
Journal of Intelligent & Fuzzy Systems 29 (2015) 2707–2715
DOI:10.3233/IFS-151974
IOS Press

2707

The comparison of significance of fuzzy
community partition across optimization
methods

Hui-Jia Li∗
School of Management Science and Engineering, Central University of Finance and Economics, Beijing, China

Abstract. The analysis of fuzzy(overlapping) community structure in complex networks is an important problem in data mining
of network data sets. However, due to the exist of random factors and error edges in real networks, how to measure the significance
of community structure efficiently is a crucial question. In this paper, we present a novel statistical framework comparing the
significance of fuzzy community structure across various optimization models. Different from the universal approaches, we
calculate the similarity between a given node and its leader and employ the distribution of link tightness to derive the significance
score, instead of a direct comparison to a randomized model. Based on the distribution of community tightness, a new “p-
value” form significance measure is proposed for community structure analysis. Specially, the well-known approaches and their
corresponding quality functions are unified to a novel general formulation, which facilitate providing a detail comparison across
them. To determine the position of leaders and their corresponding followers, an efficient algorithm is proposed based on the
spectral theory. Finally, we apply the significance analysis to some famous benchmark networks and the good performance verified
the effectiveness and efficiency of our framework.
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1. Introduction

A common feature observed in real networks is the
presence of community structures [1–5, 18], i.e. sub-
graphs which are densely connected to each other while
less connected to the subgraphs outside. In many sce-
narios, nodes in a network can belong to more than one
community, called fuzzy(overlapping) communities
[2–9]. In order to estimate how much a decomposition
of a network which is found by a community detection
algorithm is meaningful, we need a quality measure.
Consequently, for a particular measure, the community
detection algorithms can be ranked. To this end, various
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measures have been proposed in the literature, so far.
The most prevalent measure which has been used exten-
sively in the literature is due to Newman and Girvan
[18]. This measure, called modularity, quantifies how
much the density of the edges inside identified com-
munities differs from the expected edge density in an
equivalent network with similar number of vertices and
edges but randomized edge placement, which is taken as
the null model for statistical tests. Considering the mod-
ularity measure, the community detection problem is
transformed to the modularity maximization problem.
Modularity function can naturally extended to fuzzy
form, which used to detect overlapping communities.

Recently, some optimization algorithms based on
Potts models which used to detect community struc-
ture have attracted attention. Communities correspond
to Potts model spin states, and the associated system
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energy indicates the quality of a candidate partition. It
models an inhomogeneous ferromagnetic system where
each node is viewed as a labeled spin in the network. Let
A be the adjacency matrix of graph G and let σi denote
the label of the community that node i belongs to. Fur-
thermore, the Kronecker Delta function is defined by
δ(σi, σj) = 1 if σi = σj and δ(σi, σj) = 0, otherwise.
Having the community membership labels σ, Reichardt
and Bornholdt (RB) [16] proposed a generalized Hamil-
tonian as the core energy function,

HRB({σ}) = −1

2

∑
i /= j

(aij − γRBpij)δ(σi, σj). (1)

where γRB is the resolution parameter, pij ∈ R is the
random form of adjacent matrix A = (aij). The Potts
dynamical model is a powerful tool which has been
wildly applied to uncover the dynamics of community
structure in networks [8, 9].

Label propagation is another famous algorithm for
community detection [27]. Briefly, the algorithm starts
with randomly assigning a community label to each
node. Then, each node updates its label by replacing it
by the label most used by its neighbors. The other well-
known optimization approaches used in community
detection problem are Simulated Annealing (SA) [25],
extermal optimization (DA) [13], expectation maxi-
mization [20], Bayesian inference [17], and variational
Bayes [15]. For a comprehensive and comparative
review on this topic we refer the reader to [4].

