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Road detection in image by fusion laser
points based on fuzzy SVM for a small
ground mobile robot

Xia Yuan∗, Xiangyan Tang and Chunxia Zhao
School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei,
Nanjing, China

Abstract. Road detection is still full of challenge for a small ground mobile robot with limited load capacity and computing
resources which works in complex outdoor environment. This paper proposes a road detection method based on fuzzy support
vector machine with on-line updating and retraining strategy. The algorithm extracts multi feature in image and trains a fuzzy
support vector machine road classifier off-line by using few training samples. Then it detects road in laser points using a fuzzy
clustering method based on maximum entropy principle. After calibrating the camera and laser range finder, and project laser
points into the image, the algorithm chooses road samples with high confidence automatically according to range data and designs
a rule to retraining the FSVM on-line when needed to improve its environmental adaptability. Experiments in outdoor campus
environment indicate that the proposed algorithm is effective.
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1. Introduction

Reliable road detection is crucial to the success of
many road scene understanding applications, such as
unmanned ground mobile robot, autonomous driving,
and driver assistance [3]. Furthermore, it can serve as
a preprocessing stage for higher level reasoning and
understanding of road scenes. Despite recent progress
such as lots of high performance sensors have been used
in this area, we are still far from having ideal solutions.
Road detection remains a challenging computer vision
problem due to the large variability of images acquired
at different times of the day, with changing illumina-
tion, weather, different environments, and variable road
conditions.

∗Corresponding author. Xia Yuan, School of Computer Science
and Engineering, Nanjing University of Science and Technology, No.
200, Xiaolingwei, Nanjing, China. Tel.: +86 025 84317297; Fax: +86
025 84317297 212; E-mail: yxlucker@163.com.

The common ground mobile robot or autonomous
driving system is built on a vehicle type platform
[10, 16, 17, 36]. Sensors can get relatively good field of
vision on this kind of platform, which means both road-
side can be seen in urban environment, so the algorithm
can detect road curbs, road markings, and estimate road
shape, etc. In this paper, we focus on another kind of
robot platform, i.e. the small ground mobile robot as
shown in Fig. 1. This is a kind of very flexible platform
which makes it is suitable to complete lots of tasks, and
it usually moves in structured or semi-structured road
environment as its pass through ability is not strong.
Compared with vehicle type platform, the small robot
has to face following obvious shortcomings:

– it gets very poor visual field and can only see a
very local area in front of it, which makes it is
more practical to detect road surface than detect
road curb for it.
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Fig. 1. A small ground mobile robot platform with size of 0.36 m
(L) × 0.35 m (W) × 0.45 m (H).

– it is impossible for it to carry lots of high perfor-
mance sensors as the load capacity and computing
resources are very restricted in this kind of plat-
form.

Under this circumstance, the small robot almost can-
not see road curbs, so finding where does road locates
is crucial for it in order to ensure its safety when mov-
ing on the road. It usually carries fewer vision sensors,
typically including a low coast camera and a small laser
range finder. According to this kind of sensor configu-
ration, we present a practical road detection algorithm
based on fuzzy theory in this paper. It extracts color,
texture and gradient in image and train a road classifier
off-line based on fuzzy SVM model at first, and then
the algorithm uses a fuzzy clustering method to find
road points in laser range finder data and maps road
points into image after extrinsic calibrating of the cam-
era and laser range finder. The algorithm selects road
samples with high confidence (higher fuzzy member-
ship) to replace low confidence samples in training set
and retrain the FSVM classifier on-line when necessary.

The main contribution of the proposed algorithm is
that we use high confidence laser detection result to
guide reliable road samples chosen in image automat-
ically and to retrain the FSVM on-line when needed
to make the algorithm get high adaptability. So it is an
off-line and on-line learning based algorithm, and for
the on-line learning part, the algorithm can select and
update reliable training samples by itself. This algo-
rithm is mainly depending on on-line learning, which
means we can use few samples to do the off-line learn-
ing. Actually, we only select samples in the first frame
to do the off-line training in our experiment and this
can be very clear to improve the training efficiency. We
introduce fuzzy theory into the algorithm in order to
improve its capability of anti-noise.

