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Abstract. In the recent phenomenon of social networks, both online and offline, two nodes may be connected, but they may
not follow each other. Thus there are two separate links to be given to capture the notion. Directed links are given if the nodes
follow each other, and undirected links represent the regular connections (without following). Thus, this network may have
both types of relationships/ links simultaneously. This type of network can be represented by mixed graphs. But, uncertainties
in following and connectedness exist in complex systems. To capture the uncertainties, fuzzy mixed graphs are introduced
in this article. Some operations, completeness, and regularity and few other properties of fuzzy mixed graphs are explained.
Representation of fuzzy mixed graphs as matrix and isomorphism theorems on fuzzy mixed graphs are developed. A network
of COVID19 affected areas in India are assumed, and central regions are identified as per the proposed theory.
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1. Introduction

Graph theory is the study of interactions among
nodes (or vertices). The idea of graphs was initiated
by Euler in 1973 to solve the Konigsberg bridge prob-
lem. After that, many branches have been developed.
One of the essential branches is to study the mixed
graphs where the graphs consider directed and undi-
rected edges both. Let us consider V (non-empty)
be a set of elements, called vertices. Also let, E =
E1 ∪ E2 where E1 ⊂ V × V is a set of unordered
pairs of vertices, i.e., E1 = {(u, v)|u, v ∈ V }, called
a set of undirected edges and �E2 ⊂ V × V is a set
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of ordered pair of vertices �E2 = {(a, b)|a, b ∈ V },
called a set of directed edges. Then G = (V, E1, �E2)
is called a mixed graph.

The study of mixed graphs [1] was started in 1970.
Sotskov and Tanaev (1976) discussed the colouring
of mixed graphs [2]. Liu and Li (2015) introduced
Hermitian-adjacency matrices of mixed graphs [3].
Adiga et al. (2016) studied on adjacency matrix [4] of
mixed graphs. Mohammed (2017) studied on mixed
graph representation and isomorphism [5]. There are
many applications of mixed graphs on social net-
works. For example, Facebook network [6] allow
mixed direction, since if one friend follows other, then
there will be directed edges in a mentioned direction
and there will be an undirected edge if they are friends
to each other. Samanta et al. [7] introduced another
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type of mixed graph, called a semi-directed graph and
studied competitions on these graphs.

Sometimes vertices (persons) and the relationship
between them may not precisely define. So there may
be fuzziness [8, 9] in the graph. The idea of fuzziness
to graph theory [10] first introduced by Kauffmann
(1973) and after that modification of fuzzy graphs
[11] developed by Rosenfeld (1975). The homomor-
phism, isomorphism, automorphism [12] on fuzzy
graphs were developed by Bhutani (1989). The oper-
ations [13] like the cartesian product, union, join etc.
on fuzzy graphs were studied by Mordeson and Peng
(1994). There were various related studies on fuzzy
digraphs [14]. Akram and Dubek (2011) introduced
interval-valued fuzzy graphs [15] where member-
ship values of vertex and edges are interval. In [16],
Akram proposed bipolar fuzzy graphs. There are var-
ious studies on bipolar fuzzy graphs [17–19]. The
concepts of planer graph [20] under fuzzy environ-
ment was introduced by Samanta and Pal (2015).
The concepts of the fuzzy environment in food web
studied by Samanta and Pal (2013) and represented
fuzzy competition graph [21] more realistically. After
that, as a generalization of the fuzzy graph, Samanta
and Sarkar (2016, 2018) proposed the generalized
fuzzy graph [22] and generalized fuzzy competi-
tion graph [23]. Akram and Sarwar [24] studied
on fuzzy graph structures [25, 26] and applications.
More relevant studies on fuzzy graphs can be found
in [27–32, 33–40]. The chronological contributions
of authors towards fuzzy mixed graphs are presented
(Table 1).

Thus there are huge developments on fuzzy graphs
which are undirected or directed, but both types of
edges not considered in a single graph. The mixed
graphs are better to represent some special types of
networks where both types of edges occur simultane-
ously like brain network, research networks, etc. But

these networks contain lots of ambiguity. The ambi-
guity occurs in not only to the connectedness but also
to the directedness. One node may strongly domi-
nate to other connected nodes. Thus our main aim
is to develop the mixed graph in fuzzy environments
where the membership values of vertices, member-
ship values of undirected edges, membership values
of directed edges with the value of directedness have
been considered. In this study, some operations, com-
pleteness, matrices presentation, and isomorphism,
competitions on fuzzy mixed graphs are developed.
An application of fuzzy mixed graph in a network of
COVID19 affected regions in India has been shown.

Therefore the major contributions of this study are
pointed out below:

• The fuzzy mixed graphs are introduced as a gen-
eralization of mixed graphs.
• Operations on fuzzy mixed graphs are studied.
• Adjacency matrices, incidence matrices of fuzzy

mixed graphs are presented.
• Isomorphism with properties of fuzzy mixed

graphs is improved.
• A numerical example of a fuzzy mixed graph in

a network of COVID19 affected regions in India
has been shown.

2. Fuzzy mixed graph (FMG)

To discuss fuzzy mixed graphs, the definition of
fuzzy graphs is given first. Let V be a non-empty set.
Then G = (V, σ, μ) is said to be a fuzzy graph if there
exists a function μ : V → [0, 1], such that

μ (x, y) ≤ σ (x) ∧ σ (y) for all (x, y) ∈ V × V,

(1)
where σ indicates membership value of vertices, μ

indicates the membership value of edges.