Although a lot of optimization method and their
functions are proposed, How to determine the hidden
properties of a given community [9] effectively remain
unclearly answered. To answers these crucial questions,
in this paper, we present a novel statistical framework
comparing the significance of soft community structure
across various optimization methods. Different from
the universal approaches, we calculate the similarity
of a given node to its leader and employ the distribu-
tion of link tightness to derive the significance score,
instead of a direct comparison to a randomized model.
A small example is shown in Fig. 1a, which illustrates
that tighter the following nodes link to its leader, more
significant the community is. Based on the distribu-
tion of community tightness, a new “p-value” form
significance measure is proposed for community struc-
ture analysis. Specially, the well-known approaches and
their corresponding quality functions are unified to a
novel general fuzzy formulation, to provide a detail
comparison across them. Then, we can choose the most
suitable form of the function by set the parameters prop-

S
ig

ni
fic

an
ce

Fuzziness

Fig. 1. (a) For a given community, the leader node usually locates
on the highest level, representing the most influential node. Circles
depict different levels in the network hierarchy, with the darkest
color denoting the highest level. Tighter the following nodes link
with its leader, more significant the community is. (b) The procedure
of our framework. First, for a given network shown in the left
subgraph, we derive the centers represented by triangle nodes in
the right subgraph and their corresponding community partition
highlighted with different colors. Then, based on the position of
center and other following nodes, a new “p-value” form significance
measure is proposed to measure the quality of community structure,
which is shown in lower subgraph.

erly. To determine the position of leaders and their cor-
responding followers, an efficient fuzzy detection algo-
rithm is proposed based on the spectral theory. Finally,
we apply the significance analysis to some famous
benchmark networks and the good performance veri-
fied the effectiveness and efficiency of our framework.
The detailed procedure can be observed in Fig. 1b.

2. Community structure and the leader

Leader-driven algorithms [11, 12] constitute a spe-
cial case of seed-centric approaches. These methods
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Fig. 2. (a) The network topology of Zachary karate network. Two
communities are represented by different shapes and colors. Node 1
and 34 are leaders which highlighted in the origin graph. (b) In every
circle, sectors with different colors represent different communities.
It can be noticed that the community partition in the rightmost cir-
cle is strongest due to the fewest intercommunity edges. When we
use a given optimization method to evolve the community configure
X (describe by different sectors) based on maximizing the objective
function max Q = f (X), the significance of X also evolves corre-
spondingly. The F score is utilized to measure the significance of
community configure X. Here, the global maximum of F is maybe
an asymptotically stable fixed point of dynamical system associates
to community configure X in the rightmost circle.

show that, in many real world, especial the social net-
works, nodes of a network are usually classified into two
categories: leaders and followers. For example, consid-
ering the famous Karate network [28], nodes 1 and 33
are two significant leaders and corresponding commu-
nities are built around them (see Fig. 2a). If two leaders
are removed, these communities will be split up, as
they link to most followers and keep the community
together. Since community are consequence of infor-
mation spreading, a given community can be defined
as the area in which a leader has most influence. So,
one can uncover the community partition by finding
all natural leaders and their corresponding followers
on which they influence. We believe if followers are
more tightly linked to the leader, or leader spreads more
influence on their followers, this community are more

significant or robust. When we use a given optimization
method to evolve the community configure, the signif-
icance of communities also evolves correspondingly,
which shown in Fig. 2b.

3. The fuzzy community detection algorithm
based on leader position

In this study, the relative positions of leader and
corresponding followers are crucial to analyze the sig-
nificance situation. In order to obtain the leader of
corresponding community, we extract the candidate
fuzzy membership by minimizing the following objec-
tive function

Jm =
n∑

i=1

k∑
j=1

xij‖di − cj‖2, (2)

where variables xij is the fuzzy membership that node i

in community j, with
∑

j xij = 1. This method is simi-
lar as the famous k-means method and can be obtain
both center and assignment iteratively. di is the ith
n-dimensional data point, cj is the n-dimensional cen-
ter(leader) of the community j, and ‖ ∗ ‖ is any norm
expressing the similarity between a given node and the
center. One can use an iterative optimization of the
objective function shown above, to obtain the network
partition by the update of fuzzy membership xij and the
community leaders cj . This procedure converges to a
local minimum or a saddle point of Jm.

Suppose K is the upper bound of number of clusters
and A = (aij)n×n is the adjacent matrix of a network,
then, the detailed algorithm is shown in Algorithm 1
and stated straightforwardly as follows:
Step 1: for a given K

(i) Calculate the diagonal matrix D = (dii), where dii =∑
k aik.

