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Abstract. Many studies have attempted to understand the true nature of COVID-19 and the factors influencing the spread of
the virus. This paper investigates the possible effect the COVID-19 pandemic spreading in Iraq considering certain factors,
that include isolation and weather. A mathematical model of cases representing inpatients, recovery, and mortality was used
in formulating the control variable in this study to describe the spread of COVID-19 through changing weather conditions
between 17th March and 15th May, 2020. Two models having deterministic and an uncertain number of daily cases were used
in which the solution for the model using the Pontryagin maximum principle (PMP) was derived. Additionally, an optimal
control model for isolation and each factor of the weather factors was also achieved. The results simulated the reality of
such an event in that the cases increased by 118%, with an increase in the number of people staying outside of their house
by 25%. Further, the wind speed and temperature had an inverse effect on the spread of COVID-19 by 1.28% and 0.23%,
respectively. The possible effect of the weather factors with the uncertain number of cases was higher than the deterministic
number of cases. Accordingly, the model developed in this study could be applied in other countries using the same factors
or by introducing other factors.

Keywords: COVID-19 pandemic, optimal control, pontryagin maximum principle, chance-constrained, isolation, weather
factors

1. Introduction

The COVID-19 pandemic has resulted in a huge
loss of human life and affected economies worldwide.
Most nations have entered into a “lockdown” situa-
tion, isolating their economies from others in facing
the virus and decrease the loss of human life. Several
studies have investigated COVID-19 to understand
the composition of the virus and determine the most
suitable treatment. However, the danger of COVID-
19 is represented by its spread without any clinical
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symptoms during the early stages of contracting the
virus and long period incubation [19]. Chen et al.
[2] compared two groups of patients; COVID-19
and SARS-CoV-2-negative, where it was revealed
that COVID-19 patients suffered from high fever
and cough more than SARS-CoV-2 patients. Pro-
calcitonin (PCT) levels of SARS-CoV-2 patients
(approximately 2 out of 5 patients) were shown to
be higher compared to COVID-19 patients. Also,
COVID-19 patients had lower creatinine levels com-
pared with SARS-CoV-2 patients. In the case of
those at a young age, the distinction between the two
diseases can be diagnosed depending on the fever,
cough, urea and creatinine levels, and parameters
associated with routine blood workup. COVID-19,
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SARS and MERS have mostly similar pathological
features [23]. However, the harm caused by COVID-
19 may be caused by SARS-CoV-2 or through liver
damage. Ai et al. [1] compared chest CT scans and
reverse-transcription chain reaction to diagnose the
virus in a sample of patients (1,014 patients) in China.
Chest CT scans were shown to be highly sensitive in
the diagnosis of the virus. X. Chen et al. [3] assessed
the state of pregnant women, having a positive test
for COVID-19, in which fever and cough were the
main symptoms that were evident in the pregnant
women without vertical transmission of the virus
in late pregnancy. The World Health Organisation
(WHO) confirmed the effect of COVID-19 on the
mental health of human; especially children and the
elderly [22].

The drug used for the treatment of malaria (Chloro-
quine phosphate) has found to be effective in the
treatment of COVID-19 in some 100 patients through
clinical trials conducted in hospitals across seven
cities in China [6]. Lipsitch et al. [10] discussed the
approach adopted in the treatment of an influenza
pandemic (2009). While this approach may possibly
be used in the treatment of Covid-19, it depends on
many factors, such as existing surveillance systems.
In a separate case, viral RNA samples were collected
from survivors and people who had died to explore the
factors that caused patients to die in a hospital setting
by employing multivariable logistic regression [24].

In fact, several studies have formulated mathemat-
ical models to simulate actual cases of epidemics
and pandemics around the world. In some studies,
the optimal control model was widely used to deter-
mine the effect of vaccination and isolation. Lee
et al. [9] clarified the effect of treatment and iso-
lation on the control of fast transmitting diseases,
such as influenza. In their study, they discussed isola-
tion strategies having insufficient antiviral resources.
Three models of optimal control, namely, vacci-
nation, isolation and the mixed model of the SIR
epidemic were investigated by Hansen and Day [8]
to minimise the magnitude of the outbreak. Tuite
et al. [18] explored control strategies that could aid
in understanding the spreading processes associated
with the cholera epidemic in Haiti to reduce the poten-
tial effects. Rodrigues et al. [15] discussed a dengue
vaccine as a control variable with distinct levels and
two methods of treatment. The first method was for
paediatric patients, and the second method was for
random mass vaccination. A comparison between a
different scenario regarding tuberculosis epidemio-
logical features was conducted by P. Rodrigues et al.