The organization of this paper is as follows: in Sec-
tion 2, we summarize some related robot systems and
road detection methods; Section 3 shows how to extract
multi image feature to train a road classifier based on
FSVM; the sample updating and classifier retraining
rules is introduced in Section 4; our experiments and
results are presented in Section 5; we finish the paper
in Section 6 with a brief analysis of the proposed method
and introducing our future work.

2. Related works

Road detection for unmanned ground mobile robot
has been researched in the past two decades. The ear-
lier systems only use camera to detect road in gray
or colored image, such as NAVLAB [12], VaMP [33],
ARGO GOLD [1], etc., then lots of other sensors like
radar or lidar have been used to deal with this prob-
lem with the development of sensor technology. Table 1
shows some typical systems that detecting road based
on sensor fusion.

As far as we know, there is no universal road detec-
tion algorithm until now. Researchers usually develop
their own road detection system to meet the needs of a
specific application, so there are lots of road detection
methods. More than one classification criteria can be
used to categorize these methods. For one hand, accord-
ing to sensors being used, road detection method can
be categorized into camera-based [1, 4, 6, 7, 12, 14, 15,
21–23, 25, 27, 31, 33, 37–39, 43, 46], Lidar-based [2, 9,
20, 28, 35, 47, 45], and fusion-based [11, 19, 26, 32,
40–42]. From the beginning, the camera was used for
road detection [1, 12, 21, 33], and has been extended
to nowadays [6, 7, 14, 15, 22, 23, 25, 27, 31, 36–39,
43, 46]. One can extracts road feature in image to train
a classifier, but the detection results may be unstable in
variable illumination, textureless, or cluttered scenes.
With the development of laser measurement technol-
ogy, researchers find it is easier to detect road in range
data than in image and Lidar-based methods can achieve
reliable and accurate results in their valid range. But
range sensor usually takes low resolution and small
visual field compare to camera. References [11, 19, 26,
32, 40–42] fuse different kind of sensors to improve
adaptability and robustness of the detection algorithms.
Depth camera like Kinect is also used for indoor robot
to detect object [40, 42] in recent years, but this kind of
sensor is still not suitable for outdoor working.

For another hand, road detection methods can also
be categorized into feature-based [15, 18, 19, 42],
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Table 1
Some typical unmanned ground vehicle systems

System name Year Sensors Adaptive environment

Odin [10] 2007 Colored camera, lidar Outdoor nature scene
BOSS [16] 2008 Laser range finder, HDL 64E Lidar, binocular camera system Urban
Junior 3 [17] 2010 Laser range finder,Riegl laser, HDL 64E Lidar, Bosch Radae, colored camera Urban
VRC [36] 2013 Laser range finder, binocular camera system Complex environment

model-based [25, 44, 46] and region-based [11, 19].
Feature-based method extract road features such as
color, texture, boundary, etc. to detect road, and it usu-
ally get high accuracy. But it requires the road has
distinct feature identification and is sensitive to out-
liers. Model-based method is based on the assumption
of the road model and matches the road template and
image to find road. This method gets high robustness
when the road model is good, but the shape of road
is ever-changing in real world which makes it is very
hard to build a universal road model. Region-based
methods try to segment the image with road and non
road area by training a classifier using multi-feature.
For semi-structured or unstructured road in complex
outdoor environment, region-based method usually has
strong adaptability. In this paper, we focus on how to
detect road by using a low cost camera and a small range
finder based on image segmentation.

Road detection methods based on image feature are
more easily affected by changing environmental factors
such as illumination, so nowadays researchers either
add prior knowledge such as road shape, or fuse camera
with other kind of sensors such as lidar or IR cam-
era, etc. At the same time, existing algorithms which
use laser data are usually based on dense point cloud,
especially since some high definition Lidar systems
have been developed recent years. Dense point cloud
contains abundant geometric information which can be
used to extract more road feature or build road model,
but it is also need great consumption of computing
resources.

Comparing our small mobile system to vehicle plat-
form based robot, we get poor visual field, weak
performance sensors, and low computational power,
so we believe that a method colligates sensor fusion,
machine learning and region-based is a good way to
solve our problem.

3. Off-line training of FSVM

Detecting road from image can be considered as an
image segmentation problem. We segment image into

road area and non road area according to road color,
road texture and road boundary. Generally speaking,
road has different color from other area in semi-
structured environment like campus or urban. The color
of road usually bias blue, and gets greater brightness
than non road area. Because of influenced by plants
and soil, the color of non road area usually bias red and
green. Texture is an expression of the intrinsic proper-
ties of the surface of the object. Texture generally exists
in nature, such as fingerprints, water, wood etc., and the
road texture is showed as the change of pixel gray or
color. Road boundary is also an important feature as it
limits the road area.