(ii) Computing the top K eigenvectors based on gen-
eralized eigensystem Ax = tDx, and then establish the
eigenvector matrix EK = [e1, e2, ..., eK].
Step 2: for each number of communities 2 ≤ k ≤ K:
(i) Establish the matrix EK = [e2, e3, ..., eK] from the
matrix EK.
(ii) Normalize the rows of EK to unit length using
Euclidean distance norm.
(iii) Cluster the row vectors ofEK using any community
detection method by minimizing Equation.(2) to obtain
a membership matrix Xk and corresponding leaders.
Step 3: Maximizing the modular function: Pick the opti-
mal number of communities k and the corresponding
partition Xk that maximizes Q(Xk).
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In step 1, given the adjacent matrix A = (aij)n×n

and a diagonal matrix D = (dii), dii = ∑
k aik, two

matrices D−1/2AD−1/2 and D−1A are used. This is
motivated by Ref. [7], which uses the top K eigen-
vectors of the generalized eigensystem Ax = tDx

instead of the K eigenvectors of the adjacent matrix. It
shows that after normalizing the rows using Euclidean
norm, their eigenvectors are mathematically identical
and emphasize that this is a numerically more stable
method. In step 2, we choose the initial the starting
centers to be as orthogonal as possible which already
used in k-means clustering method [6, 26]. This way
of choosing centers(leaders) does not cost additional
time complexity, and also improve the quality of the
partition, thus at the same time reduces the need for
restarting the random initialization process. In step
3, the Q function measures the quality of a given
community structure organization of a network and
can be used to automatically select the optimal number
of communities k according to the maximum Q

value [26], we will discuss the multiple optimization
methods and their corresponding Q function in detail
in the following section.

Algorithm 1 The fuzzy community detection algorithm
Require: Graph G with size n and volume m, the

algorithm parameters, i.e. f+
µ , f−

µ and Rµ which
shown in Equation. (3)

Ensure: The fuzzy membership matrix X;
1: For a given number of communities K

2: repeat
3: Calculate the top K eigenvector matrix EK =

[e1, e2, ..., eK] and initiate the community mem-
bership X(0) = EK.

4: Update the position of center and corresponding
community membership matrix X to minimize the
Equation.(2)

5: Until exceeding the maximum number of itera-
tions

6: Select the optimal number of communities K and
corresponding community membership according
to the maximum of Q defined in Equation. (3)

4. The general and expanded formation
of function Q

For many community detection algorithms, the tar-
get function Q is critical. Here, Q can be tried to be
optimized has the following general fuzzy form:

Qiµ =
n∑

j=1

f+
µ aijxjµ

−
n∑

j=1

f−
µ (1 − aij)xjµ + Riµ, (3)

and choose Riµ such that ∂Riµ/∂xiµ = 0 and Rmu =∑n
i=1 Riµ, e.g. Riµ = 2

lµ
Rmu. Interestingly, when all

xiµ are in fuzzy membership state, the H function with
Qiµ defined as Equation. (3) can be reduced to well-
known measures by following considerations:
(1) Hofman and Wiggins [15]

f+
µ = log

pin

pout
, f−

µ = log
1 − pout

1 − pin
,

Rµ = lµ log πµ. (4)

(2) Ronhovde and Nussinov [23]

f+
µ = 1, f−

µ = min
µ

pin,µ, Rµ = 0. (5)

(3) RB Potts model (Erdős-Rényi null model) [16]

f+
µ = 1 − γRBp, f−

µ = γRBp, Rµ = 0. (6)

(4) RB Potts model (Configuration null model)[16]

f+
µ = 1 − γRB

2m
, f−

µ = γRB

2m
,

Rµ =
∑
i>j

γRB

2m
(kikj − 1)xiµxjµ. (7)

where ki is the degree of node i and m is the number of
all edges in the network.
(5) Modularity [18]

f+
µ = 1, f−

µ = kikj

2m
, Rµ =

∑
i>j

1

2m
(kikj − 1)xiµxjµ.

(8)
where ki is the degree of node i and m is the number of
all edges in the network.
(6) Label propagation [27]

f+
µ = 1, f−

µ = 0, Rµ = 0. (9)

where ki is the degree of node i and m is the number of
all edges in the network.

5. Significance of community structure

It is essential to establish a detail framework analyz-
ing the significance of community structure, since real
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networks own specific characteristics [5, 10, 29]. In this
section, we discuss these important characteristics and
give a detailed introduction of the framework.