[16], aiming to reduce total implementation costs
and the number of infected cases. Also, regarding
tuberculosis, Moualeu et al. [11] formulated a math-
ematical model that considers infection (diagnosed
and undiagnosed), lost-sight, and latently infected
aspects. Pang et al. [12] formulated a mathemati-
cal model that simulated the actual cases of measles
transmission in the United States (US) for the period
between 1951 and 1962 to determine the optimal
strategy for vaccination. The spread of the Ebola virus
in West Africa was investigated by Rachah and Torres
[13, 14]. The first paper investigated the effect of dif-
ferent cases of vaccination on the virus spreading over
time, while the second paper addressed in addition to
vaccination, several strategies to reduce the number
of infected and exposed individuals. In another study
by Gao and Huang, they incorporated three controls
as part of a strategy from among several initially
developed strategies to minimise intervention costs
and reduce the burden of tuberculosis [5].

The structure of this paper is organised into
five sections. The first section, already discussed,
provided a brief introduction and background infor-
mation on COVID-19. Section 2 provides further
information on the spread of COVID-19, followed by
Section 3 that presents two models; the optimal con-
trol model and a model presenting an explicit solution
using the Pontryagin maximum principle (PMP). The
results and explanation of several models are pre-
sented and discussed in Section 4. Lastly, Section 5
presents the overall conclusions and recommenda-
tions for future research.

2. The spread of COViD-19

In December 2019, the first cases of COVID-19
surfaced in Wuhan, Hubei, China [2]. Since then, four
other Asian countries confirmed a further 282 cases of
the virus on 20th January 2020, two cases in Thailand,
one case Japan and South Korea, and the remaining
number of cases were reported in China. All cases
originated from Wuhan City [20].

After several months, the virus spread to other
cities in China, and another 33 countries worldwide.
On 24th February, the number of deaths reported in
China amounted to 2,663, and 33 in other countries
[1]. Towards the end of February 2020, the popula-
tion in Europe and North America showed signs of
the virus, albeit a different strain or foci of the virus,
including countries in Asia, and the Middle East.
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At the same time, the first case of COVID-19 was
recorded in Africa and Latin America [21]. At the
beginning of March 2020, more than 10,000 patients
had died from the virus in 10 countries, includ-
ing Iran, Italy, and South Korea [19]. A significant
increase in the harm caused by the was in the Middle
East was confirmed during the middle of March. As a
result of the rapid spread of the virus, the WHO clas-
sified the COVID-19 epidemic as a global pandemic
[21].

The first case of COVID-19 in Iraq appeared in the
Najaf province, south of the capital Baghdad on 24th
February 2020; an Iranian student studying Islamic
science in Najaf. Many Iraqi people travel to Iran to
visit many of the holy shrines and enjoy tourist attrac-
tions. It was believed that the virus originated from
Iran. On 26th February, four new cases were reported
with the number increasing to 13 on 1st March, before
reporting 93 further cases in the middle of March with
nine deaths.

3. Optimal control model

This section presents two models having a known
and uncertain number of new daily cases; the deter-
ministic model and the chance-constrained model,
respectively.

3.1. Deterministic model

Optimal control for optimization is defined by:

Min.J =
T∑

t=0

{1 + y (t)}2 (1)

Subject to the state equations of cases, inpatients,
recovered cases and death:

�C (t) = {1 + y (t)} β (t) C (t) (2)

�I (t) = {1 + y (t)} β (t) C (t)

− {μ (t) + N (t)} I (t) (3)

�R (t) = μ (t) I (t) (4)

�D (t) = N (t) I (t) (5)

where,
y(t): The control variable.
C(t): Percent of confirmed cases.
I(t): Percent of inpatients.

R(t): Percent of recovered cases.
D(t): Percent of death cases.
�(t): Percent of the new cases to the inpatient cases.
�(t): Percent of the recover cases to the inpatient

cases.
N (t): Percent of the death cases to the inpatient

cases.
�C(t) = C(t)-C(t-1)
Equation (2) signifies the total number of cases that

increased based on new cases daily. The total number
of inpatients increases by the addition of new cases
and decreases by the number of recovery and deaths
each day (Equation 3). Equations (4 & 5) represent the
total number of recovered patients and deaths, respec-
tively. The control variable represents the percentage
of isolation or each weather factor.

By using the PMP, determining the solution of
the optimal control model can be achieved. The
Lagrangian function is expressed as follows [17]:

L =
T∑

t=0

− {1 + y (t)}2 +
T∑

t=0

λc (t)

[{1 + y (t)} β (t) C (t) − C (t) + C (t − 1)
]

+
T∑

t=0

λi(t)[{1 + y(t)}β(t)C(t)

−{μ(t) + N (t)}I(t) − I(t) + I(t − 1)]

+
T∑

t=0

λr (t) [μ (t) I (t) − R (t) + R (t − 1)]

+
T∑

t=0

λd (t) [N (t) I (t) − D (t) + D (t − 1)]

(6)

A Hamiltonian function is expressed as:

H (t) = − {1 + y (t)}2 + λc (t)
[
{1 + y (t)} β (t) C (t)

]
+ λi (t)

[
{1 + y (t)} β (t) C (t) − {μ (t) + N (t)} I (t)

]
+ λr (t) [μ (t) I (t)] + λd (t) [N (t) I (t)]

(7)

Substituting Equation (7) into Equation (6), gives:

L =
T∑

t=0

[H (t) − λc (t) {C (t) − C (t − 1)}

−λi (t) {I (t) − I (t − 1)}
−λr (t) {R (t) − R (t − 1)}
−λd (t) {D (t) − D (t − 1)}]

(8)
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Deriving Equation (8) concerning C (t) ,

I (t) , R (t) , D (t), separately, gives:

{1 + y (t)} β (t) {λc (t) + λi (t)}
+ λc (t) − λc (t − 1) = 0, (9)

{μ (t) + N (t)} λi (t) − μ (t) λr (t) − N (t) λi (t)

− λi (t) + λi (t − 1) = 0, (10)

λr (t) − λr (t − 1) = 0, (11)

λd (t) − λd (t − 1) = 0, (12)

By rearranging Equations (9–12), we can deter-
mine the adjoint equations as:

�λc (t) = − {1 + y (t)} β (t) {λc (t) + λi (t)} (13)

�λi (t) = {μ (t) + N (t)} λi (t)

− μ (t) λr (t) − N (t) λd (t) (14)

�λr (t) = 0, (15)

�λd (t) = 0. (16)

From Equations (13 - 14), we get:

λc (t) = 1

1 + {1 + y (t)} β (t)[
λc (t − 1) + {1 + y (t)} β (t) λi (t)

]
. (17)

λi (t) = 1

1 − μ (t) − N (t)
{λi (t − 1) − μ (t) λr (t)

−N (t) λd (t)} . (18)

Rearranging Equation (13), yields:

{1 + y (t)} β (t) = −�λc (t)

{λc (t) + λi (t)} (19)

By substituting Equation (19) into Equation (2), it
yields:

�C (t) = −�λc (t)

{λc (t) + λi (t)}C (t) (20)

From Equation (20), we can determine the total
number of cases over time as follows:

C (t) = 1

1 −
[

�λc(t)
{λc(t)+λi(t)}

]C (t − 1) (21)

By substituting Equation (19) into Equation (3), it
yields:

�I (t) = −�λc (t)

{λc (t) + λi (t)}C (t) − {μ (t) + N (t)} I (t)

(22)
From Equation (22), we then get:

I (t) = 1

1 + μ (t) + N (t)

[
I (t − 1) − �λc (t)

{λc (t) + λi (t)}C (t)
]
(23)

Then, substituting Equation (21) into Equation
(23), it yields:

I (t) = 1

1 + μ (t) + N (t)[
I (t − 1) −

{
�λc (t)

{λc (t) + λi (t)}
}{

1

1 −
[

�λc (t)
{λc (t)+λi(t)}

]
}

C (t − 1)

]

(24)

Equation (24) represents the total number of inpa-
tients over time. We can determine the total number
of recovered cases over time by substituting Equation
(24) into Equation (4) as follows:

R (t) = R (t − 1) + μ (t)

1 + μ (t) + N (t)[
I (t − 1) −

{
�λc (t)

{λc (t) + λi (t)}
}{

1

1 −
[

�λc (t)
{λc (t)+λi(t)}

]
}

C (t − 1)

]

(25)

Substituting Equation (24) into Equation (5) yields
the total number of death cases over time as follows:

D (t) = D (t − 1) + N (t)

1 + μ (t) + N (t)[
I (t − 1) −

{
�λc (t)

{λc (t) + λi (t)}
}{

1

1 −
[

�λc (t)
{λc (t)+λi(t)}

]
}

C (t − 1)

]

(26)

Thus, the value of the control variable is as follows:

y (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1; no new cases (optimal)

(−1, 0) ; decrease cases

0; no effect

> 0; increase cases

(27)

From Equation (27), y (t) = −1 means:

�λc (t) = �C (t) = 0 (28)

�I (t) = − {μ (t) + N (t)} I (t) (29)
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λi (T ) = 0 (30)

Initially the value of the control variable is zero,
which means the model represents the actual cases
registered in Iraq with the real percentage of new
cases, recovered, and deaths as follows:

β1 = C1 − C0

C1
; μ1 = R1

I1
; N1 = D1

I1
(31)

Next, by introducing the effect of wind (for exam-
ple): changing the value of the control variable and
cases depending on the wind degree (W) and transi-
tion matrix (ϕ) (see Appendix) we get:

δ1 = C1 − C0 + ABS (W1 − W0) ∗ ϕ (32)

new C1 = old C0 + δ1; new C2 = new C1 + δ2
(33)

y1 = δ1

β1C1
− 1 (34)

Where ABS = absolute value.
The elements of the transition matrix can be cal-

culated as follows (for example, humidity):

ϕij = NCHi − NCHj

Hi − Hj

(35)

Where NCHi the average of new cases, according
to the humidity degree Hi (Table 3 shows the average
of new cases).

Finally, the next tasks include incorporating the
value of the control variable into an optimal control
model to obtain the solution. The solution of the opti-
mal control model relies on Equations (15–18, 21,
24–26). The solution is found by using the goal seek
function in Microsoft Excel with λ(T) = 0. Hence,
achieving the condition λ(T) = 0 by changing the
value of λ(0).