Based on the above analysis, we use color, texture
and boundary as road feature in this paper and employ
a FSVM model to train a classifier off-line with three
main steps which are feature extraction, fuzzy SVM
training and refinement. The detail of each step is
expressed as follows:

3.1. Image feature extraction

We extract color, texture and gradient as image fea-
ture to train a classifier. The algorithm splits an image
into patches with size of 16×16 pixels at first, and then
extracts each patch’s feature:

– Color

R, G and B color components are highly correlated in
RGB model, so we cannot distinguish two colors based
on their RGB color distance. In contrast with RGB, HSI
has three independent components as shown in Fig. 2.
It separates intensity out of hue and saturation, so H
and S components are less influenced by the change of
illumination. Based on this, we use HSI color model in
this paper and calculate the average HSI color value of
pixels in one patch as that patch’s color.

– Texture

We compute four kinds of Gray-level co-occurrence
matrix (GLCM) as texture of road:
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(a)    (b) (c)                   (d)

Fig. 2. RGB and HSI color, (a) RGB image, (b) H component, (c) S
component, (d) I component.

Angular second moment: ASM reflects the uniformity
of the gray level distribution of the image. When the
distribution of gray level is uniform, the elements are
concentrated in the main diagonal of the GLCM, and
the ASM value is large, which means the texture is
uniformly distributed.

ASM =
n∑

i=1

n∑
j=1

G2(i, j) (1)

Contrast: Contrast reflects the clarity of image texture.
The distance from the diagonal of GLCM is large when
the texture with strong contrast.

CON =
n∑

i=1

n∑
j=1

[(i - j)2G(i, j)] (2)

Correlation: Correlation reflects the correlation of
regional gray value. The distribution of the elements
is more uniform and equal in GLCM with higher cor-
relation.

COR =

n∑
i=1

n∑
j=1

ijG(i, j) - µiµj

σ2
i σ2

j

(3)

where

µi =
n∑

i=1

i

n∑
j=1

G(i, j), µj =
n∑

j=1

j

n∑
i=1

G(i, j)

σ2
i =

n∑
i=1

(i - µi)
2

n∑
j=1

G(i, j),

σ2
j =

n∑
j=1

(j - µj)2
n∑

i=1

G(i, j)

Entropy: Entropy reflects quantity of information of
the image. The GLCM and entropy is zero without

texture. If one image contains rich texture informa-
tion, each patch’s entropy is approximately equal which
means the entropy is large. If the differences among
patches are large, then the entropy is small.

ENT =
∑

i

∑
j

G(i, j) log2 G(i, j) (4)

We compress the gray level of the image into 16.
The algorithm computes texture of four directions
{0◦, 45◦, 90◦, 135◦} to eliminate the effect of direction
of texture and take the average value of four direction
as the texture feature.

– Gradient

We compute the gradient of each pixel according to
its four neighbor pixels in a patch and take the average
gradient of pixels in a patch as the patch’s gradient g.

The feature vector is expressed as Equation (5) after
feature extracting.

F = [H, Ss, I, ASM, CON, COR, ENT, g] (5)

3.2. Training of FSVM

The algorithm employs a FSVM [8] to train the road
classifier. FSVM can solve data set with noise better
than traditional SVM. Our robot carries a low cost cam-
era with low resolution and image quality, so FSVM is
suitable for processing such images.

Each sample has a fuzzy membership in FSVM
which indicates how much the sample belongs to a
certain class. Value of membership decides the contri-
bution to the decision function of one training sample.
By introducing membership, the FSVM can decrease
the effect of samples with noise to the trained classifier.
Suppose the training samples are expressed as:

S = {(s1, l1, a1), (s2, l2, a2), ...(si, li, ai), ...

