main structure of this paper is as follows: Sec-
tion 1 introduces the basic concepts and advantages
of EMLS and MEMLS, and points out the status
and shortcomings of the current research of MEMLS;
Section 2 establishes a model for fast calculation of
effectiveness and investment efficiency of MEMLS;
Section 3 combines the existing sample data to apply
and verify the model, which proves the effectiveness
of the model and methods; Section 4 summarizes this
paper.

2. System evaluation model based on
effectiveness

This section mainly introduces the model estab-
lished in this paper for MEMLS evaluation. The steps
and methods of model establishment are shown in
Fig. 1.

The effectiveness evaluation model in Fig. 1 has
been studied in the early stage [3], and is used directly
as a model here.

2.1. Effectiveness calculation model based on
GRA-PCA-LSSVM

To solve the problem that the original effectiveness
evaluation model is too complicated, firstly establish
a fast calculation model of effectiveness based on
GRA-PCA-LSSVM, which is convenient to directly
obtain the effectiveness value from the design scheme
of MEMLS.

Fig. 1. Evaluation model based on effectiveness.

2.1.1. GRA
When evaluating the system, there are too many

original evaluation indicators, which will lead to the
redundancy of information and the complexity of the
process. Therefore, it is necessary to select the main
indicators. Grey system theory was founded in 1982
by Professor Deng Julong of China. It is a system con-
trol theory about the incomplete or uncertain internal
system [11]. GRA is a multi-factor statistical analy-
sis method in grey system theory, which judges the
correlation degree according to the similarity degree
of the changing trends between factors. Because of
its simple calculation and low sample requirements,
GRA has been widely used in industry, materials, and
agriculture [12–14]. The steps of GRA are as follows.

Step 1: Determine the parent sequence and sub-
sequence in the system. The parent sequence is a
sequence that reflects the characteristics of the sys-
tem’s behavior, and the subsequence is a sequence
that affects the characteristics of the system’s behav-
ior.

Step 2: Dimensionless processing of the parent
sequence and subsequence. In the analysis process,
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different dimensions may lead to errors in the results.
Generally, the sequence is processed by the averaging
method to remove dimensions.

Step 3: Calculate the correlation coefficient of the
factors corresponding to the sub-sequence and the
parent sequence, as shown in formula (1).

ξ(x0(k), xi(k)) = mini mink |x0(k) − xi(k)| + ρ maxi maxk |x0(k) − xi(k)|
|x0(k) − xi(k)| + ρ maxi maxk |x0(k) − xi(k)| ,

{
i = 1, 2, · · · , m

k = 1, 2, · · · , n
(1)

In the formula: m is the number of subsequences;
n is the number of samples; x0(k) is the k-th sam-
ple value of the parent sequence after dimensionless
processing; xi(k) is the k-th sample of the i-th sub-
sequence after dimensionless processing Value; ρ is
the resolution coefficient, reflecting the size of the
resolution, usually 0.5.

Step 4: Calculate the degree of relevance and sort to
obtain the degree of relevance of each sub-sequence
to the parent sequence, as shown in formula (2).

ri = 1

n

n∑
k=1

ξ(x0(k), xi(k)), i = 1, 2, · · · , m (2)

2.1.2. PCA
PCA is a multivariate statistical analysis method

that converts multiple interrelated indicators into a
few comprehensive indicators. In the research of
multiple indicators, Since there is often a certain
correlation between the indicators, the data will over-
lap with information, which is more complicated for
high-dimensional research. PCA adopts the method
of dimensionality reduction, and uses a small number
of comprehensive factors to express all the original
indicators, and requires that the original indicator
information is reflected as much as possible, and the
factors are not related to each other. PCA has been
widely used in environmental science, agriculture and
industry [15–17]. The steps of PCA are as follows.

Step 1: Standardize the original data to eliminate
the influence of different dimensions and orders of
magnitude on the analysis results.

Step 2: Perform correlation analysis on the pro-
cessed sample matrix to obtain the correlation
coefficient matrix, and determine whether PCA can
be performed.