Table 1
Contributions of authors

Year Authors name Contribution

1970 N. V. Lambin and V. S Tanaev Introduction of mixed graph.
1973 Kaufmann Fuzziness to graph theory.
1975 Rosenfeld Modification to fuzzy graph definition.
1994 J.N. Mordeson and C.S Peng Operations on fuzzy graphs.
1996 J. N. Mordeson and P. S. Nair Fuzzy digraphs and finite state machines.
2016 S. Samanta and B. Sarkar Introduced generalized fuzzy graph.
2016 C. Adiga et al. Studied on adjacency matrix of mixed graphs.
2020 C. Yang and Y. Lee Mixed graphs and Facebook network.
2020 S. Samanta et al. Introduced a special type of mixed graph, called a semi-directed graph.
This paper K. Das et al. Introduction of fuzzy mixed graph and properties.
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Definition 2.1. Let V be a non-empty set. Then
G = (V, E1, E2, μ1, μ2, σ, δ) is said to be fuzzy
mixed graph if there exist functions σ : V → [0, 1],
μ1 : E1 → [0, 1] μ2 : E2 → [0, 1] , δ : E2 → [0, 1]
such that

μ1 (x, y) ≤ σ (x) ∧ σ (y) for all (x, y) ∈ E1 ⊆ V × V,

μ2

(−→x, y
)
≤ σ (x) ∧ σ (y) for all

(−→x, y
)
∈ E2 ⊆ V × V,

δ
(−→x, y

)
≤ |σ (x)− σ (y)| for all

(−→x, y
)
∈ E2 ⊆ V × V

where σ indicates membership value of vertex, μ1
indicates membership value of undirected edge, μ2
indicates membership value of directed edge and δ

indicates a measure of directedness of directed edge.

• Note that the measure of directedness is one kind
of measure of domination/direction. If two equal
powerful nodes are connected, then they may
not influence/direct each other. If a low powerful
node is connected to a highly powerful node,
then the later node can dominate the first one
by their power difference. This motivates us to
define the measure of directedness as δ

(−→x, y
) ≤

|σ (x)− σ (y)| for all
(−→x, y

) ∈ E2 ⊆ V × V .
• Note that every undirected edge is represented

by the value μ1 ∈ [0, 1] only and every directed
edge is represented by the value (μ2, δ).
• The comparison of existing fuzzy graphs and

fuzzy mixed graphs is described as follows.

In fuzzy graphs, edges are undirected and in fuzzy
di-graphs edges are directed with the following prop-
erty that edge membership values are less than or
equal to the minimum of end vertex membership val-
ues.

In fuzzy mixed graphs, edges may be both directed
and /or undirected with the property that edge mem-
bership values are less than or equal to the minimum
of end vertex membership values. Additionally, in
fuzzy mixed graphs, the measure of directedness is
added to directed edges with the property that mea-
sure of directedness iless than or equal to the absolute
difference of end vertex membership values.

Example 2.2. We consider a graph with four vertices
a, b, c, d and nine edges (Fig. 1). All vertices and
edges satisfy all the restrictions defined in Definition.
2.1.; hence it is a fuzzy mixed graph.

Definition 2.3. A fuzzy mixed walk in a
FMG G = (V, E1,

−→
E2, μ1, μ2, σ, δ) is an

alternating sequence of vertices and edges

Fig. 1. Example of a fuzzy mixed graph.

v1, e1(or−→e1 ), v2, e2(or−→e2 ), v3, . . . , ek(or−→ek), vk+1
with μ1(ei) > 0, or μ2(−→ei ) > 0, i = 1, 2, · · · , k and
k is an any positive integer. A fuzzy mixed walk
from vertex u to v is said to be a fuzzy mixed path of
length m if there exist exactly m edges (directed or
undirected) in the walk between the vertices u and v

and no vertices, no edges peated, and it is denoted by
Pm

(u,v). If u = v, then it is called a fuzzy mixed cycle.

Example 2.4. Consider a fuzzy mixed graph (Fig. 1).
Here a− b→ c← d is a fuzzy mixed walk and
hence a fuzzy mixed path. Also, a− b→ c − d → a

is a fuzzy mixed cycle.

Definition 2.5. The fuzzy mixed degree FMD (v).
of a vertex v in the fuzzy mixed graph G =
(V, E1, E2, μ1, μ2, σ, δ) is defined by

FMD(v) =
∑

vi∈N(v)

μ1(vi, v)+
∑

vj∈N+(v)

μ2(−−→v, vJ )

[1+ δ(−−→v, vJ )]−
∑

vk∈N−(v)

μ2(−−→vk, v)[1+ δ(−−−→vk, vJ )]

where N (u) denotes the neighbourhood of u,
N (u) = {v| (u, v) ∈ E1}. N+ (u) denotes the out-
neighbourhood of u, N+ (u) = {v|

(−→
u, v
) ∈ E2

}
.

N− (u) denotes the in-neighbourhood of u, N− (u) ={
v|
(−→
v, u
) ∈ E2

}
.

Example 2.6. We consider a fuzzy mixed
graph (Fig. 1). The fuzzy mixed degree
of a vertex c. is I (c) = (0.3+ 0.5)+
(0.6+ 0.6× 0.2+ 0.5+ 0.5× 0.2)−
(0.6+ 0.6× 0.1) = 1.46.
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Fig. 2. A z mixed subgraph.

Definition 2.7. Let G = (V, E1, E2, μ1, μ2, σ, δ) be
a fuzzy mixed graph. Then a fuzzy graph H =(
V ′, E′1, E

′
2, μ
′
1, μ
′
2, σ
′, δ′
)

is said to be a fixed
subgraph of G if V ′ ⊂ V, E′1 ⊂ E1, E

′
2 ⊂ E2 with

σ′ (a) ≤ σ (a), μ′1 (a, b) ≤ μ1 (a, b) and δ′
(−→
a, b
)
≤

δ
(−→
a, b
)

.

Example 2.8. Consider a fuzzy mixed graph H

(Fig. 2). Hence it is a fuzzy mixed subgraph of a
fuzzy mixed graph G (Fig. 1) as it satisfies all the
conditions.