3.2. Chance-constrained model

The number of new cases reported in Iraq depends
on the number of samples tested. Therefore, the actual
cases may be is greater than those recorded cases. In
this model, the number of new cases is uncertain given
by the equation representing chance-constrained:

Pr {�C (t) ≥ NC} ≥ α (36)

Where α takes values between zero and one (1) and
NC is a random variable (new cases).

In determining the solution, chance-constrained
must be converted to deterministic constrained. Here,

the value of α is equal to zero or one (1) representing
an extremely risky or extremely conservative attitude,
respectively. The minimum acceptable to achieve the
constraint is α, while (1 − α) is the maximum accept-
able risks [7].

If NC is a random variable that adheres to a normal
distribution with mean NC and standard deviation
σNC, then the deterministic constraint that is equiva-
lent to chance-constraint (36) as follows [4]:

Pr

{
�C(t)−NC

σNC
≥ NC−NC

σNC

}
≥ α

∅
{

�C(t)−NC
σNC

}
≥ α

�C (t) ≥ NC + σNC∅−1 (α)

(37)

Where ∅ is the cumulative distribution function
(CDF) of the standard normal distribution.

The number of daily cases can be found from Eq.
(37) with the initial value of cases C (0). To deter-
mine the effect of the weather factors, we apply the
deterministic model (Equations 1–5) with the daily
cases of chance-constrained (Equation 37).

4. Numerical results

Table 1 (see Appendix) shows the number of
COVID-19 cases and degrees of temperature, humid-
ity, wind and pressure from 17th March to 15th May.
First, we determine the values of (�,�,N) by using
Equation (31) to fit the actual cases reported in Table
(1) with a zero (0) value of the control variable (see
Table 2 in the Appendix).

Next, we change the control variable value to deter-
mine the results that represent the effect of isolation
and weather.

The effect of isolation is determined by presenting
the value of the control variable given below:

y (t) =

⎧⎪⎨
⎪⎩

−0.25Increased isolation

0Acutal cases (A.C.)

0.25Decreased isolation

Figure (1) shows the effect of isolation on the
results, with the actual cases (A.C.), increased cases
(I.C.), and decreased cases (D.C.). From Fig. (1), we
can conclude that the number of cases increases, due
to increase in the number of people that did not com-
mit to staying at home (y(t) = 0.25), and vice versa.

The increase in the per cent of people that did
not commit to staying at home by 25% led to
an increase in the number of COVID-19 cases by
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Fig. 1. The effect of isolation.

Fig. 2. Numbers of new cases with and without the effect of humidity.

118%, while, the proportion of COVID-19 cases
decreased by 53.4% with an increase in the number
of citizens staying at home by 25%. The num-
bers of inpatients (A.I, I.I, D.I), recoverd (A.R, I.R,
D.R) and deaths (A.D, I.D, D.D) follow the number
of cases.

According to the WHO, symptoms of infection
first appear between 2 and 14 days, usually 5 days.
In this case, we take the weather for the last 5 days
(see Table 3 in the Appendix). We can then find the
transition matrix for each factor of the weather (see
Tables 4–7 in the Appendix) from Table (3). The val-
ues of the main diagonal are zero (0) (without effect)
and the other values are negative (cases decrease) and
positive (cases increase). The values of the transition
matrix represent an increase (or decrease) of COVID-

19 cases with an increase (or decrease) for every one
(1) degree of the weather.

From Equations (32–34), and Table (4), we can
determine the value of the control variable, according
to the effect of humidity. Figure (2) shows the possible
effect of humidity on the number of new cases.

The white colour represents the number of new
cases without the effect of humidityt, which means
the default number. Meanwhile, the actual number of
cases, affected by the humidity, is represented by gray
colour. The explanation for Fig. (2) is as follows:

Two colours having the same value signifies no
change in humidity, thus having no effect.

The white colour higher than the gray colour
means humidity increases, while for new cases is
decreases.
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Fig. 3. Numbers of new cases with and without the effect of temperature.

Fig. 4. Numbers of new cases with and without the effect of wind.

Fig. 5. Numbers of new cases with and without the effect of pressure.

The other case means a decrease in humidity and
an increase in new cases.

Similarly, we determine the possible effect of other
weather factors, as can be seen in Figs. (3–5):

As evident in Figs. (2–5), the wind shows
as having the highest effect on the number of
new COVID-19 cases. Figure (6) shows the pos-
sible effect of the weather factors at the end
of period.

Figure (6) shows the possible effect of weather on
the number of new COVID-19 cases. Wind (W.E) and
pressure (P.E.) represent the highest and lowest effect,
respectively. However, the effect of isolation (see
Fig. 1) is more important compared to the weather
factors. Figure (7) shows the results at the end of the
period without the effect of the weather.

From Fig. (7), it can be seen that the increase
in wind speed (W) and temperature (T) has led to
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Fig. 6. Weather factors and effect.

