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Fuzzy logic-based multi-factor aided
multiple-model filter for general aviation
target tracking
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Abstract. A fuzzy logic-based multi-factor aided multiple-model filter (FLMAMMF) for General aviation (GA) maneuvering
target tracking (MTT) is presented. The target category and meteorological information are introduced into the interacting multiple
model (IMM) filter to perform GA target tracking. Fuzzy logic inference is employed in the proposed algorithm to reflect the
complicated relationship between these two factors and the transition probability matrix (TPM). Both the number of models in
model set and the transition probabilities between models are adjusted through fuzzy inference. Simulation results show that the
proposed method is efficient and effective.
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1. Introduction

For flight safety, an uninterrupted, reliable, accurate
and effective monitoring of air traffic is crucial, espe-
cially for GA flights. Target tracking technology is the
key to the GA aircraft monitoring system [12]. Over
the years, many tracking methods have been devel-
oped, such as the differential polynomials, CV (constant
velocity) and CA (constant acceleration) models, semi-
Markov tracking filters, the “current” statistic models
[9, 10]. These methods meet the tracking need of trans-
port aviation ATC system but not that of GA, since
there are a wide variety of GA aircrafts. GA aircrafts
vary from ultra-light aircraft to small aircraft, powered
to un-powered, manned to unmanned, etc. These wide
variety of aircrafts have great difference in performance
and flight mode. Furthermore, they flight at low altitude
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and are more influenced by meteorological environ-
ment. As a result, their flight trajectories show a strong
maneuvering.

For maneuvering target tracking, Bar-Shalom and
Blom proposed an algorithm called interactive multiple
model (IMM) method, which is based on Generalized
Pseudo-Bayesian algorithm (GPB) [3, 4]. The IMM
uses a set of models to reflect different modes of
maneuvering target and combines the output of multiple
parallel filters (each with a different model) to get the
global estimate. This filter has been successfully used
in an ATC system [12]. However, flight model design is
vital to the IMM algorithm and has a direct influence on
the tracking result [1, 11]. This design should answer
two basic questions: a) how many models are adequate
to reflect such wide variety of GA targets, and b) how
often does a flight change from one model to another.

The first question can be easily solved when the type
of GA aircraft is known. For example, an aircraft with
ADS-B equipment can broadcasting its type along with
its position to ATC system. The model set for each type
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can be predefined. When the aircraft type is known, the
corresponding model set can be employed by the IMM.
When the type is unknown, one can identify the type
by some target recognition methods or he has to use
an over-fitted model set that will result in a bad global
estimation.

The second one is the problem of how to setting tran-
sition probability matrix (TPM), which is obviously
depend on the model set, i.e. the result of the first ques-
tion. IMM algorithm commonly uses two methods to
set the TPM when model set is determined, the off-line
and the online methods. The off-line design method sets
the TPM a priori as a design parameter. In the online
method, the TPM is adaptable and is set by the process
of quasi Bayesian estimator while filtering for tracking
[6]. The existing TPM setting methods perform well
when the affect of meteorological environment can be
neglect, which is not the case in GA target tracking.

For better tracking of GA targets, the identified tar-
get type and the meteorological environment should be
introduced into IMM. Since target recognition usually
outputs the possibility of target types, the output is fuzzy
in nature. Furthermore, meteorology (such as airflow)
influence the flight in a complicated way, which can be
modeled by fuzzy relations [2, 5, 7]. Considering of the
above situations, a novel fuzzy logic-based multi-factor
aided multiple-model filter (FLMAMMF) is proposed
which employs the above influencing factors to adjust
TPM. A set of fuzzy rules is designed according to the
relationship of TPM with target category and meteo-
rological environment. It gives a beneficial attempt to
acquire better GA target tracking performance.

2. Problem formulation

In the IMM algorithm, the system of state equation
and observation equation are given by

xk = Fk(mk, xk−1) + wk(mk) (1)

zk = Hk(mk, xk) + vk (2)

where k is the time index, xk and zk represent the
state and measurement vectors, respectively. Fk and Hk

are the transition matrix and the observation matrix,
respectively. The Gaussian white noise wk and vk

are independent and their covariance are Qk and Rk,
respectively. The parallel filtering system preset r mod-
els work and mk is the model at time k.