Definition 2.9. Let G = (V, E1, E2, μ1, μ2, σ, δ)
be a fuzzy mixed graph. Then the
order of Gis

∑
v∈V

σ (v) and size of G is( ∑
a,b∈V

μ1 (a, b) ,
∑

a,b∈V
μ2

(−→
a, b
)

,
∑

a,b∈V
δ
(−→
a, b
))

.

Example 2.10. We consider a fuzzy mixed graph
in Fig. 1. Then its order is 2.9, and the size is
(2.5, 2.2, 0.7).

3. Operations on FMG

Definition 3.1. Let G = (V, E1, E2, μ1, μ2, σ, δ)
and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy
mixed graphs. Then the Cartesian product G×G′ of
GandG′. is defined as

G×G′ = (X, Y1, Y2, μ1 × μ′1, μ2 × μ′2, σ × σ′, δ× δ′
)

where X = V × V ′ = {(v, v′) : v ∈ V, v′ ∈ V ′
}

Y1 =
{(

x, u′
) (

x, v′
)

: x ∈ V, u′v′ ∈ E′1
} ∪ {(u, y) (v, y) : uv ∈ E1, y ∈ V ′

}

Y2 =
{−−−−−−−−→(

x, u′
) (

x, v′
)

: x ∈ V,
−→
u′v′ ∈ E′2

}
∪
{−−−−−−−→

(u, y) (v, y) : −→uv ∈ E2, y ∈ V ′
}

and

(
σ × σ′

) (
v, v′

) = min
{
σ (v) , σ′

(
v′
)}

for all
(
v, v′

) ∈ X

(
μ1 × μ′1

) (
x, u′

) (
x, v′

) = min
{
σ (x) , μ′1

(
u′v′
)}

for all x ∈ V, u′v′ ∈ E′1

(
μ1 × μ′1

)
(u, y) (v, y) = min

{
μ1 (uv) , σ′ (y)

}
for all x ∈ V,

−→
u′v′ ∈ E′2

(μ2 × μ′2)
−−−−−−−−→(
x, u′

) (
x, v′

) = min
{

σ (x) , μ′2
(−→
u′v′
)}

for all x ∈ V,
−→
u′v′ ∈ E′2

(μ2 × μ′2)
−−−−−−−→
(u, y) (v, y) = min

{
μ2
(−→
uv
)
, σ′ (y)

}
for all −→uv ∈ E2, y ∈ V ′

(δ× δ′)
−−−−−−−−→(
x, u′

) (
x, v′

) = |σ(x)− μ′2
(−→
u′v′
)

| for all x ∈ V,
−→
u′v′ ∈ E′2

(δ× δ′)
−−−−−−−→
(u, y) (v, y) = |μ2

(−→
uv
)

- σ’(y)| for all −→uv ∈ E2, y ∈ V ′
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Theorem 3.2. Let G = (V, E1, E2, μ1, μ2, σ, δ) and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy mixed
graphs. Then the Cartesian product G×G′. is also a fuzzy mixed graph.

Proof. Since
(
μ1 × μ′1

) (
x, u′

) (
x, v′

) = min
{
σ (x) , μ′1

(
u′v′
)}

≤ min{ σ (x) , min
{
σ′
(
u′
)
, σ′
(
v′
)}

= min{min
{
σ (x) , σ′

(
u′
)}

, min
{
σ (x) , σ′

(
v′
)}

= min
{(

σ × σ′
) (

x, u′
)
,
(
σ × σ′

) (
x, v′

)}
Similarly,

(
μ1 × μ′1

)
(u, y) (v, y) ≤ min

{(
σ × σ′

)
(u, y) ,

(
σ × σ′

)
(v, y)

}
(μ2 × μ′2)

−−−−−−−−→(
x, u′

) (
x, v′

) ≤ min
{(

σ × σ′
) (

x, u′
)
,
(
σ × σ′

) (
x, v′

)}

(μ2 × μ′2)
−−−−−−−→
(u, y) (v, y) ≤ min

{(
σ × σ′

)
(u, y) ,

(
σ × σ′

)
(v, y)

}
Aain, (

δ× δ′
)−−−−−−−−→(

x, u′
) (

x, v′
) = ∣∣∣σ (x)− μ′2

(−→
u′v′
)∣∣∣

= ∣∣(σ × σ′
) (

x, u′
)− (σ × σ′

) (
x, v′

)∣∣
Similarly

(
δ× δ′

)−−−−−−−→
(u, y) (v, y) ≤ ∣∣(σ × σ′

)
(u, y)− (σ × σ′

)
(v, y)

∣∣
This completes the proof.

Definition 3.3. Let G = (V, E1, E2, μ1, μ2, σ, δ) and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′)
be two fuzzy mixed graphs. Then the union G ∪G′ is defined as G ∪G′ =(
V ∪ V ′, E1 ∪ E′1, E2 ∪ E′2, μ1 ∪ μ′1, μ2 ∪ μ′2, σ ∪ σ′, δ ∪ δ′

)
such that(

σ ∪ σ′
)

(x) = σ (x) ifx ∈ V − V ′

(
σ ∪ σ′

)
(x) = σ′ (x) ifx ∈ V ′ − V

(
σ ∪ σ′

)
(x) = max{σ (x) , σ′(x)} if x ∈ V ∩ V ′

(μ1 ∪ μ′1) (x, y) = μ1(x, y) if (x, y) ∈ E1 − E′1

(μ1 ∪ μ′1) (x, y) = μ′1(x, y) if (x, y) ∈ E′1 − E1

(μ1 ∪ μ′1) (x, y) = max
{
μ1 (x, y) , μ′1 (x, y)

}
if (x, y) ∈ E1 ∩ E′1

(μ2 ∪ μ′2)
(−→x, y

) = μ2(−→x, y) if (−→x, y) ∈ E2 − E′2

(μ2 ∪ μ′2)
(−→x, y

) = μ′2(−→x, y) if (−→x, y) ∈ E′2 − E2

(μ2 ∪ μ′2)
(−→x, y

) = max
{
μ2
(−→x, y

)
, μ′2

(−→x, y
)}

if (−→x, y) ∈ E2 ∩ E′2

(δ1 ∪ δ′)
(−→x, y

)
δ(−→x, y) if (−→x, y) ∈ E2 − E′2
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(δ ∪ δ′)
(−→x, y

)
δ′(−→x, y) if (−→x, y) ∈ E′2 − E2

(δ ∪ δ′)
(−→x, y

) = min
{
δ
(−→x, y

)
, δ′
(−→x, y

)}
if (−→x, y) ∈ E2 ∩ E′2

Theorem 3.4. Let G = (V, E1, E2, μ1, μ2, σ, δ) and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy mixed
graphs. Then the union G ∪G′ is also a fuzzy mixed graph.

