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Abstract. Knowledge-and data-driven approaches are two major methods used to integrate various evidential maps for mineral
prospectivity mapping (MPM). Geological maps, geochemical samples and data from known gold deposits were collected in
the western Junggar area, Xinjiang Province. The geological and a spatial database for geological and mineral occurrences were
constructed for the studied region. A weights-of-evidence model and a fuzzy logic model were employed for MPM, and the results
were compared. Results indicate that favorable sedimentary rocks, fault density, fault distance and concentration of Au were the
primary factors affecting Au mineralization. Arsenic (AS), Stibium (Sb), fault direction, quartz veins and intrusive rocks were
secondary factors affecting Au mineralization. Conditional independence exerted a major influence on the weights-of-evidence
model. However, posterior probability would be very high if the conditional independence was disregarded, which impaired
results. Combining the quantification results provided by weights-of-evidence and the fuzzy membership values determined by
expert knowledge, the mineral prospectivity mapping according to the fuzzy logic method was proved to be valid. For the study
area, which had a large number of deposits, data-driven approaches for MPM are generally considered to be appropriate. However,
if sufficient data are not collected, the knowledge-driven approaches, for example, the fuzzy logic method used in the present
study, usually achieves a better result.
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1. Introduction

Mineral exploration is a sophisticated process that
seeks to discover new mineral deposits in a region of
interest [28]. Mineral prospectivity mapping (MPM) is
used as a tool to delineate target areas that most likely
contain mineral deposits of a particular type [26]. In
order to conduct MPM, multiple data sets, or layers
(e.g., geological, geophysical, geochemical, and remote
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sensing data) must be collected, analyzed and integrated
[17]. The integration of different digital geoscientific
data sets is a key component of MPM. Typically, data
integration is performed using geographic information
system (GIS) applications.

Knowledge-and data-driven are two major types of
approaches, which assign evidential weights and inte-
grate various evidential maps for MPM and further
exploration [10]. In data-driven techniques, the known
mineral deposits in a region of interest are used as
“training points” to recognize and establish spatial
relationships of deposits with particular exploration
evidential features [3], therefore, these techniques are
proper in well-explored areas [3]. Examples of data-
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driven methods include weights-of-evidence [7], fuzzy
weights-of-evidence [24], logistic regression [9], neural
networks [27], Bayesian networks [4], and support vec-
tor machines [25]. In knowledge-driven techniques, few
known mineral deposits are predicted in areas of inter-
est, so expert experience and judgments are required.
Analysts apply expert opinions to assess the relative
importance of spatial evidence as meaningful deci-
sion support [19]. Several mineral potential mapping
methods are classified as knowledge-driven techniques,
including Boolean logic, index overlay, fuzzy analytical
hierarchy process [3], and fuzzy logic [29].

In this study, after a brief introduction of the weight-
of-evidence and fuzzy logic methods, nine layers of
geological and geochemical datasets are integrated for
MPM. These two methods are tested in the Western
Junnggar area of Xinjiang, China. The primary goal
of this study was to compare the application effects of
knowledge- and data-driven techniques for MPM when
there were known mineral deposits, but a lack of other
data about a given study area.

2. Geological setting of the study area

2.1. Regional geological background

The western Junggar area is located on the western
margin of the Junggar Basin in the northern part of
Xinjiang, China. In terms of administrative division,
the western Junggar area belongs to Tacheng prefec-
ture, Ili Kazakh Autonomous Prefecture. It extends to
the Sawuer Mountain in the north, Ebinur Lake in the
south, Buerkesidai-Karamay in the east, and Omin-
Tuoli-Alataw pass in the west (Fig. 1). The western
Junggar area is the region known for the largest num-
ber of discovered gold deposits in Xinjiang, with over
200 gold deposits or mineralization occurrences. There
is one proven large-scale gold deposit, two medium-
scale gold deposits, five small-scale gold deposits, and
over 190 mineralization occurrences [30].