Node similarity. We define the similarity of nodes i and
j, sim(i, j), as the ratio between the intersection and the
union of their neighborhoods �(i) and �(j),

sim(i, j) = |�(i) ∩ �(j)|
|�(i) ∪ �(j)| , (10)

By employing Equation. (10), we can calculate the
expected similarity between a given node and the com-
munity leader z,

E[sim(x, z)] =
∫

RM

sim(x, z)Q(x|z)dx, (11)

where Q(x|z) is a distribution of nodes in a community
with leader z.

Next, using the maximum entropy principle, the sta-
tistical unbiased distribution fulfilling constraint can be
obtained using the maximum entropy principle:

Q(x|z, η) = 1

Zη

P0(x)eηsim(x,z)dx, (12)

where P0(x) is the background distribution used to con-
trast with an alternative hypothesis: node x being part
of a community, a group of nodes distinguished by
enhanced mutual similarity. Zη is the normalisation
constant depends on the value of the scoring param-
eter η:

∂

∂η
log Zη = E[sim(x, z)]. (13)

η is the parameter which used to control the “width” of
a community and the larger the value of η, the smaller
the expected width or scale of a given community.
Specially, the distribution Q(x|z, η) is the same as the
background model P0(x) when η = 0.

Log-likelihood score and community tightness. We
define the log-likelihood score as the deviations of the
community distribution from the null model

s(x|z, η) ≡ log
Q(x|z, η)

P0(x)
= ηsim(x, z) − log Zη.

(14)
By Equation. (14), nodes which are more likely to be
in a community with center z and scoring parameter η

own larger positive value, than in the null background
model. Given a community with nodes set {1, ..., N},
for a given leader z and a scoring parameter η, the log-
likelihood scores s(i|z, η) are positive. The community

tightness is the sum of the scores of the community
elements,

S(1, ..., N|z, η) =
∑

i

max[s(i|z, η), 0]. (15)

However, we can’t determine the scoring parameter
η easily. Here, the tightness function of Equation.(15)
can be simplified as:

S(1, ..., N|z, η) =
N∑

i=1

max[s(i|z) − µ, 0], (16)

where s(i|z) = sim(i, z). By this transformation, one
can control the width of community using parameter
µ simply. The community tightness is determined both
by the number of elements and by their similarities
with the leader, that is, tighter communities with fewer
elements own comparable more tightness to looser but
larger communities.

Calculation of Significance score. We can the quanti-
fied the quality of the true and random communities by
characterize the distribution of the tightness score p(S)
from the background distribution. A new “p-value”
form measure [14] can be used to define the statistical
significance of score S0, as the probability that a ran-
dom chosen nodes set contains a community with score
greater than or equal to S0. This “p-value” form signif-
icance can be explained by a null hypothesis: “These
nodes are drawn from the background distribution”. To
test this hypothesis, we compute the statistical signif-
icance of score S0: low value suggests that the null
hypothesis is unlikely and allows for rejecting it. This
method provides a new connection between statistical
p-value theory and network analysis and then get an
interesting significance measure.

If the network is large enough, according to the
mean field theory, si = s(i|z) owns an approximate
Gaussian-distribution with variance M, P(s(i|z)) =√

1/(2Mπ) exp{−s2/(2M)}. The distribution of the
tightness S can be calculated straightforwardly using
the derivation. Specifically, we need to compute the
following quality function:

Zc(β, µ) =
∫

RN

eβS(1,...,N|z,η)P(s1)...P(sN )ds1...dsN

=
[∫ +∞

−∞
eβ max[si−µ,0]P(s)ds

]N
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=
[∫ µ

−∞
P(s)ds +

∫ +∞

µ

eβ(si−µ)P(s)ds

]N

=
[

(1 − H(µ)) + e
(β)2

2 −βµH(µ − β)

]N

, (17)

where H(x) = ∫ +∞
x

1√
2π

e− 1
2 y2

is the complementary
cumulative Gaussian distribution. In Equation.(17), two
intervals are divided: below the score threshold µ, the
score is zero, which contributes the cumulative dis-
tribution

∫ µ

−∞ ds/(2π)1/2 exp[−s2/2] to the generating
function. Above µ, the score is positive, which gen-
erates a contribution of