(sm, lm, am)} (6)

in which si represents training samples, si ∈ Rn. li is
class label and li ∈ {−1, 1}. ai is the membership of
one sample belongs to a certain class and ai ∈ (0, 1].
The optimal solution of the FSVM is formulated as
Equation (7)

min
1

2
‖�‖2 + C

m∑
i=1

aiξi (7)

with constraint

li((� • si) + b) + ξi � 1, ξi � 0 (8)
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then the optimal discriminate function of the FSVM is

f (x) = sgn[(�∗ •x) + b∗],x � Rn (9)

in which

�∗=
∑

a∗
i lisi, b∗ = li -

∑
lia

∗
i (si • sj),

a∗ = max
∑

ai -
1

2

∑ ∑
aiajliljK(si • sj),

subjecto
∑

liai = 0

and we take Radial Basis Function (RBF) as the kernel
function K in this paper. Then we rewrite the feature
vector according to FSVM model as

F = [H, S, I, ASM, CON, COR, ENT, g, a] (10)

in which the last variable a indicates the membership
of one image patch. The algorithm takes the average
membership of pixels in a patch as the patch’s member-
ship value. We use the following function to compute
membership

sc = 1

n

n∑
i=1

si, r = max ‖sc - si‖ , a(si) = 1 -
‖si - sc‖

r + δ

(11)
xc represents the central of a class (road or non-road),

r is radius, δ indicates a small positive constant to make
sure a(si) > 0.

The algorithm selects road and non road samples
manually in image as showing in Fig. 3(a) and train
the FSVM. We want to emphasize here that we use few
samples to do the off-line training. More precisely, we
select training samples only in the first image frame
in our experiment. This obviously can greatly improve
the efficiency of off-line learning, but also bring higher
error rate when on-line use. So we design a rule to
update training samples and retrain the classifier on-
line which will be explained in Section 4. The whole
algorithm is mainly depending on on-line training to
get better environmental adaptability.

(a)   (b)        (c)    (d)         (e) 

Fig. 3. Road detection result in image: (a) training sample selection,
(b) road detection after initial classification, (c) road detection after
refine step 1and 2, (d) result after smoothing (c), (e) a demonstration
of S boundary mentioned in Section 4.3.

3.3. Refinement of road detection result

We use relatively small samples to train the FSVM
in order to get high efficiency, and we find there are lots
of wrong classified patches after initial classification
(see Fig. 3(b)). So the algorithm uses following rules to
refine the initial result:

– take a 8×8 template to do morphological filtering
to the result image to eliminate small and isolated
patches in segmented binary image (see Fig. 3(c));

– road is located in the 60% of the lower part of
an image and patches belong to road should be
connected, so we only take the biggest area which
located in the lower part of the image as road (see
Fig. 3(c));

– as we use patches instead of pixels to do computa-
tion, the road boundary in binary image is jagged.
The algorithm takes median filtering to smooth the
boundary (see Fig. 3(d)).

We can see the result of refinement step is good by
contrasting (d) and (b) of Fig. 3.

4. Update training samples on-line
automatically by fusion laser points

As laser range finder gets high ranging accuracy, so
we use road information detected in laser points to help
us choosing high confidence road samples in image to
improve the on-line performance of the algorithm. We
detect road in laser points and register the range finder
and camera to project laser points into the image at first,
and then, reliable road samples are chosen according to
pixels projected by laser points which are dart on road.
The FSVM will be retrained using these road samples
if needed.

4.1. Road detection in laser points

Laser points are collected by a UTM-30LX laser
range finder. The range finder takes an inclined angle
when installing in order to “look on” the road. We
employ a fuzzy clustering algorithm based on Max-
imum Entropy Principle (MEP) [44] to cluster laser
points in a data frame and find points which are located
on road.

It is assumed the threshold of prediction error is δ,
the next predicted laser point’s position is (x̂i, ŷi), and
the real measured position is (xi, yi). The Euclidean
distance between (x̂i, ŷi) and (xi, yi) is defined as
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ei =
√

(xi − x̂i)2 + (yi − ŷi)2 (12)

The point will be considered to be the start of another
cluster if ei > δ. The parameter δ should be determined
according to the distance between range finder and the
target. We use Equation (2) to compute δ.

δ = max{δt} (13)

where δt = 2a
√

x2
t + y2

t sin θ, t = i − 1, i, i + 1.
Parameter a in Equation (13) is a scale factor to coun-

teract noise. Parameter θ is half of angular resolution
of azimuth of UTM-30LX. (xt, yt) is the coordinate of
a point pi.