Step 3: From the correlation coefficient matrix, the
eigenvalue and variance are calculated by the Jaco-
bian method, and the principal component variance
contribution rate and cumulative contribution rate are
calculated.

Step 4: Select the principal component according
to the specific requirements of the eigenvalue or the
cumulative contribution rate of the principal compo-
nent to complete the PCA. The general mathematical
model of PCA results is shown in formula (3).

Z1 = a11X1 + a12X2 + · · · + a1nXn

Z2 = a21X1 + a22X2 + · · · + a2nXn

...

Zl = al1X1 + al2X2 + · · · + alnXn

(3)

In the formula: Zl is the main component; Xn is
the normalized raw data; aij is the main component
coefficient.

2.1.3. LSSVM
Least Square Support Vector Machine (LSSVM)

is an extension of SVM. LSSVM takes the quadratic
loss function as the empirical risk, and replaces
the inequality constraints with equality constraints,
transforming the training of the model into the calcu-
lation of linear equations, reducing the computational
complexity [18]. Because of its superiority, LSSVM
is widely used in meteorology, materials science,
industry and other fields [19–21]. The establishment
process of the LSSVM model is as follows.

Suppose that the number of samples is n, xi is the
m-dimensional input vector, and yi is the output vec-
tor. Construct the optimal linear regression function
as formula (4).

f (x) = ωTϕ(x) + b (4)

In the formula: ω is the weight vector; b is the
offset; ϕ(x) is the nonlinear mapping.

According to the principle of structural risk mini-
mization, the objective function can be expressed as
formula (5).

min
1

2
ωTω + λ

2

n∑
i=i

e2
i (5)

Where: λ is the regularization parameter; ei is the
prediction error vector of the training set.
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The constraint condition is formula (6).

yi = ωTϕ(xi) + b + ei (6)

The Lagrangian function is used to transform the
problem into the dual space, as in formula (7).

L = 1

2
ωTω + λ

2

n∑
i=i

e2
i −

n∑
i=1

αi[ω
Tϕ(xi) + b + ei − yi]

(7)

In the formula: αi is the Lagrange multiplier.
According to the KKT condition, the formula (8) can
be obtained. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω =
n∑

i=1

αiϕ(xi)

n∑
i=1

αi = 0

αi = λei

ωTϕ(xi) + b + ei − yi

(8)

Eliminate ω and ei in formula (8) to obtain formula
(9).⎡
⎢⎢⎢⎢⎣

0 1 · · · 1

1 K(x1, x1) + 1
c

· · · K(x1, x1)

...
...

...

1 K(xn, xn) · · · K(xn, xn) + 1
c

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b

α1

...

αn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

y1

...

yn

⎤
⎥⎥⎥⎥⎦
(9)

In the formula: K(xi, xj) =< ϕ(xi), ϕ(xj) > is the
kernel function. Generally take the radial basis kernel
function as equation (10).

K(xi, xj) = exp

(
−
∥∥xi − xj

∥∥2

2μ2

)
(10)

In the formula: μ is the nuclear parameter.
Finally, the prediction model of LSSVM is

y(x) =
n∑

i=1

αiK(xi, xj) + b (11)

2.2. Evaluation of system investment efficiency
based on DEA model

The DEA method is a non-parametric method used
to evaluate the relative effectiveness of decision-
making units (DMUs) with the same type of
multiple inputs and multiple outputs. At present,

DEA research is relatively mature and widely used
in economics, sociology and industry [22–24].

2.2.1. Overall effectiveness evaluation model
(CCR)

Suppose there are a total of s DMUs, each DMU
has p inputs and q outputs, xk = (x1k, x2k, · · · , xpk)T

represents the input vector of the k-th DMU, yk =
(x1k, x2k, · · · , xqk)T represents the output vector of
the k-th DMU, and x0 and y0 represent the input and
output vectors of the DMU0. From the literature [25],
the BCC model is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min θ

s.t.
s∑

k=1
λkxk + s− = θx0

s∑
k=1

λkxk − s+ = y0

s− ≥ 0, s+ ≥ 0

(12)

In the formula: s− and s+ are slack variables; λk is
a general variable.