IMM algorithm assumes the transition of the flight
mode has homogeneous Markovian property. The prob-
ability of model i at time k transition to model j at time
k + 1 is given by

pij = p(mj
k+1|mi

k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 · · · p1j · · · p1r

...
. . .

... · · · ...

pi1 · · · pii · · · pir

... · · · ...
. . .

...

pr1 · · · prj · · · prr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where mi
k is the filter model using at k time, m

j
k+1 is

that at time k + 1 .
The diagonal elements of the TPM between the

model depend on the sojourn time in each motion
model. The transition probability pii depends on the
expected sojourn time τi is given by

τi = T

1 − Pii

(4)

where τi is the expected sojourn time of the ith model,
Pii is the probability of transition from ith model to the
same model, and T is the sampling interval.

Pii are calculated using

Pii = min{hi, max(li, 1 − T

τi

)} (5)

where li = 0.1 and hi = 0.95 are the lower and upper
limits, respectively, for the ith model transition proba-
bility. The selection of the off-diagonal elements of the
TPM depends on the switching characteristics [8].

3. Selection of TPM

GA targets are diverse in category, and their perfor-
mance differs greatly and is vulnerable to be influenced
by meteorological environment. To achieve better GA
target tracking this paper introduces the target category
and meteorological information to adjust TPM .

3.1. Multi-factor aided adjust TPM

TPM in the IMM algorithm is given by

Pij = P(mj
k+1|mi

k) = P(mj
k+1, m

i
k)

P(mi
k)

(6)
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When influence factor Fn is considered, it becomes

Pij =
∑

n

P(mj
k+1, Fn|mi

k) (7)

According to Bayesian law,

P(mj
k+1, Fn|mi

k) = P(mj
k+1, Fn, m

i
k)

P(mi
k)

· · ·

· · · = P(mj
k+1|mi

k, Fn)P(mi
k, Fn)

P(mi
k)

· · · (8)

· · · = P(mj
k+1|mi

k, Fn)P(Fn|mi
k)

Target motion model has no relevance to Fn. So
P(Fn|mi

k) = P(Fn),the TPM Pij is thus given by

Pij =
∑
Rn

P(mj
k+1|mi

k, Fn)P(Fn) (9)

The influence factor mainly has two types: one for
target category ci and one for meteorology gi. The
introduction of the target category information will first
reduce the number of corresponding models and then
be utilized to adjust TPM. It will improve the filtering
accuracy and increase the speed of filter computation.

In GA target tracking, if the category of target
exhibits weak maneuvering ability, the probability of
keeping in “current motion state” is large while that
of transition to “other motion state” is small. If the
category of target has strong maneuvering ability, the
probability of staying in “current motion state” is small,
and the transition probability to “other motion state”
is large. But one thing remains the same, the sum of
the transition probability of the target from one state to
others and itself is always 1.

When airspace meteorological information gi

changes, TPM needs to change accordingly. If a target
is in good meteorological environment, then its maneu-
vering frequency will be relatively low, which suggests
large diagonal elements of TPM and small off-diagonal
elements. If a target is in bad meteorological environ-
ment, then its maneuvering frequency will be relatively
high, thus the diagonal elements of TPM should be
smaller and the off-diagonal elements be larger.

Considering these facts, target category and mete-
orological environment information can be used to
determine TPM.Following the above relationship, the
proposed algorithm adopt the fuzzy system to adjust the
TPM for GA tracking.

Fig. 1. Design procedure of the fuzzy system.

3.2. The fuzzy system design

The target category and meteorology of GA assigned
airspace can be employed to determine the expected
sojourn time τi of the ith model. The τi can be calculated
by the fuzzy system. Its main functions are given as
follows:

– map the relationship of the τi with ci and gi into a
set of fuzzy rules.

– take ci and gi as the input variable and τi as the
output variable of the fuzzy system.

The fuzzy system consists of four blocks, as shown in
Fig. 1.

– block 1: utilize singleton fuzzifier.
– block 2: implement the fuzzy law between the

input and output. Map the spaces of all variable
into the fuzzy spaces.

– block 3: defuzzify the fuzzy output.
– block 4: estimate the target state by using τi.