Suppose every frame of range data gets N points and
the system model can be characterized by M cluster

centers
⇀

C1,
⇀

C2, ...,
⇀

CM in an N-dimension space. Each

cluster center
⇀

Ci can be represented by a vector that
is composed of a pair of component vectors: the input

vector �Qi and the output vector �Yi. For
⇀

Ci let the first p
dimensions correspond to p input variables that consti-
tute the input vector �Qi and the other m-p dimensions
correspond to m-p output variables that form the output
vector �Yi.

There will be a prediction error at each time when
predict the position of the next point, and the accumu-
lated error problem is on the table if we ignore this
error. In our algorithm, each vector in input vector �Qi

is presented a

Xi = [(xi, yi), ei] (14)

where error item ei take part in prediction process too,
and then minus the last predicted error in next predic-
tion to reduce the effect of accumulate errors. Then our
cluster centers are formed as follows:

C1 : Q1 = [Xj-p-M+1,Xj-p-M+2, ...,Xj-M]T

Y1 = [Xj-M+1]T

C2 : Q2 = [Xj-p-M+2,Xj-p-M+3, ...,Xj-M+1]T

Y2 = [Xj-M+2]T

CM : QM = [Xj-p,Xj-p+1, ...,Xj-1]T

YM = [Xj]T

(15)

For data point measured at time t, the probability of it
belongs to the cluster centers can be viewed as its fuzzy
membership µi, where µi ∈ [0, 1] and i = 1, 2, ..., M.
The summation of all µi’s is equal to one. The clustering
process can be formulated as an optimization problem

and the corresponding cost function to be minimized is
defined as:

E =
M∑
i=1

µi ‖P - Xi‖2 (16)

where �Xi is the input vector of fuzzy centers.
The distribution of µi is unknown in our problem.

According to the information theory, the MEP is the
most unbiased prescription to choose the values of the
membership, µi, for which Shannon entropy, i.e., the
expression

H =
M∑
i=1

µi ln µi (17)

is maximal under the constrains by Equation (17). This
optimization problem can be reformulated as the max-
imization of the Lagrange

L = H − λE (18)

where λ is the Lagrange multiplier.
The final solved probabilities are of the Gibbs distri-

bution [30, 29], i.e.

µi = exp(−λ ‖P − Xi‖2)
M∑
i=1

exp(−λ ‖P − Xi‖2)

(19)

Take Equation (20) into Equation (16), and versus λ

differentiate, and then take the experiential parameter
[29] we get:

λ = 100M/ min(‖P − Xi‖2) (20)

Weighting reasoning mechanism is used to compute
the output vector as our system present a linear trend.
The following formula will account for that trend well.

Y =
M∑
i=1

wlµlYl + 1

M1

M - 1∑
l=1

(Yl+1 − Yl) (21)

where wl is the weighting term:

wl = lM/

M∑
l=1

l (22)

Hereto, we have introduced the clustering step. It
does not require training which enables it to work on-
line completely.

The ideal road model is shown in Fig. 4, but usu-
ally we cannot see the both side of the road because of
occlusion. So it is unreliable to detect left and right curb
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Fig. 4. Ideal road model.

in one laser frame data to find the road. Fortunately, the
road in campus and urban is usually flat, so laser points
dart on road satisfies linear distribution. We do linear
fitting of each cluster of points and take clusters with
small linear fitting mean square error as the candidate
road cluster. There are lots of linear distributed point
clusters are not belong to road obviously as any sample
points from regular surface are linear distributed. We
have to design some filters to find real road in range
data.

We known the angle of yaw, roll and pitch of the
robot by using a gyro and we transform points to the
robot coordinates OR , The road surface around the robot
should be horizontal in OR so we search horizontal lin-
ear distributed clusters of points after project them into
ground plane. Suppose the included angle between the
horizontal and a linear distributed cluster ri is β and
the average height of points in ri is hri , the height of
the robot located is hR. The length of ri is L and the
least width that the robot can be passed through is W.
Then the first three road filters are expressed in Equa-
tion (23). �β is the threshold of the error of horizontal
and h is the highest height of road surface. �h is the
threshold of the height differences between the robot
current located area and the front road area.