Proof. Case-I: Let (x, y) ∈ E1 − E′1.
Then (μ1 ∪ μ′1) (x, y) = μ1 (x, y) ≤ min {σ (x) , σ (y)}

= min
{(

σ ∪ σ′
)

(x) ,
(
σ ∪ σ′

)
(y)
}

if x, y ∈ V − V ′.

Again (μ1 ∪ μ′1) (x, y) ≤ min {σ (x) , σ (y)} implies

(μ1 ∪ μ′1) (x, y) ≤ min{(σ ∪ σ′
)

(x) , max
{
σ (y) , σ′ (y)

}
= min

{(
σ ∪ σ′

)
(x) ,

(
σ ∪ σ′

)
(y)
}

if x ∈ V − V ′, y ∈ V ∩ V ′

(μ1 ∪ μ′1) (x, y) ≤ min {σ (x) , σ (y)} implies

(μ1 ∪ μ′1) (x, y) ≤ min
{

max
{
σ (x) , σ′ (x)

}
, max

{
σ (y) , σ′ (y)

}}
= min

{(
σ ∪ σ′

)
(x) ,

(
σ ∪ σ′

)
(y)
}

if x, y ∈ V ∩ V ′

Case-II: Let (x, y) ∈ E′1 − E1. Similarly, (μ1 ∪ μ′1) (x, y) ≤ min
{(

σ ∪ σ′
)

(x) ,
(
σ ∪ σ′

)
(y)
}

Case-III: Let (x, y) ∈ E1 ∩ E′1.
Then (μ1 ∪ μ′1) (x, y) = max

{
μ1 (x, y) , μ′1 (x, y)

}
≤ max{min{σ (x) , σ (y)}, min{σ′(x), σ′(y)}}

≤ min{max{σ (x) , σ′ (x)}, max{σ(y), σ′(y)}}

= min{(σ ∪ σ′)(x), (σ ∪ σ′)(y)}
Case-IV: Let

(−→x, y
) ∈ E2 − E′2. Similarly as Case-I,

(μ2 ∪ μ′2)
(−→x, y

) ≤ min
{(

σ ∪ σ′
)

(x) ,
(
σ ∪ σ′

)
(y)
}

Now,
(
δ ∪ δ′

) (−→x, y
) = δ

(−→x, y
) ≤ |σ (x)− σ (y)|

≤ | (σ ∪ σ′
)

(x)− (σ ∪ σ′
)

(y) |
Case-V: Let

(−→x, y
) ∈ E′2 − E2. Similarly as Case-II,

(μ2 ∪ μ′2)
(−→x, y

) ≤ min
{(

σ ∪ σ′
)

(x) ,
(
σ ∪ σ′

)
(y)
}

Now
(
δ ∪ δ′

) (−→x, y
) = δ′

(−→x, y
) ≤ ∣∣σ′ (x)− σ′ (y)

∣∣
≤ |(σ ∪ σ′) (x)− (σ ∪ σ′)(y)|

Case-VI: Let (−→x, y) ∈. Similarly as Case-III,

(μ2 ∪ μ′2)
(−→x, y

) ≤ min
{(

σ ∪ σ′
)

(x) ,
(
σ ∪ σ′

)
(y)
}

Now
(
δ ∪ δ′

) (−→x, y
) = min

{
δ
(−→x, y

)
, δ′
(−→x, y

)} ≤ min
{|σ (x)− σ (y)| , ∣∣σ′ (x)− σ′ (y)

∣∣}∣∣max
{
σ (x) , σ′ (x)

}−max
{
σ (y) , σ′ (y)

}∣∣
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= |(σ ∪ σ′) (x)− (σ ∪ σ′)(y)|
This completes the proof.

Definition 3.5. Let G = (V, E1, E2, μ1, μ2, σ, δ) and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy mixed
graphs. Then the join G+G′ is defined as

G+G′ = (V ∪ V ′, E1 ∪ E′1 ∪ E∗1, E2 ∪ E′2 ∪ E∗2, μ1 + μ′1, μ2 + μ′2, σ + σ′, δ+ δ′
)

such that(
σ + σ′

)
(x) = (σ ∪ σ′

)
(x) for all x ∈ V ∪ V ′

(μ1 + μ′1) (x, y) = (μ1 ∪ μ′1)(x, y) for all(x, y) ∈ E1 ∪ E′1

(μ1 + μ′1) (x, y) = min
{
σ(x), σ′(y)

}
for all(x, y) ∈ E∗1

μ2 + μ′2
(−→x, y

) = (μ2 ∪ μ′2
)

for all (−→x, y) ∈ E2 ∪ E′2

(μ2 + μ′2)
(−→x, y

) = min
{
σ (x) , σ′ (y)

}
for all (−→x, y) ∈ E′2

δ+ δ′
(−→x, y

) = (δ ∪ δ′
) (−→x, y

)
for all (−→x, y) ∈ E2 ∪ E′2

(δ+ δ′)
(−→x, y

) = min
{
σ (x) , σ′ (y)

}
for all (−→x, y) ∈ E∗2

where E∗1andE∗2 are the set of all edges joining vertices of V andV ′ where V ∩ V ′ = ∅.
Theorem 3.6. Let G = (V, E1, E2, μ1, μ2, σ, δ) and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy mixed
graphs. Then the join G+G′ is also a fuzzy mixed graph.