The western Junggar area is situated at the conver-
gence belt between the Siberian and Tarim Plates and
in the Hercynian back-arc basin. Due to the influence
of regional tectonic stress, the study area has relatively
developed folds and fault structures. The strata cropped
out in the western Junggar area primarily include
Ordovician-Silurian epimetamorphic rock series in the
lower Paleozoic, Devonian-Carboniferous marine vol-
canic rock-turbidite formations in the upper Paleozoic,
and Permian-Triassic terrestrial volcano-molasses for-

Fig. 1. Schematic map of geology in the western Junnggar, Xinjiang
(modified based on 1 : 200,000 geological maps).

mations. Tailegula Formations, Baogutu Formations
and Xibeikula Formations are the primary gold-bearing
strata in the metallogenic districts; Devonian Kulumudi
Formations are also a gold-bearing stratum. Neopa-
leozoic post-collisional plutonic rocks composed of
intermediate-acid intrusive rocks are extensively devel-
oped in the metallogenic belt. They are divided into
two categories. One is the huge acidic batholith domi-
nated by alkali-feldspar granite, which is found on both
sides of the Darabut fault and constitutes the Darabut
alkali-rich igneous rock belt [31]. Examples falling
into this category include the pluton under Miao’ergou,
Akbastau, Karamay, and Hongshan. The other category
consists of granodiorite-quartz diorite, which is pri-
marly found in the form of small stock and distributed
in the southeast of the Dalabut fault [5].

2.2. Geological model

The gold deposits in different parts of the western
Junggar area form a group of deposits that are closely
connected in terms of formation time, space and gene-
sis. Deposited under a certain geological environment,
they belong to the same metallogenic series and can
be attributed to the metallogenic events in the upper
and middle Variscan [13]. Thus, a conceptual model
for gold deposit formation in the western Junggar area
was proposed, as shown in Table 1.
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Table 1
The geological model of gold deposits in western Junggar

Metallogenic factor Contents of description

Geological
tectonic
background

Tectonic environment The NE-trending regional deep fault is the most important rock-controlling
structure in this region. The position where the EW-trending deep fault
converges with the NE-trending deep fault is usually the favorable
metallogenic belt.

Intrusive rocks The intrusion of intermediate-acid magma is closely associated with the
formation of gold deposits. As the major metallogenic factor in this region,
intermediate-acid intrusive rock has a special spatial relationship with ore
deposits.

Ore-bearing strata Most of the gold deposits and gold occurrences in this region are concentrated
in the middle-upper Carboniferous Tongbaogutu Formation and Tailegula
Formation of the Paleozoic era. Lithologically, they are tuffaceous siltstone,
siliceous tuff, and basalt.

Wallrock alteration Common forms of wallrock alteration include pyritization, arsenopyritization,
carbonatization, siliconization and sericitization.

Markers of gold-bearing dykes Quartz veins are widely distributed in this region, especially in siliceous rocks.
Gold deposits with industrial significance can be seen in some places.

Regional
geophysical field

Gravity The gravity field in the gold deposit is elliptical, distribute in EW-NE
direction. The contours near the faults are obviously twisted or linear.

Regional geochemical field Au, As, and Sb elements are evenly distributed in each metallogenic sub-belt
of the western Junggar area. Geochemical anomalies are common for Au,
As, and Sb elements, with a narrow strip-like distribution pattern. As and Sb
anomalies indicate anomalous mineralization.

3. Methodology

3.1. Weights-of- evidence

Weights-of-evidence (W-of-E) is a data driven
method for mineral potential mapping (MPM). It was
first applied to the prediction of mineral deposits by
Bon-ham-Carter et al. [11]. This data-driven method
can estimate the relative importance of individual lay-
ers of evidence by statistical means, and requires
a min eral deposit dataset and a series of geologi-
cal features in order to generate a mineral potential
map [26]. The weights-of-evidence modeling technique
comprises five steps:

• The estimation of prior probability P{D}, the
probability that a mineral occurrence exists
in an area given no additional information.
P{D} = N{D}/N{T}, where N{D} is the number
of units covering the occurrence points and N{T}
is the number of all units in the study area;

• Determination of weighting coefficients (W+,
W−), contrast (C), and studentized contrast
(S(C)), expressed as follows:

W+ = ln
P{B|D}
P{B|D} ; W− = ln

P{B|D}
P{B|D} (1)

C = W+ − W− (2)

Studentized (Contrast)

= S2(C)
/√

S2(W+) + S2(W−) (3)

• Calculation of posterior probability P(D/B),
the probability of an occurrence in an area
given weights and additional information, as
follows:

P(D|B1 ∩ B2 ∩ ... ∩ B... ∩ Bn)

= P(D)
P(B1|D)

P(B1)

P(B2|D)

P(B2)
...

P(B...|D)

P(B...)

P(Bn|D)

P(Bn)

(4)

• Testing for conditional independence;
• Validation [18].