To simplify the calculation, the non-Archimedean
infinitesimal quantity is introduced, then the formula
(12) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min[θ − ε(êTs− + êTs+)]

s.t.
s∑

k=1
λkxk + s− = θx0

s∑
k=1

λkxk − s+ = y0

s− ≥ 0, s+ ≥ 0

(13)

If the optimal solutions of the model are λ∗, s−∗,
s+∗ and θ∗, then there are the following conclusions.

(1) If θ∗ < 1, then DMU0 is not DEA effective. This
scheme neither meets the requirements of the best
technical efficiency nor the constant return of scale.

(2) If θ∗ = 1, and at least one of s−∗ and s+∗ is not
0, then DMU0 is weak DEA effective, that is, it is not
both technically effective and scale effective.

(3) If θ∗ = 1 and s−∗ = s+∗ = 0, then DMU0 is DEA
effective, that is, both technical efficiency and scale
efficiency are satisfied.

2.2.2. Technical effectiveness evaluation model
(BCC)

The BCC model is used to evaluate the rela-
tive technical effectiveness. Similarly, the calculation
model can be obtained as follows.
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Table 1
MEMLS effectiveness evaluation indicators table

Target layer First-level indicator layer Second-level indicator layer

Effectiveness evaluation of
MEMLS

Launch capability U1 Thrust control accuracy U11

Robustness during launch U12
Maximum thrust U13
Acceleration time U14
Initial ejection velocity U15

Confrontation capability U2 Infrared radiation intensity U21
Electromagnetic anti-interference ability U22
Electromagnetic compatibility of own system U23
Initial anti-interception rate U24

State loss U3 Energy utilization rate U31
Ablation degree of the launcher U32
Environmental pollution degree U33
Spare parts replacement rate U34

Expanding ability U4 Ejection power unit weight U41
Launcher weight U42
Space-ratio performance U43
Continuous combat capability U44
Universality of launch system U45

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max[θ − ε(êTs− + êTs+)] = V

s.t.
s∑

k=1
λkxk + s− = θx0

s∑
k=1

λk = 1

λk ≥ 0, s− ≥ 0, s+ ≥ 0

(14)

If the optimal solutions of the model are λ∗, s−∗,
s+∗ and θ∗, when θ0 = 1 and s−0 = s+0 = 0, DMU0 is
technically effective, otherwise it is not technically
effective.

2.2.3. Scale effectiveness evaluation model
Scale validity refers to verifying whether the DMU

is at the optimal scale level, and it can be judged
whether it is in a state of increasing, constant or
decreasing scale. The scale efficiency of DMU is

represented by Q = θ
V

. Calculate K =
s∑

k=1
λk. When

K = 1, the scale efficiency is unchanged; when K < 1,
the scale efficiency increases; when K > 1, the scale
efficiency decreases.

3. Evaluation of MEMLS based on
effectiveness

3.1. Effectiveness calculation based on
GRA-PCA-LSSVM

From the author’s previous research [3], the effec-
tiveness evaluation indicators of MEMLS can be

obtained as shown in Table 1. From the related
research of the subject, 64 sets of sample data for
traditional launch methods can be obtained as shown
in Table 2. Each set of data includes 18 evaluation
indicators and the effectiveness value.

Due to the large number of indicators and the com-
plexity of the evaluation method in literature [3], it
needs to be simplified. First, perform a statistical
description of the sample data as shown in Table 3,
and make an indicator correlation strength diagram
as shown in Fig. 2. The horizontal and vertical coor-
dinates of Fig. 2 are indicator numbers, the color
indicates the intensity of correlation, and the right
side is the intensity and color contrast scale. It can
be seen from Fig. 2 that there is a certain correla-
tion between the indicators, so it can be considered to
select and reduce the dimensionality of the indicators
through GRA-PCA.