Proof. Case-I: Let (x, y) ∈ E1 ∪ E′1, then (μ1 + μ′1) (x, y) ≤ min
{(

σ + σ′
)

(x) ,
(
σ + σ′

)
(y)
}

by Theorem 3.4.
Now, if (x, y) ∈ E∗1 then (μ1 + μ′1) (x, y) = min

{
σ (x) , σ′ (y)

}
≤ min

{(
σ ∪ σ′

)
(x) ,

(
σ ∪ σ′

)
(y)
}

= min
{(

σ + σ′
)

(x) ,
(
σ + σ′

)
(y)
}

Case-II: Let
(−→x, y

) ∈ E2 ∪ E′2, then (μ2 + μ′2)
(−→x, y

) ≤ min
{(

σ + σ′
)

(x) ,
(
σ + σ′

)
(y)
}

by Theorem 3.4.
Now, if

(−→x, y
) ∈ E∗2, then (μ2 + μ′2)

(−→x, y
) ≤ min

{(
σ + σ′

)
(x) ,

(
σ + σ′

)
(y)
}

, by Case-I.
Case-III: Let

(−→x, y
) ∈ E2 ∪ E′2, then

(
δ+ δ′

) (−→x, y
) ≤ ∣∣(σ + σ′

)
(x)− (σ + σ′

)
(y)
∣∣, by Theorem 3.4.

Now, if
(−→x, y

) ∈ E∗2, then
(
δ+ δ′

) (−→x, y
) ≤ ∣∣(σ + σ′

)
(x)− (σ + σ′

)
(y)
∣∣

This completes the proof.

4. Complete FMG

Definition 4.1. If there exist all three types of connections, i.e. out-directed edges, in-directed edges and undirected
edges between every pair of vertices in the fuzzy mixed graph G = (V, E1, E2, μ1, μ2, σ, δ) and

μ1 (x, y) = σ (x) ∧ σ (y) for all (x, y) ∈ E1 ⊆ V × V

μ2
(−→x, y

) = σ (x) ∧ σ (y) for all
(−→x, y

) ∈ E2 ⊆ V × V

δ
(−→x, y

) = |σ(x)− σ(y)|for all
(−→x, y

) ∈ E2 ⊆ V × V

Then the graph is called a complete fuzzy mixed graph.
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Fig. 3. A complete fuzzy mixed graph.

Example 4.2. A complete FMG is assumed in Fig. 3.
Between every pair of vertices, there exist all three
types of edges with specified membership values.

Definition 4.3. A fuzzy mixed graph is called regular
if the fuzzy mixed degrees of all vertices are equal.
That is FMD (k) = constant, for all k ∈ V .

Note 4.4 Every complete fuzzy mixed graph may not
be regular. A fuzzy mixed graph given in Example
4.2 is complete, but it is not regular.

Definition 4.5. Let G = (V, E1, E2, μ1, μ2, σ, δ) be
a FMG and G′ = (V, E′, E′′, μ′1, μ

′
2, σ
′, δ′
)

be a
corresponding complete fuzzy mixed graph. The
complement of G is denoted as Gc and defined
as Gc = (V, EC

1 , EC
2 , μc

1, μ
c
2, σ

c, δc
)

where EC
1 ∪

E1 = E′ and EC
2 ∪ E2 = E′′ such that

σc (x) = σ (x) for all x ∈ V

μc
1 (x, y) = {σ (x) ∧ σ (y)} − μ1(x, y) for all (x, y) ∈ EC

1

μc
2

(−→x, y
) = {σ (x) ∧ σ (y)} − μ2(−→x, y) for all

(−→x, y
) ∈ EC

2

δc
(−→x, y

) = |σ(x)− σ(y)| − δ
(−→x, y

)
for all

(−→x, y
) ∈ EC

2 .

Example 4.6. We consider a fuzzy mixed graph G
consisting of three vertices {a, b, c}. The member-
ship values of vertices and edges are shown below
in Fig. 4. The corresponding complement Gc of G is
shown below in Fig. 5.

Fig. 4. A fuzzy mixed graph G

Fig. 5. Complement Gcof G.

Remark 4.7. The complement of a complete fuzzy
mixed graph may not always be a null graph.

Theorem 4.8. The complement of the complement
of a fuzzy mixed graph is again the same graph. If
Gbeafuzzymixedgraphthen(Gc)c = G.

Proof. since (σc)c(x) = σc(x) = σ(x), (μc
1)c

(x, y) = {σ(x) ∧ σ(y)} − μc
1(x, y) = μ1(x, y),
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(μc
2)c(−→x, y) = {σ(x) ∧ σ(y)} − μc

2(−→x, y) = μ2(−→x, y)
and (δc)c(−→x, y) = |σ(x)− σ(y)| − δc(−→x, y) = δ(−→x, y).
Thus (Gc)c = G.

5. Matrix representation of FMG

Two types of matrix representations of a fuzzy
mixed graph are described below. One is the adja-
cency matrix, and another is the incidence matrix.