Fig. 7. The results of optimal control model with different values
of the control variable.

a decrease in the number of COVID-19 cases. For
example, the number of cases is 3,346 and 3,204
without the possible effect of both wind and tem-
perature, respectively. Whereas the number of cases
slightly increased with an increase in humidity (H)
and pressure (P) compared to the number of actual
cases (A).

For the chance-constraint model, the � value is
changed according to Eq. (36). At first, we divide the
study period into 12 sub-periods with 5 days for each
sub-period. Next, a normality test of observations
of the sub-periods is conducted, in which all sub-
periods adhere to a normal distribution (see Table 8).
Eq. (36) is then applied to determine the daily cases
with α = 0.90 and ∅−1 (α) = 1.28. Finally, the same
steps of the deterministic model are used to find the
solution. From Equations (32–34), and Table (9), we
can find the value of the control variable and the
possible effect of the weather factors, as shown in
Figs. (8–11).

By observing Figs. (8–11), the pressure sig-
nifies the highest effect on the number of new
COVID-19 cases. Whereas, the wind represents the
second-highest effect, but with an inverse relation to
COVID-19 cases. Figure (12) below illustrates the
possible proportional effect of the weather factors at
the end of the period.

From observing Fig. (12), we can see that the
pressure (P.E) and temperature (T.E.) represent the
highest and lowest effect, respectively. The effect of

the weather in the chance-constrained model is higher
than the deterministic model because the increase in
the number of COVID-19 cases is according to the
chance-constrained model.

5. Conclusion

In this paper, the possible effect of both weather
factors and isolation on the spread of COVID-19
in the context of Iraq was investigated, finding that
temperature, humidity, wind, and pressure had a
noticeable effect on the spread of the virus. An
optimal control model was developed to describe
the spread of COVID-19 cases, Deterministic and
chance-constrained models were also developed, and
the solution of the model using the PMP was also
derived. The transition matrix for each of the factor
factors was addressed.

Initially, a control variable y(t) representing the
percentage of isolation and weather factors was
determined. The zero value of the control variable
represented the actual data of COVID-19 cases in
Iraq, while the optimal solution was determined with
y = –1. Next, was determining the value of the control
variable with respect to five models, before finally,
clarifying the possible effect of isolation and the
weather factors on the spread of COVID-19.

Accordingly, it was shown that isolation was sig-
nificant in containing COVID-19 from contagion. On
the other hand, the number of cases increased by
118% attributed to an increase in the number of peo-
ple who ignored the need to stay at home, which rose
by 25%. In contrast, the cases reduced by 53.4% for
the opposite case where people stayed at home.

These statistics also support the nature of the
virus in reality since it is highly contagious, spread-
ing from one person to many. Weather factors also
had a noticeable effect on the spread of COVID-19,
though lower than self-isolation. Likewise, both wind
speed and temperature had the highest effect com-
pared with other weather factors. Further, the wind
speed and temperature had an inverse effect on the
spread of COVID-19 by 1.28% and 0.23%, respec-
tively, while a positive relationship with humidity
and pressure. Humidity and temperature had a sim-
ilar effect but opposingly. Moreover, increasing the
number of daily cases of COVID-19, according to
the chance-constrained model, weather factors had a
greater effect.

Accordingly, the model developed in this study
could be applied in other countries using the same
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Fig. 8. Number of new cases with and without the effect of humidity (chance-constrained).

Fig. 9. Number of new cases with and without the wind effect (chance-constrained).

Fig. 10. Number of new cases with and without the pressure effect (chance-constrained).

Fig. 11. Number of new cases with and without the pressure effect (chance-constrained).
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Fig. 12. Proportion, (as a percentage) due to the effect of weather
(chance-constrained).

factors or by introducing other factors, such as com-
munication, transportation, and payment.
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Appendix