�ci, �gi and �τi are necessary to be normalized
with the following forms: �c′

i = �ci/�cmax, �g′
i =

�gi/�gmax and �τ′
i = �τi/τmax. Here �cmax, �gmax

and �τmax are their corresponding maximum values.
The two input variables �c′

i and �g′
i which are

expressed as Ãm and B̃n (m, n = 1, 2, 3, 4) and are
usually relate with the target category and the mete-
orological environment.

These fuzzy sets are labeled in the linguistic terms of
zero (ZE), small positive (SP), medium positive (MP),
and large positive (LP). Triangular functions can sim-
plify the calculation of a fuzzy reference engine and
suppress noise of the inputs. They are used to define the
membership functions of antecedent fuzzy sets for each
fuzzy rule. As shown in Fig. 2. The output consequence
of the fuzzy system is �τ′

i. To obtain optimum �τ′
i,

the region of �τmax is divided into six different fuzzy
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Fig. 2. Membership function of �c′
i or �g′

i.

Fig. 3. Membership function of �τ′
i.

sets, ZE, SP, MP, VP, large positive (LP), and extremely
large positive (EP), expressed as C̃s, s = 1, 2, · · · , 6.
As shown in Fig. 3.

The membership function in each fuzzy set is deter-
mined in the following :

µÃl
m

(
�c′

i

) = 1 −
∣∣�c′

i − dl
i

∣∣
bl
i

(10)

where �c′
i ∈ [

dl
i − bl

i, d
l
i + bl

i

]
. Use the fuzzy IF-

THEN rules to establish the fuzzy model of the
relationship of �τ′

i with �c′
i and �g′

i:

Rl : IF �c′
i ∈ Ãl

m AND �g′
i ∈ B̃l

n

THEN �τ′
i ∈ C̃l

s

(11)

where l = 1, 2, · · · , M, and M = 16. The designed
fuzzy rule base is shown in Table 1.

Table 1
Fuzzy rules on �c′

i , �g′
i and �τ′

i

�τ′
i �g′

i

ZE SP MP LP

ZE ZE SP MP LP
�c′

i SP ZE MP MP LP
MP MP MP LP VP
LP MP LP VP EP

Fig. 4. FLMAMMF schematic diagram.

As a result, the fuzzy system output is given as
follows:

�τ′
i =

M∑
l=1

λl
s

[
min

(
µÃl

i

(
�c′

i

)
, µB̃l

j

(
�g′

i

))]

M∑
l=1

[
min

(
µÃl

i
(�c′

i) , µB̃l
j

(
�g′

i

))]

(12)
�τ′

i can be applied to estimate TPM by using
Equation (5) .

4. FLMAMMF for hybrid estimation

FLMAMMF based on the original IMM algorithm
adds the influence factors. A recursive cycle diagram
of the algorithm is as shown in Fig. 4.

In this process, first using the current influence factor
information (target category , meteorological environ-
ment information) to adaptively adjust TPM elements
Pij to Pij

′. The next step is interactive filtering, which
is the same as in traditional IMM. Calculation of all the
quantities is shown in Table 2.

5. Experimental results and analysis

5.1. Simulation setup

The simulational experiment is conducted by using a
computer with a dual-core CPU of Pentium D 2.93 GHz,
2GB RAM. The programs are performed by using the
Matlab 2013a version software. The simulation results
are derived from 100 Monte Carlo runs.

The first part: Simulated target motion trajectory is
shown in Fig. 5. The simulation assumed that the target
flightmodelsbeCVlinearmotionmodelandcoordinated
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Table 2
FLMAMMF process table

Model-set and TPM (re)initialization: Pij
′ =

∑
Rk

P(mj

k+1|mi
k
, Fn)P(Fn)

Model probability prediction: µ
ij

k−1|k−1 = 1
cj

pij
′µi

k−1 cj =
r∑
1

pij
′µi

k−1

mixing estimate and covariance: x̂
j

k−1|k−1(o) =
r∑
1

x̂i
k−1|k−1µ

ij

k−1|k−1

P
j

k−1|k−1(o) =
r∑
1

µ
ij

k−1|k−1{Pi
k−1|k−1+ . . .