5.1. Adjacency matrix

To find adjacency matrix of FMG, we define adja-
cency value ad

(
vi, vj

)
of vertex vi with vertex vj

where

ad(vi, vj) = (μ1(vi, vj), μ2(−−→vj, vi)[1+ δ(−−→vj, vi)],

μ2(−−→vi, vj)[1+ δ(−−→vi, vj)])

The adjacency matrix isn× n square matrix whose
elements are

aij =
{

ad
(
vi, vj

)
, if there is an edge between vi and vj

(0, 0, 0) , if there is no edge betwee vi and; vj

Now the adjacency matrix of a fuzzy mixed graph
(Fig. 1) is given below.

a b c d

a (0,0,0) (0.4,0,0) (0.7,0,0) (0.6,0.6,0)
b (0.4,0,0) (0,0,0) (0.5,0,0.72) (0,0,0)
c (0.7,0,0) (0.5,0.72,0) (0,0,0) (0.3,0.6,0.66)
d (0.6,0,0.6) (0,0,0) (0.3,0.66,0.6) (0,0,0)

Observations:

i. Non-zero entries of the matrix (at least one com-
ponent of the entry is non zero) indicate, there
are some connections between the correspond-
ing vertices. The connections may be undirected
or directed.

ii. Zero entries (all components are zero) indicate
that there does not exist any edge between the
corresponding vertices.

An associated term adjacency number
adn

(
vi, vj

)
is defined as follows.

adn(vi, vj) = μ1(vi, vj)+ μ2(−−→vj, vi)[1+ δ(−−→vj, vi)]

− μ2(−−→vi, vj)[1+ δ(−−→vi, vj)]

5.2. Incidence matrix

We define incidence value In (u, v) of the edge
((u, v) ,

(−→
v, u
)
,
(−→
u, v
)
)) to the vertex u from v as

In(u, v) = (μ1(u, v), μ2(v, u)[1+ δ(v, u)],

μ2(u, v)[1+ δ(u, v)])

aij =
{

In(u, v), if an edge incident to u from v

(0, 0, 0) if an edge not incident to u from v

Then the incidence matrix of a fuzzy mixed graph
(Fig. 1) is shown below.

(a,b) (b,c) (a,c) (c,d) (a,d)

a (0.4,0,0) (0,0,0) (0.7,0,0) (0,0,0) (0.6,0,0.6)
b (0.4,0,0) (0.5,0.72,0) (0,0,0) (0,0,0) (0,0,0)
c (0,0,0) (0.5,0,0.72) (0.7,0,0) (0.3,0.66,0.6) (0,0,0)
d (0,0,0) (0,0,0) (0,0,0) (0.3,0.6,0.66) (0.6,0.6,0)

Observations:
i Non-zero entries of the matrix (at least one com-

ponent of the entry is non zero) indicate, there are
some connections between the corresponding vertex
and edge.

ii Zero entries (all components are zero) indicate
that there does not exist any connection between the
corresponding vertex and edge.

6. Isomorphism on FMG

Definition 6.1. Let G = (V, E1, E2, μ1, μ2, σ, δ)
and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy
mixed graphs. Then a homomorphism from G to G′
is a mapping f : V → V ′ such that

σ (x) ≤ σ′ (f (x)) for allx ∈ V

μ1 (x, y) ≤ μ′1(f (x), f (y)) for all x, y ∈ V

μ2
(−→x, y

) ≤ μ′2(f (x), f (y)) for all x, y ∈ V

δ
(−→x, y

) ≤ δ′(f (x), f (y)) for all x, y ∈ V

Definition 6.2 Let G = (V, E1, E2, μ1, μ2, σ, δ)
and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy
mixed graphs. Then G and G′ are said to be isomor-
phic if there exists a bijective mapping f : V → V ′
such that

σ (a) = σ′ (f (a)) for alla ∈ V
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μ1 (a, b) = μ′1 (f (a), f (b)) for all x, y ∈ V

μ2

(−→
a, b
)
= μ′2 (f (a), f (b)) for all x, y ∈ V

δ
(−→
a, b
)
= δ′
−−−−−−−−→
(f (a) , f (b))for all x, y ∈ V.

If G and G′ are isomorphic, then we write G ∼= G′.

Remark 6.3. An isomorphism on fuzzy mixed graphs
preserves both the weights of vertices and edges.

Definition 6.4 Let G = (V, E1, E2, μ1, μ2, σ, δ)
and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy
mixed graphs. Then aweak isomorphism from G to
G′ is a bijective mapping f : V → V ′ such that

σ (a) = σ′ (f (a)) for all a ∈ V

Remark 6.5 A weak isomorphism on fuzzy mixed
graphs preserves only the weights of vertices.

Definition 6.6 Let G = (V, E1, E2, μ1, μ2, σ, δ)
and G′ = (V ′, E′1, E′2, μ′1, μ′2, σ′, δ′) be two fuzzy
mixed graphs. Then a co-weak isomorphism from G

to G′ is a bijective mapping f : V → V ′ such that

μ1 (a, b) = μ′1 (f (a) , f (b)) for allx, y ∈ V

μ1

(−→
a, b
)
= μ′2 (f (a), f (b)) for all x, y ∈ V

δ
(−→
a, b
)
= δ′
−−−−−−−−→
(f (a) , f (b))for allx, y ∈ V

Remark 6.7. A co-weak isomorphism on fuzzy
mixed graph preserves only the weights of edges.

Theorem 6.8. If any two fuzzy mixed graphs are iso-
morphic, then their order and size are the same.

Proof. Let f be an isomorphism from
G = (V, E1, E2, μ1, μ2, σ, δ) to G′ =

(
V ′, E′1, E

′
2, μ
′
1, μ
′
2, σ
′, δ′
)
. Then the order of

a graph G by Definition 6.2 = orderofG′.
Again, since

∑
a,b∈V

μ1 (a, b) =
∑

a,b∈V
μ′1 (f (a) , f (b)),

∑
a,b∈V

μ2

(−→
a, b
)
=

∑
a,b∈V

μ′2
(−−−−−−−→
f (a) , f (b)

)
and

∑
a,b∈V

δ
(−→
a, b
)
=

∑
a,b∈V

δ′
−−−−−−−−→
(f (a) , f (b)), by Definition 6.2.

Therefore the size of G is equal to the size of G′.

Theorem 6.9 If any two fuzzy mixed graphs are iso-
morphic, then fuzzy mixed degrees of their vertices
are the same.