∫ +∞
µ

ds/(2π)1/2 exp[−s2/2 +
β(s − µ)]. The free energy function reads

−βf (β, µ) = log[(1 − H(µ)) + e
(β)2

2 −βµH(µ − β)],
(18)

and the entropy is

ω(s, µ) = − max
β

[βs + βf (β, µ)]. (19)

Using the distribution of community tightness, there is

log p(S, µ) 
 Nω(S/N, µ) − 1

2
log N. (20)

Given a specifical community, we can calculated the
significance score F using the probability that the com-
munity tightness S, p(S), larger than or equal to S,

F (S, µ) =
∫ +∞

S

p(S
′
, µ)dS

′
. (21)

Furthermore, from the perspective of the whole net-
work, we use the average significance score 〈F 〉Q to
indicate the robustness of a partition, defined as the
average value among F values of all communities par-
titioned by maximizing a particular quality function Q

shown in Section 4.

6. Experiments on benchmark network

In this section, we will test the validity of our frame-
work on some famous benchmark network and real
networks.

GN benchmark network. First, we apply to the
classical Girven-Newman benchmark [21], where the
network with n = 128 nodes are divided into four 32
nodes communities. According to the establish mech-
anism, the community structure will fuzzier and thus
when 〈kout〉 increases, it is more difficult to identify

them correctly. Hence, the significance of communi-
ties will tend to be weaker and the value of F index
will also decrease. The comparison results of F value
corresponding to all five optimization algorithms are
shown in Fig. 3a when µ = 0.3. It can be observed that
the index F has a great performance on GN benchmark:
when 〈kout〉 approaching 0, the community structure is
quite strong and all corresponding 〈F 〉 value is close to
1; while when the network is fuzzy enough, the corre-
sponding 〈F 〉value of all algorithm is low, extremely for
Modularity optimization method and Label propagation
method, only near 0.2–0.3.

Moreover, by comparing five algorithms, we find in
Fig. 3a that the 〈F 〉 values corresponding to Hofman &
Wiggins method is largest, and the Label propagation
method is the lowest. This may because Label propaga-
tion method emphasize the simplicity of calculation too
much while ignoring the accuracy of results. Further-
more, the 〈F 〉 values between Modularity optimization
method and Label propagation method are similar when
〈kout〉 becomes lower. This result is similar as Ref. [22],
which verifies the inner correlation between these two
methods. These observations are no evidence of overall
superiority of one method over another, but an example
of how to compare the significance and use the different
partitioning algorithms on a given network.

Furthermore, when 〈kout〉 increases, the topology
becomes fuzzier and the sizes of communities will
become more and more smaller correspondingly. At
the same time, as the width parameter µ increases, the
significance will favor tighter communities with fewer
elements. We test the Hofman & Wiggins method and
Label propagation method in Fig. 3b, the value of 〈F 〉
corresponding to µ = 0.3 will be larger than µ = 0.1
for all two examples. As a conclusion, we argue that
when the corresponding 〈F 〉 is smaller than 0.3 on
average (〈kout〉 ≈ 4), it is not safe to say there exists
significant community structure for a given network.

LFR benchmark network. We also test the index on
the more challenging LRF benchmark presented by
Lancichinetti, Fortunato and Radicchi [3]. In this net-
work, the average degree k = 20, maximum degree is
50 and P(k) ∝ kγ . Maximum and minimum commu-
nity sizes are 50 and 20 respectively. The significance
score changes when we adjust the value of θ in
LFR benchmark, and numerical results in the LFR-
benchmark are shown in Fig. 4a. It can be observed
that with the augment of θ, F decreases for all five
optimization methods when µ = 0.3. Same as GN
network, the 〈F 〉 values corresponding to Hofman &
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Fig. 3. The experimental results of significance 〈F 〉 on GN bench-
mark network and each point in curves is obtained by testing 100
times. (a) For all five optimization methods, 〈F 〉 decreases with
increasing of 〈kout〉. For a given network, when 〈F 〉 is larger than
0.3 on average(〈kout〉 ≈ 4), one can say there exit significant com-
munity structure. (b)The value of 〈F 〉 corresponding to µ = 0.3 will
be larger than µ = 0.1 for the Hofman & Wiggins method and Label
propagation method. This implies as the width parameter µ increases,
the significance favors tighter communities with fewer elements.