According to formulas (1)-(2), the correlation
between each indicator and effectiveness is calcu-
lated, as shown in Table 4. The main indicators are
selected with the degree of correlation > 0.7, that is,
U11, U12, U13, U15, U22, U24, U31 and U41.

After GRA, in order to further reduce the num-
ber of indicators and simplify the model, PCA was
performed on the selected 8 indicators. According
to Section 2.1.2, the correlation coefficient matrix
is calculated as shown in Table 5, and the variance
contribution rate of each principal component is cal-
culated as shown in Table 6.

Here, the cumulative contribution rate > 90% is
taken as the target, so 6 principal components need
to be extracted, and the corresponding coefficients of
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Table 2
Effectiveness and indicators data of missile launch system

No. Indicators
U11 U12 U13 U14 U15 U21 U22 U23 U24 U31 U32 U33 U34 U41 U42 U43 U44 U45 E

1 0.9 0.6 250 15 35 25 0.9 0.5 0.7 0.8 0.9 0.4 0.6 350 6 0.4 0.6 0.2 0.6371
2 0.7 0.6 250 10 35 25 0.9 0.5 0.6 0.7 0.9 0.4 0.3 350 3 0.6 0.4 0.2 0.6239
3 0.5 0.6 250 10 35 25 0.9 0.5 0.6 0.5 0.9 0.4 0.3 350 3 0.3 0.4 0.2 0.5851
4 0.5 0.6 250 20 35 25 0.9 0.7 0.7 0.8 0.9 0.8 0.7 350 3 0.3 0.5 0.2 0.6669
5 0.5 0.6 250 10 40 25 0.9 0.7 0.8 0.5 0.9 0.4 0.3 350 6 0.3 0.7 0.2 0.5997
6 0.7 0.9 250 20 35 25 0.9 0.4 0.7 0.9 0.9 0.4 0.6 350 6 0.3 0.5 0.2 0.6152
7 0.9 0.5 250 20 35 25 0.9 0.4 0.8 0.9 0.7 0.8 0.6 350 3 0.3 0.5 0.2 0.6534
8 0.9 0.5 250 10 35 25 0.9 0.4 0.6 0.9 0.4 0.4 0.3 350 3 0.5 0.7 0.2 0.6059
9 0.5 0.9 250 20 37 25 0.9 0.4 0.6 0.9 0.8 0.4 0.3 350 7 0.4 0.5 0.5 0.5896
10 0.9 0.5 250 10 35 25 0.9 0.4 0.6 0.9 0.7 0.4 0.6 350 7 0.5 0.5 0.5 0.6361
11 0.5 0.5 250 15 40 25 0.6 0.4 0.6 0.9 0.4 0.6 0.6 350 7 0.6 0.5 0.2 0.5514
12 0.9 0.5 250 10 37 25 0.5 0.4 0.8 0.9 0.4 0.4 0.7 400 7 0.4 0.5 0.5 0.6015
13 0.9 0.5 250 20 35 25 0.6 0.4 0.7 0.9 0.6 0.6 0.3 300 7 0.6 0.5 0.5 0.5741
14 0.9 0.7 250 10 35 25 0.6 0.7 0.6 0.9 0.6 0.8 0.3 500 7 0.4 0.5 0.2 0.6240
15 0.7 0.5 250 20 37 25 0.6 0.5 0.6 0.9 0.6 0.8 0.3 300 7 0.4 0.7 0.7 0.6026
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 0.6 0.9 150 10 39 10 0.5 0.9 0.6 0.7 0.4 0.9 0.3 500 9 0.8 0.5 0.2 0.6366
62 0.6 0.9 150 10 39 16 0.5 0.9 0.7 0.5 0.4 0.9 0.7 300 9 0.8 0.5 0.7 0.6847
63 0.6 0.5 150 10 39 10 0.7 0.9 0.7 0.7 0.8 0.9 0.3 480 9 0.8 0.5 0.2 0.6637
64 0.6 0.7 150 20 39 16 0.6 0.9 0.6 0.5 0.4 0.9 0.6 480 9 0.8 0.5 0.2 0.5855