The difference between the two weights is known as
the weights contrast (C). A contrast reflects the overall
spatial association between the evidential layer and the
mineral deposits. Studentized contrast represetns the
ratio of contrast and the contrast standard deviation.
This value reflects the significance level of the C value.
In the present study, the influence of each weights-of-
evidence layer of mineral deposits was quantitatively
measured by C and S(C). One of the common criticisms
of the weights-of-evidence method for mineral potential
mapping is the problem of conditional independence
[8]. In the weights-of-evidence model, one important
assumption is that all evidential layers of the model
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are conditionally independent of mineralization; other-
wise, this will lead to posterior probability departure
and unreliability of predictions. To satisfy the condi-
tional independence assumption, the data that may be
problematic were eliminated from this paper.

3.2. Fuzzy logic

Fuzzy logic is based on the fuzzy-set theory proposed
by Zadeh [14], and allows the geologist to utilize their
knowledge to build models used to generate mineral
potential maps, and select the evidential layers that they
believe are most critical for the particular style of min-
eralization. Additionally, fuzzy logic allows weights to
be assigned to each layer based on expert opinion [16].
The Boolean set theory defines a membership which
is either 1 or 0 (true or false), whereas the fuzzy-set
theory defines a degree of membership in a set, rep-
resented by a value between 0 and 1 without a crisp
boundary [1].

The fuzzy model for mineral prediction is defined
as a generic model: if X represents the set of eviden-
tial layers Xi (i = 1, 2, 3, . . . , n) and the layer has r

classes defined as (j = 1, 2, 3, . . . , r), then n fuzzy sets
Ai (i = 1, 2, 3, . . . , n) in X are defined by Equation (5),
as follows:

Aij = {(xij, µA)/xij ∈ Xi}, (0 ≤ µA ≤ 1) (5)

where µA is the membership value. When xij is favor-
able to mineralization, 0.5 < µA < 1; when and only
when it cannot be determined whether xij is favorable
or unfavorable to mineralization, µA = 0.5; when xij

is unfavorable to mineralization, 0 < µA < 0.5. The
value of the membership function can be determined
by two methods. One method is to calculate according
to the membership function curve; the other is to assign
values artificially according to geological knowledge,
i.e., a membership function is constructed using a t [0]
abulation method. The membership functions have a
variety of forms, typically: Gaussian, triangular, trape-
zoidal and sigmoidal [20]. A sigmoidal membership
function is adopted in the present work. The function is
expressed in Equation (6):

µAxj = 1

1 + e−a(xij−b) (6)

where xij is the j-th class of the i-th layer, xij = wi ×
wj; wi is the weight of the i-th evidential layer, and wj

the weight of the j-th class of the evidential layer. In this
equation, a and b determine the shape of the function.
Here the value of a is 0.1 and the value of b is 50.

Using a fuzzy set operator, n fuzzy sets Ai are inte-
grated to form a comprehensive fuzzy set F, expressed
by Equation (7):

F =
n∑

i=1

Ai (7)

where � is the operation of the fuzzy set. A comprehen-
sive fuzzy set is the fuzzy set comprising the favorable
exploration target.

The fuzzy model in mineral prediction consists of
two steps: (1) fuzzification of data; (2) fuzzy synthesis
of fuzzified data. Fuzzification can be realized by deter-
mining the fuzzy function. Fuzzy synthesis is executed
by using the operator. The most basic fuzzy operators
are: (1) fuzzy AND; (2) fuzzy OR; (3) fuzzy algebraic
product; (4) fuzzy algebraic sum; and (5) fuzzy gamma
[23]. Note that µ(x) represents the fuzzy membership
value. The fuzzy AND and fuzzy algebraic sum opera-
tors were not used to calculate Au deposit prospectivity
in the current study.

3.2.1. Fuzzy OR

u(x) = Max(µA, µB, µC . . . .) (8)

Fuzzy OR values are the maximum membership val-
ues from each evidential layer. Thus, fuzziness or the
membership value of each grid unit is controlled by the
maximum membership value in each grid.

3.2.2. Fuzzy algebraic product

u(x) =
n∐

i=1

ui (9)

Membership values from each evidential layer at
each location are multiplied to calculate the fuzzy alge-
braic product. Thus, the fuzzy membership value of
each evidential layer has an influence on the calculation
result.