Proof. Let f be an isomorphism from
G = (V, E1, E2, μ1, μ2, σ, δ) to G′ =(
V ′, E′1, E

′
2, μ
′
1, μ
′
2, σ
′, δ′
)
. Then the fuzzy mixed

degree of a vertex vk ∈ V ,

FMD (vk) =
∑

vjεN(vk)

μ1
(
vj, vk

)+ ∑
vj∈N+(vk)

μ2
(−−−→
vk, vj

) [
1+ δ

(−−−→
vk, vj

)]

−
∑

vj∈N−(vk)

μ2
(−−−→
vj, vk

) [
1+ δ

(−−−→
vj, vk

)]

=
∑

f (vj)∈N(f (vk))

μ′1
(
f (vj), f (vk)

)+ ∑
fvj∈N+(f (vk))

μ′2
(−−−−−−−→
f (vk), f (vj)

) [
1+ δ′

(−−−−−−−→
f (vk), f (vj)

)]

−
∑

f (vj)∈N−(f (vk))

μ′2
(−−−−−−−→
f (vj), f (vk)

) [
1+ δ′

(−−−−−−−→
f (vj), f (vk)

)]

= FMD′(f (vk)) which is the fuzzy mixed degree
f (vk) ∈ V ′.

This completes the proof.

Theorem 6.10 Two fuzzy mixed graphs are isomor-
phic if and only if their complements are isomorphic.

Proof. Let G = (V, E1, E2, μ1, μ2, σ, δ) and G′ =(
V ′, E′1, E

′
2, μ
′
1, μ
′
2, σ
′, δ′
)

be two fuzzy mixed
graphs.

AssumeG ∼= G′. Then there exists a bijective map-
ping f : V → V ′ such that

σ (a) = σ′ (f (a)) for all a ∈ V

μ1

(−→
a, b
)
= μ′1 (f (a), f (b)) for all a, b ∈ V

μ1

(−→
a, b
)
= μ′2 (f (a), f (b)) for all a, b ∈ V
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δ
(−→
a, b
)
= δ′
−−−−−−−−→
(f (a) , f (b))for all a, b ∈ V

Now, μc
1 (a, b) = {σ (a) ∧ σ (b)} − μ1 (a, b)

= {σ′ (f (a)) ∧ σ′ (f (b))
}− μ′1(f (a),f (b))

= μc′
1 (f (a), f (b)) for all a, b ∈ V

Similarly, μc
2

(−→
a, b
)
= μc′

2

(−−−−−−−→
f (a) , f (b)

)
and

δc
(−→x, y

) = δc′
(
f
(−−−−→
x), f (y

))
forall a, b,∈ V .

Thus Gc ∼= Gc′ . Conversely, let Gc ∼= Gc′ . Then
there exists a mapping h : V → V ′ such that

σ (a) = σ′ (h (a)) for alla ∈ V

μc
1 (a, b) = μc

1’ (h (a) , h (b)) ,

for all a, b ∈ V

μc
2

(−→
a, b
)
= μc′

2
−−−−−−−−→
(h (a) , h (b))for all a, b ∈ V

δc
(−→
a, b
)
= δc′−−−−−−−−→(h (a) , h (b))for all a, b ∈ V

Now, μc
1 (a, b) = μc′

1 (f (a) , f (b)) implies

{σ(a) ∧ σ(b)} − μ1(a, b) = {σ′(h(a)) ∧ σ′(h(b))}
− μ′1(h(a), h(b))

Therefore, μ1(a, b) =
μ1’(h(a), h(b))for all a, b ∈ V , since σ(a) =
σ′(h(a)).

Similarly, μ2(
−→
a, b) = μ′2

−−−−−−−→
(h(a), h(b)) for all a, b ∈

V δ(
−→
a, b) = δ′

−−−−−−−→
(h(a), h(b))for all a, b ∈ V Thus G ∼=

G′. This completes the proof.

7. Application to the identification of
COVID19 affected central regions in India

To identify the central regions through the fuzzy
mixed graph, a network of COVID19 affected regions
in India are assumed. The data has been shown in
Table 2. The node membership values are assumed
proportional to the number of affected people in the
region. For this case, the membership values are the
normalized value of the number of affected people.

The links between any two regions are based on
the data collected from www.covid19india.org dated
12th June 2020. The membership values for the links
are assumed as per the availability of data of mutual
relation between the countries. The default case of the

Table 2
Collected data of COVID19 in India from official website

https://www.mohfw.gov.in/ dated 12.06.2020

Sr. No States Number of Node
(INDIA) COVID19 membership

affected values
People values

1 Maharashtra 94041 1
2 Tamil Nadu 36841 0.39
3 Delhi 32810 0.35
4 Telangana 4111 0.04
5 Kerala 2161 0.02
6 Rajasthan 11600 0.12
7 Uttar Pradesh 11610 0.12
8 Andhra Pradesh 5269 0.06
9 Madhya Pradesh 10049 0.11
10 Karnataka 6041 0.06
11 Gujarat 21521 0.23
12 Haryana 5579 0.06
13 Jammu and Kashmir 4507 0.05
14 West Bengal 9328 0.1
15 Punjab 2805 0.03
16 Odisha 3250 0.03
17 Bihar 5710 0.06
18 Uttarakhand 1562 0.02
19 Assam 3092 0.03