Table 3
Mathematical statistics of the original data of MEMLS

Evaluation Minimum Maximum Average Standard
Indicator deviation

U11 0.50 0.90 0.6375 0.15379
U12 0.50 0.90 0.6547 0.16323
U13 150.00 250.00 195.4688 41.01605
U14 10.00 20.00 15.3906 4.07321
U15 35.00 40.00 37.0937 1.96573
U21 10.00 25.00 18.7812 6.62719
U22 0.40 0.90 0.6047 0.15779
U23 0.40 0.90 0.6156 0.16351
U24 0.60 0.90 0.7625 0.12536
U31 0.50 0.90 0.6844 0.16057
U32 0.40 0.90 0.5859 0.17716
U33 0.40 0.90 0.6141 0.18845
U34 0.30 0.80 0.4953 0.18724
U41 300.00 500.00 380.9375 72.93656
U42 3.00 9.00 5.8125 2.30166
U43 0.30 0.80 0.5297 0.15704
U44 0.40 0.90 0.5750 0.17817
U45 0.20 0.70 0.4000 0.21381

6 principal components and 8 main indicators can be
obtained as shown in Table 7.

According to Table 7 and formula (3), the calcu-
lation expression of the principal components can be
obtained as follows.

In the formula: U11, U12, U13, U15, U22, U24, U31
and U41 represent normalized data values.

According to formula (15), Table 2 can be trans-
formed into Table 8.

Fig. 2. Indicator correlation strength diagram.

Z1 = 0.411U11 − 0.179U12 + 0.864U13 − 0.387U15

+ 0.698U22 − 0.597U24 + 0.645U31 − 0.340U41

Z2 = 0.285U11 + 0.024U12 + 0.182U13 + 0.704U15

− 0.449U22 − 0.234U24 + 0.521U31 + 0.471U41

Z3 = −0.250U11 + 0.848U12 − 0.016U13 − 0.027U15

+ 0.128U22 − 0.483U24 − 0.105U31 + 0.153U41

Z4 = 0.772U11 + 0.314U12 − 0.102U13 − 0.225U15

+ 0.029U22 + 0.264U24 − 0.099U31 + 0.206U41

Z5 = 0.121U11 + 0.325U12 + 0.029U13 + 0.237U15

− 0.244U22 + 0.163U24 + 0.133U31 − 0.754U41



Q. Li et al. / Evaluation of missile electromagnetic launch system based on effectiveness 6523

Table 4
Correlation degree of each indicator and effectiveness

Indicator U11 U12 U13 U14 U15 U21 U22 U23 U24

correlation 0.7165 0.7155 0.7206 0.6571 0.8688 0.5897 0.7112 0.6775 0.7616
Indicator U31 U32 U33 U34 U41 U42 U43 U44 U45
correlation 0.7348 0.6675 0.6729 0.5925 0.7464 0.5944 0.6618 0.6647 0.4983

Table 5
Correlation coefficient matrix of PCA

U11 U12 U13 U15 U22 U24 U31 U41

Correlation
coefficient

U11 1.000 –0.051 0.284 –0.054 0.137 –0.091 0.268 –0.020
U12 –0.051 1.000 –0.138 0.038 –0.084 –0.069 –0.112 0.056
U13 0.284 –0.138 1.000 –0.158 0.494 –0.444 0.604 –0.207
U15 –0.054 0.038 –0.158 1.000 –0.452 0.047 0.015 0.208
U22 0.137 –0.084 0.494 –0.452 1.000 –0.328 0.122 –0.235
U24 –0.091 –0.069 –0.444 0.047 –0.328 1.000 –0.329 0.033
U31 0.268 –0.112 0.604 0.015 0.122 –0.329 1.000 –0.061
U41 –0.020 0.056 –0.207 0.208 –0.235 0.033 –0.061 1.000

Table 6
Variance contribution rate of PCA

Principal Variance Contribution Cumulative contribution
component rate / % rate / %