Wiggins method is largest at the begining, and the Label
propagation method is the lowest. However, the 〈F 〉 val-
ues corresponding to Ronhovde & Nussinov method
will exceed Hofman & Wiggins method when when
θ is larger than 0.4. Furthermore, when θ larger than
0.32, the 〈F 〉 value corresponding to Label propagation
method is close to Modularity optimization method. In
addition, from Fig. 4b, it can be observed the value of
〈F 〉 corresponding to µ = 0.3 will larger than µ = 0.1
when we take the Hofman & Wiggins method and Label
propagation method as examples.

Fig. 4. The performance of significance 〈F 〉 on LFR benchmark net-
work and each point in curves is obtained by testing 100 times. (a) In
this network, the average degree k = 20, maximum degree is 50 and
P(k) ∝ kγ . Maximum and minimum community sizes are 50 and 20
respectively. For all five algorithms, the 〈F 〉 index decreases with the
increasing of mix parameter θ. When θ ≥ 0.5 on average (no signifi-
cant community), 〈F 〉 is near 0.3 which is similar with GN network.
(b) The value of 〈F 〉 corresponding to µ = 0.3 will be larger than
µ = 0.1 for the Hofman & Wiggins method and Label propagation
method.

Stochastic block model. Furthermore, we consider the
famous stochastic block model which used to detect
community structure by Decelle and Zhang et al.
[1, 2, 24]. In this benchmark, ε = cout/cin is the param-
eter used to control the fuzziness of generated network.
To verify the performance on sparse stochastic block
model with low average degree, we generate a large
network with N = 5000 nodes and q = 10 groups with
average degree c = 8, which shown in Fig. 5. Each
point in curves is the result averaged by testing 100
times. When ε is close to 0, it can be observed the com-
munity structure is quite strong and the corresponding
〈F 〉 value of all five algorithms are very high when
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Fig. 5. The performance of social significance 〈F 〉 on stochastic
block model. In this example, there are N = 5000 nodes and q = 10
groups. The average degree c = 8 and parameter ε = cout/cin is used
to control the fuzziness of generated network. Each point in curves
is obtained by testing 100 times. With the increasing of ε, the 〈F 〉
index decreases. For all algorithm, when the corresponding 〈F 〉 is
nearly larger than 0.3 on average (ε ≈ 0.4), there exists significant
community structure which may detectable.

Table 1
Comparison of various algorithms with 〈F 〉 values

Networks Algorithms Values of 〈F 〉
Zachary Label 0.641

GN 0.735
RB Potts 0.827

Collage football Label 0.602
GN 0.758

RB Potts 0.831

Political books Label 0.581
GN 0.698

RB Potts 0.717

µ = 0.3. In contrast, when ε is increased close to 0.8,
the network is nearly a fuzzy random one, and all 〈F 〉
values are very low, near 0.1–0.3. Furthermore, we
find that the 〈F 〉 value of Hofman & Wiggins method
will larger than all others when ε < 0.81, while lower
than Ronhovde & Nussinov method when ε > 0.81.
Specifically, we argue that for all algorithm when
the corresponding 〈F 〉 is nearly larger than 0.3 on
average(ε ≈ 0.4), there exists significant community
structure which may detectable [1]. From the results,
the F shows a great ability in characterizing the signifi-
cant modular structure for optimization methods as we
adjust the parameter ε.

Real network. Finally, we show significance can also
be used to rank the real network partitions obtained
by different algorithmic strategies. Zachary karate club
network, Collage football network and Political books

network are employed as the examples. Table 1 presents
the results estimated from three algorithms and we
observed that they are coincided with the analysis in
artificial networks. These observations are no evidence
of overall superiority of one method over another, but an
example of how to compare the significance and use the
different partitioning algorithms on a given network.

7. Discussion

In this paper, we present a novel framework com-
paring the significance of fuzzy community structure
revealed by multiple optimization functions. Based
on the distribution of community tightness, a new
“p-value” form significance measure is proposed for
analysis. As part of the future work, it is necessary to
take a deeper look into how different similarity mea-
sures impact the results of this method. Additionally,
this framework can be easily extended to a weighted
and directed form, which only needs to modify the for-
mation of the quality function Q. As a conclusion, this
method shows a great performance and deserves more
attention from us.
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