3.2.3. Fuzzy gamma

µ(x) =
[

n∐
i=1

ui

]γ

•
[

1 −
n∐

i=1

(1 − ui)

]1−γ

(10)

The gamma operator achieves a synthesis result
within the interval between the maximum and the min-
imum membership value. This value range is affected
by the fuzzy membership value of the input evidence
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Fig. 2. The effect of fuzzy gamma values (�) on combining fuzzy
memberships µa and µb to determine combined fuzzy membership
µc [18].

(Fig. 2). The value of γ is within the interval of 0 − 1;
when γ = 1, the result of fuzzy synthesis is equal to
the fuzzy algebraic sum (0.88 in Fig. 2); when γ = 0,
the result of fuzzy synthesis is equal to the fuzzy alge-
braic product (0.38 in Fig. 2). If 0 < γ < 0.35, then µc

is less than the smaller input membership value (0.5).
If 0.8 < γ < 1, then µc is higher than the higher input
value (0.75). The limits 0.35 and 0.8 are specific to the
input values µa and µb respectively [18].

4. Datasets

In this study, geological and geochemical datasets
were used as sources of evidence for mineral prospec-
tivity mapping. The 13 geological maps were received
from the Xinjiang Bureau of Geology and Mineral
Resources, obtained by field surveys and mapping at
a scale of 1 : 200,000. The geochemical data comprised
of 39 major and trace elements within 8104 samples. A
spatial database was developed to manage the geologi-
cal and geochemical data in ArcGIS10.1. A geographic
coordinate system, namely, Beijing 1954, was used (6-
degree Gauss-Kruger zone 14, central meridian 81◦,
and unit m). The database comprises planar, linear
and point features: (1) point features representing the
Au mineral deposits; (2) linear features representing
faults, geological boundaries and attitudes; (3) planar
features representing intrusive rocks, sedimentary (vol-
canic) strata and quartz veins.

5. Application of mineral prospectivity
mapping techniques

5.1. Weights of evidence (W-of-E)

In this study, according to the expert opinions, geo-
logical model and the collected data, nine data layers are
used for MPM, including fault density, fault distance,
fault direction, intrusive rocks, quartz veins, sedimen-
tary rocks and concentrations of Au, As and Sb. The
study area is 50356 km2 in size, divided into units
with areas of 0.25 km2. The number of gold deposits
(including mineralization occurrences) is 240, with
prior probability of 0.001192.

5.1.1. Spatial analysis
The associations between these nine types of data and

gold deposits (mineralization occurrences) are analyzed
quantitatively (Table 2). A StudC value greater than 1.5
infers a true, strong positive correlation and a StudC
value greater than 0.5 but less than 1.5 infers a true but
weak positive correlation [21]. Therefore the weights-
of-evidence layer with S(C) above 1.0 is considered
to demonstrate close association with gold deposits.
Analysis is conducted according to the following pro-
cedures:

• Spatial analysis of faults data:

Faults play a role in enabling fluid passage during
mineralization [26]. The objective of fault density anal-
ysis is to determine the distribution of faults over the
entire region, and the degree of fault convergence. On
this basis, the spatial association between fault con-
vergence and the known deposits can be analyzed.
The results are shown in Fig. 3, and indicate that the
faults are more concentrated in the middle and north-
west regions of the study area; the area with high-value
fault density in the middle corresponds to the loca-
tions of known deposits. As shown in Table 2, fault
density has a controlling effect on gold deposits. That
is, over the interval of fault density of 0.572–1.288
from the 5th class to the 9th class, the S(C) reaches
a maximum of 14.7403, indicating extremely large
influence on mineralization. For fault distance analy-
sis, Euclidean distance is used to measure the shortest
distance from the pixel to the center of the designated
target. By this means, the spatial association between
the distance of fault and deposits is determined. The
maximum fault distance is 5000 m, as shown in Fig. 3.
When the fault distance is 0.0–0.5 km, the S(C) is
9.4142. Fault direction analysis represents the direction
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Table 2
Quantitative evaluation of spatial relationship between gold deposits and nine evidential layers (S(C) > 1.0)

Evidential Layers Class Area (km2) Points C S(C)