1 2.472 30.899 30.899
2 1.360 17.006 47.905
3 1.067 13.336 61.241
4 0.894 11.171 72.411
5 0.850 10.622 83.034
6 0.610 7.627 90.660
7 0.480 5.999 96.659
8 0.267 3.341 100.000

Z6 = −0.262U11 + 0.168U12 + 0.102U13 − 0.356U15

− 0.185U22 + 0.344U24 + 0.453U31 + 0.136U41

(15)

The principal components are used as input, and
the effectiveness is used as output, and regression fit-
ting is performed. According to formulas (4)-(11),

Table 7
Principal component coefficient

Indicators Principal component
1 2 3 4 5 6

U11 0.411 0.285 –0.250 0.772 0.121 –0.262
U12 –0.179 0.024 0.848 0.314 0.325 0.168
U13 0.864 0.182 –0.016 –0.102 0.029 0.102
U15 –0.387 0.704 –0.027 –0.255 0.237 –0.356
U22 0.698 –0.449 0.128 0.029 –0.244 –0.185
U24 –0.597 –0.234 –0.483 0.264 0.163 0.344
U31 0.645 0.521 –0.105 –0.099 0.133 0.453
U41 –0.340 0.471 0.153 0.206 –0.754 0.136

model training is performed and compared with
PSOSVM and BP neural network algorithms. Select
85% of the samples as the training set and 15% of
the samples as the test set. The fitting effect of the
training set is shown in Fig. 3 and the fitting effect of
the test set is shown in Fig. 4.

It can be intuitively obtained from Fig. 3 and Fig. 4
that the effect of the LSSVM model is better than that
of PSOSVM and BP neural network. In order to get a
specific comparison, calculate the mean square error
(MSE) of the training set and the test set, as shown in
Table 9.

It can be seen from Table 9 that the MSE of the
training and test sets using the LSSVM model is the
smallest, and the running time is the fastest, which
can be further applied to the MEMLS design.

Each indicator value of the MEMLS design scheme
is obtained from the research of the subject, and
the effectiveness value is obtained through the pre-
trained LSSVM model, as shown in Table 10.
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Table 8
Effectiveness and principal components data of MEMLS

No. Principal component E
Z1 Z2 Z3 Z4 Z5 Z6

1 2.8840 –0.4945 –0.3521 1.1770 0.2571 –0.3028 0.6371
2 2.5919 –0.9309 0.3985 –0.0433 0.6588 –0.5791 0.6239
3 1.7415 –1.8053 0.8395 –0.9752 1.0095 –0.8654 0.5851
4 2.2044 –1.1306 0.2770 –0.9479 0.5988 0.5689 0.6669
5 0.5092 –0.5886 0.0280 –1.2162 0.0737 –1.3226 0.5997
6 2.5900 –0.4967 1.4089 0.6603 –0.3102 0.8904 0.6152
7 2.9061 –0.3887 –1.2914 1.1311 0.2423 0.2773 0.6534
8 3.5122 –0.0692 –0.5458 0.6849 0.5242 –0.4248 0.6059
9 2.3028 –0.0406 2.0698 –0.9002 –0.2601 0.5115 0.5896
10 3.5122 –0.0692 –0.5458 0.6849 0.5242 –0.4248 0.6361
. . . . . . . . . . . . . . . . . . . . . . . .
61 –1.1979 1.6010 2.0404 0.1202 0.6631 –0.2537 0.6366
62 –1.4189 –0.2224 1.3889 –0.1226 –1.5413 –1.1040 0.6847
63 –0.5998 0.7927 –0.2291 –0.4926 1.4972 –0.7784 0.6637
64 –1.2283 0.6651 1.1983 –0.1970 1.2183 –1.4377 0.5855

Fig. 3. Fitting diagram of the training set of effectiveness value.

3.2. Analysis of investment efficiency based on
DEA

The whole life cycle cost and the cost of each stage
of the MEMLS design scheme are obtained from the
research of the subject. Obtain the effectiveness value
from Table 10, and calculate the effectiveness -cost
ratio, as shown in Table 11.