F1 : |β| < �β

F2 : hri < h

F3 : L > W

(23)

F4 = ∣∣hri − hR

∣∣ < �h (24)

R = {ri|ri ∈ F1 ∩ F2 ∩ F3 ∩ F4} (25)

Equation (23) is used to analyze the single data frame
of range finder. Points in one frame are sparse, so we
use the temporal and spatial correlation in the process of
robot motion to increase the confidence of road detec-
tion. The height of the road should be consistent in a
local area, and here will be obstacle exist if situation

shown in Fig. 5 appeared. We use Equation (24) to limit
the change of the road height at adjacent moment.

At last, clusters of points ri satisfy Equation (25) will
be chosen as road. Figure 6 shows the road detection
result in laser points. Road detected by range data usu-
ally get higher confidence than that detected in image
so we use this information to help find reliable road
samples in image automatically.

4.2. Registration of the ranger finder and camera

The calibration of the camera and laser range finder
is shown in Fig. 7(a) and we use the method proposed
in [34] to solve this extrinsic calibration problem. Laser
points can be mapped onto the image after calibration
as shown in Figs. 7(b) and 7(c).

4.3. Updating training samples on-line

We use only 200 training samples in order to improve
training efficiency which will inevitably leads to the

Fig. 5. Change of road height between time t and t + 1.

(a)        (b)          (c)

Fig. 6. Road detection in laser points, (a) original scenes, (b) points
clustering with red points are start or end point of a cluster, (c) results
of road detection shown in red line.
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(a)

(b) (c)

Fig. 7. Registration of a camera and laser range finder Laser points.
(a) the coordinate of two sensor, (b) and (c) laser points mapped into
image after registration (green pixels).

Fig. 8. High confidence road area after mapping laser points into
image. The red line is the road detected in laser point projected into
image and white area under red line is road samples with high con-
fidence level. The blue line is the outline of the road detected by
FSVM.

classification error become higher and higher along
with the robot’s movement and the change of envi-
ronment. So we design the rule to update the training
samples on-line to improve the adaptability of the pro-
posed algorithm.

The algorithm takes the patches in image under the
mapped road line after projecting road laser points
onto the image (shown in Fig. 7) as road samples with
high confidence. This is reasonable because the field
of vision of camera mounted on our robot is very low.
Figure 8 shows an ideal situation without obstacles on
road. The laser point dart on road projected onto image
will become multi-line with obstacle and the algorithm
only take patches under road lines as the road samples
under this condition. The algorithm uses the upper left
and upper right area as the high confidence non-road
samples.

According to the on-line estimated classification
error computed the algorithm decides when to update
samples and retraining the FSVM. It takes the coarse
segmentation image subtraction the corresponding
refined one to get error classified patches Sroad and
Snon-road and who will be chosen as updating samples
Croad and Cnon-road if they satisfy following constraints:
(1) Sroad and Snon-road are not locate on around the
boundary between road and non-road area in image as
the boundary may not clearly enough to be choose as
high confidence samples (gray area in Fig. 2(e)); (2)
The area of Sroad and Snon-road should be big enough.
These tow constraints can be expressed as:

Croad = {s1, s2, ..., sn|si ∈ Snon−road & &

area(si) > th & &si /∈ Sboundary}
Cnon−road = {s1, s2, ..., sm|sj ∈ Sroad & &

area(sj) > th & &sj /∈ Sboundary}

(26)

r1 =

n∑
i=1

NUM(si)

NUM(Snon - road)
, si ∈ Croad

r2 =

m∑
j=1

NUM(sj)

NUM(Sroad)
, sj ∈ Cnon - road

p = αr1 + βr2

(27)

where r1 represents error rate of classified non-road
as road, r2 represents error rate of classified road as
non-road, Sroad and Snon - road represent area that be
classified as road and non-road, α and β are weights.
When r1 or r2 bigger than eth, or p is bigger than pth,
we updating training samples of non-road or road and
retraining the FSVM. We use the samples with higher
value of fuzzy membership to replace samples with
lower fuzzy membership in training set.

So far, we have introduced out road detection method.
We summarized the proposed algorithm as the flow
chart shown in Fig. 9.

5. Experiments

We use the robot platform shown in Fig. 1 to collect
experimental data in real outdoor campus environment.
This robot is a very small ground mobile platform with
size of 0.36 m (L)×0.35 m (W)×0.45 m (H), and equips
a small DAHENG Mercury camera, a HOKUYO UTM-
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Fig. 9. Flow chart of the proposed algorithm.