Fault density 0.572–0.715 4738.875 55 1.051 6.835
Fault density 0.715–0.859 3111.688 48 1.335 8.256
Fault density 0.859–1.002 1734.063 31 1.427 7.397
Fault density 1.002–1.145 500.438 23 2.365 10.730
Fault density 1.145–1.288 123.750 19 3.588 14.740
Fault distance (m) 0–500 13967.063 158 1.282 9.414
Fault direction –1◦–22.5◦ 5169.250 52 0.625 3.984
Fault direction 337.5◦–360◦ 7413.938 56 0.293 1.917
intrusive rocks buffer (m) 5000–6000 3178.875 21 0.234 1.003
quartz veins buffer (m) 0–500 1580.000 39 0.569 2.965
Sedimentary rocks D2

d 96.813 43 4.792 26.984
Sedimentary rocks C2-3ba 11.625 5 4.572 9.563
Sedimentary rocks C2-3bb 80.125 17 3.860 14.929
Sedimentary rocks C2-3t 55.688 11 3.757 11.867
Sedimentary rocks D2c 88.938 13 3.451 11.873
Sedimentary rocks C2-3tb 170.625 9 2.388 6.976
Sedimentary rocks C2m 339.438 10 1.800 5.547
Sedimentary rocks C2x 1665.938 37 1.617 8.986
Sedimentary rocks C1t 1938.375 22 0.862 3.837
Sedimentary rocks C1b 2704.125 30 0.860 4.386
Au (ppb) 1.8–2.1 1896.625 21 0.618 2.700
Au (ppb) 2.1–2.7 2298.688 22 0.465 2.077
Au (ppb) 2.7–3.3 1111.188 19 1.066 4.449
Au (ppb) 3.3–3.9 667.250 24 1.849 8.558
Au (ppb) 3.9–4.5 400.938 29 2.587 12.958
Au (ppb) 4.5–5.1 292.500 19 2.434 10.105
Au (ppb) 5.1–5.7 174.750 19 2.964 12.240
Au (ppb) 5.7–6.3 66.375 2 1.589 2.230
Au (ppb) 6.3–6.7 13.313 2 3.228 4.460
As (ppm) 12–16 10076.313 77 0.290 2.093
As (ppm) 16–20 5049.750 40 0.284 1.636
As (ppm) 20–24 2751.625 26 0.459 2.207
As (ppm) 24–28 1419.000 16 0.627 2.420
Sb (ppm) 0.6–0.8 11139.563 98 0.529 4.027
Sb (ppm) 0.8–1.0 7257.313 55 0.248 1.612

of a certain pixel with respect to the nearest fault line
in numerical form, reflecting the spatial distribution
characteristics of faults. Nine directions of faults are
considered: north (–1◦–22.5◦), northeast (22.5◦–67.5◦),
east (67.5◦–112.5◦), southeast (112.5◦–157.5◦), south
(157.5◦–202.5◦), southwest (202.5◦–247.5◦), west
(247.5◦–292.5◦), northwest (292.5◦–337.5◦), and north
(337.5◦–360◦). Ss shown in Fig. 3, results indicate that
most faults are northeast- and southeast-trending. As
shown in Table 2, the influence of fault direction on
gold deposits or mineralization occurrences is primar-
ily manifested in the first (–1◦–22.5◦) and the ninth
(337.5◦–360◦) directions, with S(C) reaching a maxi-
mum of 3.9844. Therefore, fault density, fault distance,
and fault direction are considered to be factors which
influence the quantitative evaluation of favorability for
gold mineralization.

• Spatial analysis of intrusive rocks

Granite is most-extensively distributed in the study
area, followed by ultramaficrock, diorite and inter
mediate-acid dyke, which are dated to the middle-
late Hercynian. One intermediate-felsicacid magmatic
event occurred in the Hercynian belt. As a result, multi-
stage intrusive rocks of varying scale were formed. With
the exception of ultramafic rocks, the gold content is
higher in intermediate-basic rocks.

Magmatic activities play a crucial role in gold enrich-
ment [2]. Therefore, intrusive rocks are selected from
the database for buffer analysis. The maximum influ-
ence range of intrusive rocks is 8 km, as shown in Fig. 3.

Intrusive rocks have a smaller controlling effect on
gold deposits, which is primarily manifested in the 6th

class (Table 2). That is, when the distance from rocks



N. Zhang and K. Zhou / Mineral prospectivity mapping with weights of evidence and fuzzy logic methods 2645

Fig. 3. Spatial analysis map of nine layers.
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is 5.0–6.0 km, the S(C) is only 1.0031. In terms of
data-driven approaches, intrusive rocks have a smaller
influence on mineralization. As indicated by the miner-
alization conceptual model, intrusive rocks, especially
small intrusions, are more closely associated with gold
deposits. Therefore, an intrusive rock buffer distance of
5.0–6.0 km is considered as an influence factor that is
favorable for gold mineralization.