According to equations (12) - (14), the overall effi-
ciency and pure technical efficiency of MEMLS are
calculated, and its scale benefit and K value are cal-
culated, as shown in Table 12.

According to Table 12, the following conclusions
can be drawn.

Fig. 4. Fitting diagram of the test set of effectiveness value.

Table 9
Performance comparison

Performance PSOSVM LSSVM BP neural
netwok

Optimal
Parameters

Maxgen = 300 Gam = 400 Hidden
layer = 10

Sizepop = 50 Sig2 = 5 Learning
rate = 0.01
MaxEpochs
= 5000

Train-MSE 7.8520e-05 2.0358e-05 0.0014
Test-MSE 0.0022 5.2525e-04 0.0012
Time 66.009s 0.535s 1.710s
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Table 10
Design indicators and effectiveness values of MEMLS

Scheme Number U11 U12 U13 U15 U22 U24 U31 U41 E

1 0.9 0.8 200 37 0.9 0.8 0.8 350 0.6779
2 0.8 0.9 200 37 0.7 0.8 0.9 350 0.6082
3 0.8 0.8 250 37 0.7 0.8 0.8 300 0.6416
4 0.8 0.8 200 37 0.7 0.9 0.9 350 0.6665
5 0.8 0.8 200 37 0.7 0.8 0.8 350 0.5564

Table 11
Cost and effectiveness data of MEMLS

Scheme Investment indicators (100 million yuan) Output indicators
Number Development Production Use and LCC E E/LCC

cost cost guarantee cost

1 1.2 3.5 7.2 11.9 0.6779 0.0570
2 1.2 3.6 6.5 11.3 0.6082 0.0538
3 1.4 3.8 6.0 11.2 0.6416 0.0573
4 2.2 3.8 6.9 12.9 0.6665 0.5167
5 1.6 4.0 5.5 11.1 0.5564 0.0501

Table 12
Calculation results using DEA model

Scheme overall pure technical scale K
Number efficiency efficiency benefit

1 1 1 1 1
2 0.9599 1 0.9599 0.9117
3 1 1 1 1
4 1 1 1 1
5 0.9462 1 0.9462 0.8672

(1) From the perspective of overall efficiency,
schemes 1, 3, and 4 are all effective, and schemes
2, 5 have efficiency values < 1, and there is room for
adjustment.

(2) From the point of view of pure technical effi-
ciency, the five programs are all at a relatively high
level.

(3) From the perspective of returns to scale,
schemes 1, 3, and 4 remain unchanged and are the
optimal level of investment scale, while schemes 2, 5
are incremental and need to be adjusted.

Therefore, the cost of the MEMLS design scheme
is adjusted, and the results are shown in Table 13.

4. Conclusion

This paper takes MEMLS as the research object.
Based on the previous research, a fast calculation
model based on GRA-PCA-LSSVM is established,
and the rationality and superiority of the calculation
model are verified. At the same time, based on the
DEA model, the investment efficiency of the MEMLS
scheme is analyzed. The conclusions of this paper are
as follows:

(1) Through GRA-PCA, the main indicators of sys-
tem evaluation can be effectively extracted and the
dimensionality of the input vector can be reduced,
which is reasonable and necessary.

(2) LSSVM can effectively construct the perfor-
mance prediction model of MEMLS. Compared with
other methods, this model has higher accuracy and
shorter calculation time.

(3) Through the DEA model, the input and out-
put of the MEMLS program can be adjusted, and the
method is effective and feasible.

(4) In the existing 5 design schemes of MEMLS,
it is necessary to adjust the life cycle cost of schemes
2 and 5 to achieve the best investment scale level.

Table 13
Cost adjustment plan of MEMLS (100 million yuan)

Scheme Development Production Use and LCC
Number cost cost guarantee cost

2 1.2000 3.4176 6.5000 11.1176
5 1.3009 3.5106 5.5000 10.3116
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In the next step, the specific scheme design and
deployment scale of MEMLS will be studied.
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