Table 3
Directed edge membership values of the network in Fig. 6

Directed Membership Measure of Adjacency
Edges values directedness number

(3,2) 0.35 0.04 0.36
(3,7) 0.12 0.23 0.15
(3,9) 0.11 0.24 0.14
(3,13) 0.05 0.3 0.07
(3,14) 0.1 0.25 0.13
(3,15) 0.03 0.32 0.04
(3,17) 0.06 0.29 0.08
(3,18) 0.02 0.33 0.03
(3,19) 0.03 0.32 0.04
(5,2) 0.02 0.37 0.03
(5,8) 0.2 0.04 0.21
(5,10) 0.02 0.04 0.02
(6,1) 0.12 0.88 0.23
(6,11) 0.12 0.11 0.13
(10,1) 0.06 0.84 0.11
(1,7) 0.12 0.88 0.23
(1,17) 0.06 0.94 0.12
(1,16) 0.03 0.97 0.06
(1,14) 0.1 0.9 0.19
(2,7) 0.12 0.27 0.15
(2,17) 0.06 0.33 0.08
(2,16) 0.03 0.36 0.04
(2,14) 0.1 0.29 0.13
(11,7) 0.12 0.11 0.13
(11,17) 0.06 0.17 0.07
(11,16) 0.03 0.2 0.0s4
(11,14) 0.1 0.13 0.11
(1,3) 0.35 0.65 0.58
(1,6) 0.12 0.88 0.23
(1,15) 0.03 0.97 0.06
(1,11) 0.23 0.77 0.41
(1,5) 0.02 0.98 0.04
(1,9) 0.11 0.89 0.21

www.covid19india.org
website https://www.mohfw.gov.in/ dated 12.06.2020
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Table 4
Undirected edge membership values of Fig. 6

Undirected edges Membership values Adjacency
(u, v) μ1 (u, v) number

(3,6) 0.32 0.32
(4,9) 0.22 0.22
(4,16) 0.04 0.04
(7,9) 0.22 0.22
(9,14) 0.1 0.1

link membership values is the minimum of end ver-
tex membership values. The edge membership values
of directed edges are shown as the adjacency matrix
in Table 3. Along with this, the measure of direct-
edness has been shown in the same table. Also, the
corresponding adjacency number is calculated. The
membership values of undirected edges are shown in
Table 4.

To measure central regions of COVID19 affected
states, a fuzzy mixed graph is considered with
the above-mentioned data. The corresponding fuzzy
mixed graphs have been shown in Fig. 6. Central-
ity measurement is essential in networks. There are

lots of centrality measure [41] available in networks,
including degree centrality. But degree centrality
does not capture the notion of uncertainty and mea-
sure of directedness. Degree centrality only counts
the direct effects of a directed link. For mixed graphs,
degree centrality counts the out-directed links and
the undirected links. This study introduces another
measure of centrality, namely Fuzzy mixed degree
centrality. Fuzzy mixed degree centrality is sum of
the adjacency numbers of its adjacent edges. Based
on this study, fuzzy mixed degree centrality is equiv-
alent to degree centrality and captures uncertainty
perfectly. The Fuzzy mixed degree centralities of all
nodes have been shown in Table 5.

7.1. Algorithm

Calculation of fuzzy mixed degree centrality is
summarized below.

Step 1: Construct a fuzzy mixed graph where both
directed edges and undirected edges present in the
network. For the mentioned case, the node member-

Fig. 6. COVID19 affected network in India.
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Table 5
Fuzzy mixed degree centrality of selected vertices

Sr. No. States Degree Fuzzy Mixed
(region) Centrality Degree Centrality

1 Maharashtra 10 1.79
2 Tamil Nadu 4 0.01
3 Delhi 10 0.58
4 Telengana 2 0.07
5 Kerala 3 0.22
6 Rajasthan 3 0.25
7 Uttar Pradesh 1 –0.48
8 Andhra Pradesh 0 –0.21
9 Madhya Pradesh 3 –0.21
10 Karnataka 1 0.09
11 Gujarat 4 –0.19
12 Haryana 0 0
13 Jammu and Kashmir 0 –0.07
14 West Bengal 1 –0.46
15 Punjab 0 –0.1
16 Odisha 1 –0.11
17 Bihar 0 –0.35
18 Uttarakhand 0 –0.03
19 Assam 0 –0.04

ship values are assumed proportional to the number
of affected people in the region. For this case, the
membership values are the normalized value of the
number of affected people. The membership values
for the links are assumed as per the availability of data
of mutual relation between the countries. The default
case of the link membership values is the minimum
of end vertex membership values.

Step 2: Adjacency numbers are calculated for each
edge. Then fuzzy mixed degree centrality of any ver-
tex is the sum of all the adjacency numbers of all
adjacent edges (directed and undirected). Alterna-
tively, the fuzzy mixed degree centrality is calculated
by the following formula.

FMD(v) =
∑

viεN(v)

μ1(vi, v)+
∑

vj∈N+(v)

μ2(−−→v, vj)

[1+ δ(−−→v, vj)]−
∑

vk∈N−(v)

μ2(−−→vk, v)[1+ δ(−−→vk, v)]

Notations have their usual meanings.

7.2. Result and comparative analysis

In Fig. 7, it is seen that the fuzzy mixed degree
may be negative. The values are normalized in this
case. Thus the values range between –1 to +1. Higher
the values indicate higher the chances to spread
COVID19 to others. Similarly, lower fuzzy mixed
degree centrality indicates fewer chances to spread
the COVID19 to other states. Along with this, degree

Fig. 7. Comparision of degree centrality and fuzzy mixed degree
centrality (on the normalized data).

centrality is shown. For node 1, both the centrality
indicates the same. For node 3, the degree centrality
is high, but the fuzzy mixed degree centrality is low.
This is because the crisp data do not represent the
amount of connectedness.

8. Conclusions

This study captured the notion of ‘measure of
directedness’ for the first time in the literature. This is
the main advantage of this study from previous. How
fast the information can be transferred is deduced
from this measure of directedness. Several basic prop-
erties have been developed. These theories are the
backbone of a new branch of fuzzy graph theory,
namely as fuzzy mixed graph theory.

Thus this study will be very helpful for future
research to introduce the most of fuzzy mixed graph
theory topics, i.e. interval-valued fuzzy mixed graphs,
generalized fuzzy mixed graphs, fuzzy mixed planar
graphs etc. and applicable in many real problems in
science and engineering.
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