Table 1
The number of COVID-19 cases and weather degrees in Iraq

Date Cases Recover Death New Cases Temp. Wind Humid. Pres.
17 March 165 43 12 11 26 7 40 1015
18 177 49 12 12 22 13 39 1010
19 192 49 13 15 18 7 57 1016
20 208 49 17 16 23 9 32 1014
21 214 52 17 6 22 7 45 1006
22 233 57 20 19 17 2 52 1011
23 266 62 23 33 20 9 46 1015
24 316 75 27 50 24 4 34 1014
25 346 103 29 30 27 13 29 1009
26 382 105 36 36 28 20 30 1010
27 458 122 40 76 24 11 40 1014
28 506 131 42 48 24 7 46 1009
29 547 143 42 41 22 7 50 1014
30 630 152 46 83 23 9 33 1012
31 694 170 50 64 26 4 26 1017
1 April 728 182 52 34 28 26 29 1007
2 772 202 54 44 26 9 28 1012
3 820 226 54 48 25 4 33 1016
4 878 259 56 58 25 9 37 1018
5 961 259 61 83 26 4 29 1021
6 1031 344 64 70 29 9 30 1014
7 1122 373 65 91 26 9 37 1012
8 1202 452 69 80 30 7 27 1010
9 1232 496 69 30 26 4 54 1006
10 1279 550 70 47 25 7 35 1008
11 1318 601 72 39 25 9 30 1012
12 1352 640 76 34 26 6 29 1016
13 1378 717 78 26 27 10 33 1017
14 1400 766 78 22 27 13 15 1017
15 1415 812 79 15 29 17 11 1016
16 1434 856 80 19 30 2 17 1013
17 1482 906 81 48 32 7 14 1011
18 1513 953 82 31 31 4 21 1011
19 1539 1009 82 26 28 7 29 1015
20 1574 1043 82 35 32 4 21 1013
21 1602 1096 83 28 33 4 20 1012
22 1631 1146 83 29 33 4 25 1010
23 1677 1171 83 46 37 6 18 1004
24 1708 1204 86 31 29 6 29 1008
25 1763 1224 87 55 32 13 21 1001
26 1820 1263 87 57 26 13 33 1008
27 1847 1286 88 27 28 6 23 1013
28 1928 1319 90 81 31 9 17 1011
29 2003 1346 92 75 24 4 29 1008
30 2085 1375 93 82 24 6 40 1009
1 May 2153 1414 94 68 31 6 26 1014
2 2219 1473 95 66 36 2 16 1011
3 2296 1490 97 77 33 11 20 1013
4 2346 1544 97 50 26 15 45 1011
5 2431 1571 102 85 29 11 21 1018
6 2480 1602 102 49 31 7 20 1016
7 2543 1626 102 63 37 4 13 1009
8 2603 1661 104 60 29 9 33 1008
9 2679 1702 107 76 29 13 20 1008
10 2767 1734 109 88 29 9 21 1010
11 2818 1790 110 51 32 6 17 1015
12 2913 1903 112 95 35 4 13 1013
13 3032 1966 115 119 39 9 8 1011
14 3143 2028 115 111 40 11 10 1009
15 3193 2089 117 50 41 15 10 1008

The ministry of health/ Iraq.
https://www.timeanddate.com/weather/iraq/baghdad/historic?month=4&year=2020.

https://www.timeanddate.com/weather/iraq/baghdad/historic?month=4&year=2020
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Table 2
The values of the model parameters

Date β μ N
17 March 0.066667 0.100000 0.009091
18 0.067797 0.051724 0.000000
19 0.078125 0.000000 0.007692
20 0.076923 0.000000 0.028169
21 0.028037 0.020690 0.000000
22 0.081545 0.032051 0.019231
23 0.124060 0.027624 0.016575
24 0.158228 0.060748 0.018692
25 0.086705 0.130841 0.009346
26 0.094241 0.008299 0.029046
27 0.165939 0.057432 0.013514
28 0.094862 0.027027 0.006006
29 0.074954 0.033149 0.000000
30 0.131746 0.020833 0.009259
31 0.092219 0.037975 0.008439
1 April 0.046703 0.024291 0.004049
2 0.056995 0.038760 0.003876
3 0.058537 0.044444 0.000000
4 0.066059 0.058615 0.003552
5 0.086368 0.000000 0.007800
6 0.067895 0.136437 0.004815
7 0.081105 0.042398 0.001462
8 0.066556 0.116006 0.005874
9 0.024351 0.065967 0.000000
10 0.036747 0.081942 0.001517
11 0.029590 0.079070 0.003101
12 0.025148 0.061321 0.006289
13 0.018868 0.132075 0.003431
14 0.015714 0.088129 0.000000
15 0.010601 0.087786 0.001908
16 0.013250 0.088353 0.002008
17 0.032389 0.101010 0.002020
18 0.020489 0.098326 0.002092
19 0.016894 0.125000 0.000000
20 0.022236 0.075724 0.000000
21 0.0174781 0.125295 0.002364
22 0.0177805 0.124378 0
23 0.0274299 0.059101 0
24 0.0181498 0.078947 0.007177
25 0.0311968 0.044247 0.002212
26 0.0313186 0.082978 0
27 0.0146183 0.048625 0.002114
28 0.0420124 0.063583 0.003853
29 0.0374438 0.047787 0.003539
30 0.0393285 0.047001 0.001620
1 May 0.0315838 0.060465 0.001550
2 0.0297431 0.090629 0.001536
3 0.0335365 0.023977 0.002820
4 0.0213128 0.076595 0
5 0.0349650 0.035620 0.006596
6 0.0197580 0.039948 0
7 0.0247738 0.029447 0
8 0.0230503 0.041766 0.002386
9 0.0283687 0.047126 0.003448
10 0.0318033 0.034632 0.002164
11 0.0180979 0.061002 0.001089
12 0.0326124 0.125835 0.002227
13 0.0392480 0.066246 0.003154
14 0.035316 0.062 0
15 0.015659 0.061803 0.002026
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Table 3
The average of COVID-19 cases, according to humidity, temperature, wind and pressure