30LX laser range finder, a IG-500 N GPS aided AHRS
and odometer.

Fig. 10 shows some experiment result: Original pic-
tures of the scene with extracted road boundary are
shown in Figure 10(a). Result of road detection by SVM
and the proposed method based on FSVM are shown in
Figs. 10(b) and 10(c) respectively. Figure 10(d) shows
the final result. We can see that Fig. 10(c) got bet-
ter result than Fig. 10(b), which means the proposed
method has stronger environment adaptability. Updat-
ing and retraining FSVM can deal with factors of
environmental changing.

We test the algorithm by using continuous frames
while the robot moving in campus. Figures 11(a) and
11(b) shows original image and result of road detec-
tion in 8 continuous frames. There exist an intersection,
shadow and changing illumination in these 8 frames
during the robot moving. Road detection result shows
the proposed algorithm has the ability to deal with these
changing environment factors.

Figures 11(c) and 11(d) are error rate of detection
results of 100 frames by using FSVM and SVM
respectively. The lateral axis indicates number of
frames and vertical axis indicates detection error rate
of one frame. Suppose N is the total number of patches
in one image, and Nerr is the difference number of
patches between FSVN or SVM classification result
and manual labeled ground truth, then the error rate

(a) (b) (c) (d)

Fig. 10. Results of road detection, (a) original scenes and road
boundary, (b) results of SVM, (c) results of FSVM, (d) results after
refinement based on (c), i.e. result of the proposed algorithm.
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Fig. 11. Results of continuous frames, (a) original scenes, (b) results
of road detection, (c) error rate of FSVM, (d) error rate of SVM.

is defined as rerr = Nerr /N. We can see the average
classification error rate of FSVM is 6.3%, which
is better than 8.5% gotten by SVM. We give full
consideration to the samples for each category of
membership degree when use FSVM, so the error rate
is low at the first frame in (c) compared to (d). And the
error rate is relatively stable in continuous detection of
100 frames. Thus the proposed algorithm is not only
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improves the accuracy of classification, but also can
better adapting to environmental changes.

The effect of refinement and the comparison between
without and with on-line training is tested. Form
Fig. 12(b) we can see that the sky is easily classi-
fied as the road without refinement, and the results are
improved a lot after refinement as shown in Fig. 12(c).
Road detection results are further improved when on-
line learning is used by comparing Figs. 12(d) and (c).

Previous experimental results show the algorithm
has good environmental adaptability to deal with road
scenes. In urban environment, obstacles are one of the
factors that affect road detection result, so we test the
proposed algorithm in campus when there are different
obstacles on road. Figure 13 shows typical detection
results, and we can see all obstacles that on road are
detected. We know that color and texture of obstacles
in urban environment usually different from the road,
so it is not very hard for the proposed algorithm to rec-
ognize obstacles theoretically, and experiments in real
environments also validate this according Fig. 13.

a) (( b) (c) (d)

Fig. 12. Comparison of results between without and with on-line
training. From top to down: frame no. 21, 31, 41, 49, 61 and 89. (a)
original scenes, (b) results of without on-line training and without
refinement, (c) results of without on-line training after refinement,
(d) results of with on-line training after refinement.

a) (( b)

Fig. 13. Result of road detection with obstacles on the road, (a)
original scenes, (b) result of road detection.

6. Conclusion

Road detection is still full of challenge, especially for
a small ground mobile robot with limited load capacity
and computing resource who works in complex outdoor
environment. In this paper we present a road detection
method based on fuzzy theory. It extracts multi image
feature and trains a FSVM classifier with few train-
ing samples off-line to get higher training efficiency.
Then an on-line training sample updating and retraining
strategy is used to make the algorithm has strong adapt-
ability to adapt dynamic outdoor environment. As we
use low performance sensors, we introduce fuzzy the-
ory in our algorithm to improve its anti-noise capability.
Experiments in the real campus environment validate
the method.

Our future research will focus on tilting the laser
range finder to get a range image and use this kind
of data to navigate the outdoor mobile robot. We have
built a tilting system and registered multi-frame laser
data in static state already, but it is hard to get high-
accuracy range image when the robot moves on rugged
ground because of the big random shaking. We will try
our best to deal with this problem and design a small
and high-performance outdoor environmental detection
and understanding system for intelligent ground mobile
robot.
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