• Spatial analysis of quartz veins

The mineralization conceptual model indicates that
gold deposits are closely related to quartz veins. Gen-
erally, quartz veins can be found at the sites of gold
deposits. Therefore, buffer analysis and reclassification
are performed for quartz veins. Combinedwith expert
knowledge, the maximum influence range of quartz
veins is determined to be 2.5 km, as shown in Fig. 3.
Calculation results are shown in Table 2; results indi-
cate that the S(C) within 0–500 m is 2.9646. Thus, the
occurrence of quartz veins within this distance is an
influence factor that is favorable for gold mineralization
in the quantitative evaluation.

• Spatial analysis of sedimentary rocks

The study area is comprised of a great variety of
sedimentary rocks, totaling 154 types. According to
spatial overlay superimposition on the known deposits,
230 deposits are located in the sedimentary forma-
tions, accounting for 95.8%. As shown in Table 2,
sedimentary rocks have a controlling effect on gold
deposits. The maximum S(C) reaches 26.9836, indicat-
ing the extremely large influence of sedimentary rocks
on mineralization. Therefore, the discovery of these
sedimentary rocks can be considered an influence factor
of favorability for gold mineralization.

• Spatial analysis of geochemical data

Geochemical anomalies are not controlling factors,
but are responses of specific mineralization processes

[26]. Au, As and Sb results indicate that close rela-
tionships to the formation of gold deposits are subject
to rasterization on the basis of Kriging interpolation.
Reclassification maps of the three elements are obtained
(Fig. 3). It is determined by reclassification and super-
imposition spatial overlay analysis that most deposits
fall within the high peak area of Au content, and some
within the high peak areas of As and Sb contents. As
shown in Table 2, the S(C) of Au content increases from
1.8, and the increase becomes more rapid after 2.7 until
reaching the maximum of 4.4602 at 6.3–6.7 ppb. This
indicates that Au content has an extremely large influ-
ence on mineralization. When As content is 12–28 ppm,
the S(C) is 2.4197; when the Sb content is 0.6–1.0 ppm,
the studentized contrast is 4.0265. Therefore, Au, As
and Sb contents within these intervals are influence
factors of favorability for gold mineralization.

5.1.2. CI test and calculation of posterior
probability

Conducting the W-of-E modeling requires evidence
map patterns to satisfy the pairwise conditional inde-
pendence (CI) assumption [28]. An χ2 (chi-square) test
was used to verify whether the weights-of-evidence
layers satisfied the conditional independence assump-
tion. The results of the χ2 test are shown in Table 3.
The criterion is that χ2 is 6.635 under the degree of
freedom of 1 and a significance level of 0.01. Thus,
the χ2 value is larger than 6.635 and the probability
value is smaller than 0.01, indicating failure to meet
the conditional independence assumption. As shown
in Table 3, fault density, intrusive rocks, fault distance,
As, and Au cannot be placed in the weights-of-evidence
model simultaneously. Therefore, the four weights-of-
evidence layers are removed. As a result, only five
weights-of-evidence layers are left, namely Au con-
tent, Sb content, sedimentary rocks, fault distance and
quartz veins. By introducing these five weights-of-
evidence layers into the weights-of-evidence model,

Table 3
The table of value of χ2

Evidential Layers Sb content Intrusive rocks Fault distance As content Au content Sedimentary rocks Fault direction Fault density

Quartz veins 2.06 0.76 0.19 9.25 4.39 0.90 1.07 1.19
Sb content 0.09 0.01 2.79 5.72 0.04 0.07 2.43
Intrusive rocks 0.92 8.72 7.48 0.19 4.10 7.31
Fault distance 0.02 1.93 0.09 19.48 18.69
As content 3.78 7.75 0.01 13.98
Au content 0.18 0.98 35.62
Sedimentary rocks 0.09 0.10
Fault direction 0.80
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the posterior probability of mineralization in the study
area is calculated. The relationship between the poste-
rior probability of mineralization and the cumulative
area is shown in Fig. 4. Based on posterior proba-
bility, the study area is divided into three categories:
non-metallogenic districts, medium-favorability met-
allogenic districts, and high-favorability metallogenic
districts. A mineral prospectivity map of the study area
was obtained based on the weights-of-evidence model
(Fig. 5).

5.2. Fuzzy logic

The fuzzy logic method is essentially knowledge-
driven. Here, value is assigned to metallogenic data

Fig. 4. The cumulative relationship between posterior probability and
study areas.