Humid. NCH Temp. NCT Wind NCW Pres. NCP

56–75 50 91–100 55 21–25 40 5026–5035 55
76–100 51 101–110 23 26–30 52 5036–5045 79
101–125 60 111–120 31 31–35 54 5046–5055 57
126–150 56 121–130 53 36–40 41 5056–5065 50
151–175 67 131–140 51 41–45 59 5066–5075 38
176–200 48 141–150 58 46–50 61 5076–5085 60
201–225 28 151–160 62 51–55 53
226–250 22 161–170 64 56–60 34
251–275 12 171–180 50

Table 4
The transition matrix of the number of COVID-19 cases, according to humidity

State 75 100 125 150 175 200 225 250 275

75 0.000 0.030 0.208 0.084 0.170 –0.013 –0.147 –0.160 –0.190
100 –0.030 0.000 0.386 0.111 0.217 –0.024 –0.182 –0.192 –0.221
125 –0.208 –0.386 0.000 –0.164 0.132 –0.161 –0.324 –0.307 –0.323
150 –0.084 –0.111 0.164 0.000 0.428 –0.159 –0.377 –0.343 –0.354
175 –0.170 –0.217 –0.132 –0.428 0.000 –0.745 –0.780 –0.600 –0.550
200 0.013 0.024 0.161 0.159 0.745 0.000 –0.815 –0.527 –0.485
225 0.147 0.182 0.324 0.377 0.780 0.815 0.000 –0.240 –0.320
250 0.160 0.192 0.307 0.343 0.600 0.527 0.240 0.000 –0.400
275 0.190 0.221 0.323 0.354 0.550 0.485 0.320 0.400 0.000

Table 5
The transition matrix of the number of COVID-19 cases, according to temperature

State 100 110 120 130 140 150 160 170 180

100 0.000 –3.167 –1.200 –0.070 –0.107 0.053 0.652 0.464 –0.036
110 3.167 0.000 0.767 2.958 1.370 1.143 1.143 0.803 0.444
120 1.200 –0.767 0.000 2.191 0.986 0.888 0.787 0.650 0.317
130 0.070 –2.958 –2.191 0.000 –0.218 0.236 0.318 0.265 –0.058
140 0.107 –1.370 –0.986 0.218 0.000 0.690 0.587 0.426 –0.018
150 –0.053 –1.143 –0.888 –0.236 –0.690 0.000 0.484 0.294 –0.254
160 –0.652 –0.978 –0.787 –0.318 –0.587 –0.484 0.000 0.104 –0.623
170 –0.464 –0.803 –0.650 –0.265 –0.426 –0.294 –0.104 0.000 –1.350
180 0.036 –0.444 –0.317 0.058 0.018 0.254 0.623 1.350 0.000

Table 6
The transition matrix of the number of COVID-19 cases, according to wind

State 25 30 35 40 45 50 55 60

25 0.000 2.400 1.367 0.036 0.958 0.851 0.446 –0.177
30 –2.400 0.000 0.333 –1.145 0.477 0.464 0.055 –0.607
35 –1.367 –0.333 0.000 –2.624 0.549 0.508 –0.015 –0.795
40 –0.036 1.145 2.624 0.000 3.722 2.074 0.855 –0.337
45 –0.958 –0.477 –0.549 –3.722 0.000 0.426 –0.578 –1.690
50 –0.851 –0.464 –0.508 –2.074 –0.426 0.000 –1.582 –2.749
55 –0.446 –0.055 0.015 –0.855 0.578 1.582 0.000 –3.915
60 0.177 0.607 0.795 0.337 1.690 2.749 3.915 0.000

Table 7
The transition matrix of the number of COVID-19 cases, according to pressure

State 5035 5045 5055 5065 5075 5085

5035 0.000 2.350 0.123 –0.158 –0.436 0.090
5045 –2.350 0.000 –2.104 –1.413 –1.364 –0.475
5055 –0.123 2.104 0.000 –0.721 –0.995 0.068
5065 0.158 1.413 0.721 0.000 –1.268 0.463
5075 0.436 1.364 0.995 1.268 0.000 2.193
5085 –0.090 0.475 –0.068 –0.463 –2.193 0.000
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Table 8
The number of cases, according to chance-constrained model

Date Cases β Mean S.D.

17 March 165 0.066667 12.00 3.94
18 182 0.093407
19 199 0.085427
20 216 0.078704
21 233 0.072961
22 281 0.170819 33.60 11.19
23 329 0.145897
24 377 0.127321
25 425 0.112941
26 473 0.10148
27 558 0.15233 62.40 17.87
28 643 0.132193
29 728 0.116758
30 813 0.104551
31 898 0.094655
1 April 975 0.078974 53.40 18.65
2 1052 0.073194
3 1129 0.068202
4 1206 0.063847
5 1283 0.060016
6 1378 0.06894 63.60 24.83
7 1473 0.064494
8 1568 0.060587
9 1663 0.057126
10 1758 0.054039
11 1797 0.021703 27.20 9.52
12 1836 0.021242
13 1875 0.0208
14 1914 0.020376
15 1953 0.019969
16 1999 0.023012 31.80 10.85
17 2045 0.022494
18 2091 0.021999
19 2137 0.021526
20 2183 0.021072
21 2236 0.023703 37.80 12.07
22 2289 0.023154
23 2342 0.02263
24 2395 0.022129
25 2448 0.02165
26 2542 0.036979 64.40 23.19
27 2636 0.03566
28 2730 0.034432
29 2824 0.033286
30 2918 0.032214
1 May 3004 0.028628 69.20 13.14
2 3090 0.027832
3 3176 0.027078
4 3262 0.026364
5 3348 0.025687
6 3435 0.025328 67.20 15.09
7 3522 0.024702
8 3609 0.024106
9 3696 0.023539
10 3783 0.022998
11 3910 0.032481 85.20 32.84
12 4037 0.031459
13 4164 0.0305
14 4291 0.029597
15 4418 0.028746
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Table 9
The average of COVID-19 cases, according to humidity, temperature, wind and pressure (chance-constrained)