Fig. 5. Mineral prospectivity mapping with W-of-E (having passed
conditional independence test).

sets by combining quantificational weights-of-evidence
calculations and expert knowledge. A value of 10 is
assigned to metallogenic data sets of sedimentary rocks;
a value of 9 is assigned to geochemical anomaly of Au;
a value of e is assigned to metallogenic data sets of
faults; a value of 8 is assigned to the metallogenic data
sets of quartz veins; a value of 7 is assigned to intrusive
rocks; and a value of 7 is assigned to the geochemical
anomaly of As and Sb. Thus, the membership value of
metallogenic data sets in the study area is calculated,
with the fuzzy membership values of faults shown in
Table 4. The membership value of other layers is calcu-
lated identically. Next, fuzzy synthesis is performed for
all evidential layers according to four schemes, respec-
tively (Fig. 6). As shown in Table 5, results indicate
that scheme D is finally selected for subsequent predic-
tion. A mineral prospectivity map based on fuzzy logic
model is drawn, as shown in Fig. 7.

6. Validation

Generally, the discovery of new deposits is the best
validation of metallogenic prediction. However, such
validation can hardly be achieved in a study region
as extensive as the western Junggar area, which usu-
ally requires a large investment in time and capital.
Kemp presented two methods of validation [15]: (1)
test whether the metallogenic districts have a higher
probability; and (2) compare with the results from
other methods. Bonham-Carter also proposed that an
ore-forming potential map can be used to predict the
deposit distribution and hence to validate the estab-
lished model [12]. In this paper, the first method was
used for validation. As shown in Table 6, the fuzzy
logic mineral prospectivity map predicts 75% high-
and medium-favorability metallogenic districts of the
known deposits within 14% of the study area.; the pos-
terior probability reaches 0.9739 and only 25% of the
deposits are outside the predicted districts. As shown
from the predictions in Fig. 7, most deposits are dis-
tributed in the prediction regions; only a few known
deposits are outside the prediction regions, demonstrat-
ing a scattered distribution pattern. This may be due to
the lack of some metallogenic information (e.g., gravity
data) for this district. Based on the above evaluation, it
is concluded that the fuzzy logic method can be applied
to the mapping of potential metallogenic districts with
high accuracy.
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Table 4
Fuzzy membership value of faults

Fault Fault Weight of Weight of Score of Fuzzy membership
distance (m) distance (m) layer class class value

0–500 8 10 80 0.952574
500–1000 8 6 48 0.450166
1000–1500 8 5 40 0.268941
1500–2000 8 3 24 0.069138
2000–2500 8 4 32 0.141851
2500–3000 8 6 48 0.450166
3000–3500 8 2 16 0.032295
3500–4000 8 6 48 0.450166
4000–4500 8 1 8 0.014774
4500–5000 8 6 48 0.450166

Fig. 6. The inference network map of fuzzy logic.

Table 5
Results of the four schemes

Category High-favorability Number of
metallogenic districts deposits covered

A 0.60% 15
B 3.01% 65
C 0.66% 40
D 6.03% 98

7. Discussion

Through the application of the two models, two pre-
dictions are obtained for the study area. These two
models are compared in terms of process and results.

• Process

It is evident that the weights-of-evidence model is
a data-driven model. This model can quantitatively
predict the relationship between each type of met-
allogenic information evidence and tknown deposits.
Then, a metallogenic prediction is realized based on
the metallogenic evidences input into the model. The
entire process displays a distinct quantificational fea-
ture. However, due to the restraint imposed by the
conditional independence assumption, some metallo-
genic evidences are excluded from the model. The
posterior probability of the conditional independence
is 0.0000267–0.4350819 and the posterior proba-
bility of not passing the conditional independence
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Fig. 7. Mineral prospectivity mapping with fuzzy logic method.