Humid. NCH Temp. NCT Wind NCW Pres. NCP

51–75 127 91–100 48 21–25 53 5026–5035 94
76–100 66 101–110 36 26–30 75 5036–5045 94
101–125 81 111–120 43 31–35 72 5046–5055 77
126–150 81 121–130 75 36–40 64 5056–5065 73
151–175 89 131–140 69 41–45 86 5066–5075 56
176–200 69 141–150 70 46–50 76 5076–5085 71
201–225 28 151–160 89 51–55 77
226–250 25 161–170 84 56–60 43
251–275 17 171–180 127

Table 10
The transition matrix of the number of COVID-19 cases, according to humidity (chance-constrained)

State 75 100 125 150 175 200 225 250 275

75 0.000 –2.430 –0.922 –0.608 –0.380 –0.463 –0.660 –0.583 –0.550
100 2.430 0.000 0.585 0.303 0.303 0.029 –0.306 –0.275 –0.281
125 0.922 –0.585 0.000 0.021 0.162 –0.156 –0.529 –0.447 –0.426
150 0.608 –0.303 –0.021 0.000 0.304 –0.245 –0.712 –0.564 –0.515
175 0.380 –0.303 –0.162 –0.304 0.000 –0.793 –1.220 –0.853 –0.720
200 0.463 –0.029 0.156 0.245 0.793 0.000 –1.647 –0.883 –0.696
225 0.660 0.306 0.529 0.712 1.220 1.647 0.000 –0.120 –0.220
250 0.583 0.275 0.447 0.564 0.853 0.883 0.120 0.000 –0.320
275 0.550 0.281 0.426 0.515 0.720 0.696 0.220 0.320 0.000

Table 11
The transition matrix of the number of COVID-19 cases, according to temperature (chance-constrained)

State 100 110 120 130 140 150 160 170 180

100 0.000 –1.240 –0.275 0.888 0.530 0.440 0.898 0.596 0.655
110 1.240 0.000 0.690 3.904 1.679 1.147 1.147 0.972 1.523
120 0.275 –0.690 0.000 3.214 1.334 0.917 1.174 0.834 1.408
130 –0.888 –3.904 –3.214 0.000 –0.545 –0.232 0.494 0.239 1.047
140 –0.530 –1.679 –1.334 0.545 0.000 0.082 1.014 0.501 1.445
150 –0.440 –1.147 –0.917 0.232 –0.082 0.000 1.946 0.710 1.900
160 –0.898 –1.347 –1.174 –0.494 –1.014 –1.946 0.000 –0.526 1.877
170 –0.596 –0.972 –0.834 –0.239 –0.501 –0.710 0.526 0.000 4.280
180 –0.655 –1.523 –1.408 –1.047 –1.445 –1.900 –1.877 –4.280 0.000

Table 12
The transition matrix of the number of COVID-19 cases, according to wind (chance-constrained)

State 25 30 35 40 45 50 55 60

25 0.000 4.400 1.900 0.703 1.635 0.920 0.813 –0.286
30 –4.400 0.000 –0.600 –1.145 0.713 0.050 0.095 –1.067
35 –1.900 0.600 0.000 –1.691 1.369 0.267 0.269 –1.160
40 –0.703 1.145 1.691 0.000 4.429 1.245 0.922 –1.027
45 –1.635 –0.713 –1.369 –4.429 0.000 –1.938 –0.832 –2.846
50 –0.920 –0.050 –0.267 –1.245 1.938 0.000 0.275 –3.300
55 –0.813 –0.095 –0.269 –0.922 0.832 –0.275 0.000 –6.875
60 0.286 1.067 1.160 1.027 2.846 3.300 6.875 0.000

Table 13
The transition matrix of the number of COVID-19 cases, according to pressure (chance-constrained)

State 5035 5045 5055 5065 5075 5085

5035 0.000 0.000 –0.869 –0.710 –0.943 –0.470
5045 0.000 0.000 –1.738 –1.065 –1.258 –0.588
5055 0.869 1.738 0.000 –0.392 –1.017 –0.204
5065 0.710 1.065 0.392 0.000 –1.643 –0.110
5075 0.943 1.258 1.017 1.643 0.000 1.423
5085 0.470 0.588 0.204 0.110 –1.423 0.000