is 0.0000032–0.90977197; the posterior probability
of gold mineralization not passing the conditional
independence test is higher than that of the gold min-
eralization passing this test. This agrees with results
reported by researchers [8, 18]. It is inferred that the pre-
diction not passing the conditional independence test
will affect the judgement of metallogenic prospectiv-
ity. Since the metallogenic factors are binarized by the
weights-of-evidence model, some information is lost.
As a result, the final prediction has a non-negligible
error due to the lack of some important metallogenic
evidence. The fuzzy logic model was employed on the
basis of the weights-of-evidence model. Combined with
a data-driven approach and expert knowledge, all con-
sidered influence factors of gold mineralization were

included in the model, thus avoiding information loss
due to binarization. Some small values were assigned
to the factors, but experts familiar with the regional
geological conditions believed that the important met-
allogenic factors can be assigned higher values. For
example, during analysis of intrusive rock buffer dis-
tances of 6 km and 8 km using the weights-of-evidence
model, the results are as follows: C = 0.0638, and
S(c)=0.243. However, given that 25 deposits are located
within this distance, the layer was finally assigned a
value of 7 according to expert opinion. Therefore, the
metallogenic prediction model combined a data-driven
approach with expert knowledge to produce more reli-
able results.

• Results

The results of mineral prospectivity mapping
achieved by weights-of-evidence and fuzzy logic tech-
niques are shown in the maps in Figs. 5 and 7. The
degree of favorability of a particular location to host
Au deposits is displayed on the legend; areas in red
represent those that have been allocated high favor-
ability values, areas in green represent those with
medium favorability values, and areas in blue rep-
resent those with low favorability values. Due to a
lack of some important metallogenic evidences in the
weight-of-evidence model, the number of deposits and
the posterior probability of gold mineralization are far
lower than values obtained by the fuzzy logic model,
as shown in Figs. 5 and 7, and Table 7. Therefore,
the fuzzy logic model built on the basis of a data-
driven approach and expert knowledge is superior to
the weights-of-evidence model

Table 6
Statistical results of fuzzy logic model

High-favorability Medium-favorability Non-metallogenic
metallogenic districts metallogenic district district

Number of known deposits 98 83 59
Area covered 6.03% 8.06% 85.91%
Highest posterior probability 0.9739 0.6248 0.2383

Table 7
Comparison of weights-of-evidence model (having passed conditional independence test) and fuzzy logic model

Number of deposits included Highest probability of gold Area of high-favorability
in the high-favorability mineralization districts
metallogenic districts

Weights-of-evidence model 12 0.4351 0.17%
Fuzzy logic model 98 0.9739 6.03%
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8. Conclusions

In this study, weights-of-evidence and fuzzy logic
methods were used to produce an Au prospectivity map
of the western Junggar metallogenic belt. The results of
this work lead to the following conclusions:

• Significant geological controls on gold mineral-
ization are evident according to spatial analysis.
According to the weight contrasts and studentized
contrast, favorable sedimentary rock types, fault
density, and fault distance were the primary fac-
tors influencing Au mineralization. Arsenic, Sb,
fault direction, quartz veins and intrusive rocks
were secondary factors influencing Au mineraliza-
tion. This suggests that sedimentary rocks, faults
and Au geochemical anomalies are priorities for
detailed mapping in future explorations.

• Conditional independence exerts great influence
on the weights-of-evidence model. This study
demonstrates that posterior probability would be
high if the conditional independence assumption
is disregarded; this will affect the accuracy of pre-
diction. However, the conditional independence
assumption is difficult to meet in reality. The condi-
tional independence test calculates the probability
that the model is not conditionally independent,
and results above 95 or 99% indicate that an
assumption of conditional independence should
be rejected. Therefore, a concern of future study
is to find better ways to satisfy the conditional
independence assumption; for example, changing
the method of conditional independence testing,
reducing the number of weight layers or chang-
ing the number of grid units. In this way, the
weights-of-evidence model can be better applied
to metallogenic prediction.

• The prospectivity map obtained by the fuzzy logic
model indicates a strong correlation between areas
of high posterior probabilities and known Au
deposits, indicating that the nine evidential lay-
ers used in this study area are valid. Based on the
quantification according to weights-of-evidence
and the fuzzy membership values determined by
experts, the fuzzy logic method was used for min-
eral prospectivity mapping with high accuracy. It
was determined that 25% of the deposits are out-
side the predicted districts, likely due to the lack
of important metallogenic evidence. The predic-
tion will be more accurate if the geophysical data
can be input into the prediction model.

• The results from the weights-of-evidence and
fuzzy logic methods are compared. For the study
area with a large number of deposits, the data-
driven approach is believed to be more suitable
for mineral prospectivity mapping. However, if
the data are insufficient (e.g., no geophysical
data), the knowledge-driven approach (e.g., fuzzy
logic method) may achieve a better prediction. A
weights-of-evidence model completely relying on
a data-driven approach may not be the ideal pre-
diction model.
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