. . . [x̂i
k−1|k−1 − x̂i

k−1|k−1(o)][x̂i
k−1|k−1 − x̂i

k−1|k−1(o)]
T }

Model-conditioned filtering
predicted state and covariance: x̂

j

k|k−1 = F
j

k−1x̂
j

k−1|k−1(o)

P
j

k|k−1 = F
j

k−1[Pj

k−1|k−1(o)](Fj

k−1)
T + Q

j

k−1

measurement residual and residual covariance: vj = zk − Hkx̂
j

k|k−1

Sj = HkP
j

k|k−1Hk
T + R

j

k

filter gain: Wj = P
j

k|k−1Hk
T (Sj)

T

updated state and covariance: x̂
j

k|k = x̂
j

k|k−1 + Wjvj

P
j

k|k = P
j

k|k−1 − WjSj(Wj)
T

Mode probability update

model likelihood: �
j

k
= N[vj ; 0, Sj] = |2πSj |−1/2 exp(− 1

2 (vj)
T

(Sj)
−1

vj)

model probability: µ
j

k
= P(mj

k
|zk) = 1

c
�

j

k
cj c =

r∑
j=1

�
j

k
cj cj =

r∑
j=1

Pij
′µi

k−1

Fusion

overall estimate and covariance: x̂k|k =
r∑

j=1

x̂
j

k|kµ
j

k

P̂k|k =
r∑

j=1

µ
j

k
{Pj

k|k + [x̂j

k|k − x̂k|k][x̂j

k|k − x̂k|k]
T }

Fig. 5. The target trajectory 1.

turn (CT)curvilinearmotionmodel.Target initial state is
(200 m, 40 m/s, 200 m, 40 m/s), the flight lasts for 100
seconds with a sampling rate of 1 point per second. The
observationdataarecorruptedbyaGaussianwhitenoise
with a variance of 2500 m2. The motion trajectory of

the simulation target is divided into seven phases: CT
motion with turn rate +3◦/s between 15–30 seconds,
CTmotionwith turn rate−3◦/sbetween35–50seconds,
CTmotionwith turn rate+5◦/sbetween55–70seconds,
CTmotionwith turn rate−5◦/sbetween75–90seconds,
and constant velocity motion at the rest time. Simulation
assumed that the target type information be unknown in
the first 50 seconds. Filter initial model set is selected as
follows: model 1: CV; model 2: CA; model 3: CT with
turnrate+3◦/s;model4:with turnrate−3◦/sCT;model
5: CT with turn rate +5◦/s; model 6: CT with turn rate
−5◦/s; model 7: CT with turn rate +7◦/s; model 8: CT
with turn rate−7◦/s;model9:CTwith turn rate+10◦/s;
model10:CTwith turn rate−10◦/s.The initializationof
TPM is selected as the 10 × 10 matrix:

Pij =

⎡
⎢⎢⎣

0.82 · · · 0.02
...

. . .
...

0.02 · · · 0.82

⎤
⎥⎥⎦ (13)
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After 50 seconds, target type information F1 came, the
fuzzy system adjusted the TPM to a 5 × 5 matrix and
the model sets to the following: model 1: CV; model 2:
CT with turn rate +3◦/s; model 3: CT with turn rate
−3◦/s; model 4: CT with turn rate +5◦/s; model 5: CT
with turn rate −5◦/s. The original models that do not
conform to the target were abandoned.

Pij = P(mj
k|mi

k−1, F1) = · · ·

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎣

0.90 0.025 0.025 0.025 0.025

0.03 0.90 0.03 0.02 0.02

0.03 0.03 0.90 0.02 0.02

0.03 0.03 0.02 0.90 0.02

0.03 0.02 0.03 0.02 0.90

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

The second part: To simulate the GA target under the
meteorological conditions of the dramatic changes in
the air flight.

The initial state of target is (50 m, 20 m/s,
50 m,20 m/s, 50 m, 20 m/s), the observation is obtained
at a data rate of 1 second. A Gaussian white noise
was added to the observation. Its variance is set to
be 2500 m2. Target motion trajectory in simulation
is shown in Fig. 6. The target keeps CV motion in
horizontal plane, while in the vertical direction (i.e. the
altitude axis) target is affected by a severe turbulence
and exhibits constant ups and downs of movement. The
simulation assumes that the undulating motion can be
regarded as the synthesis movement of cycle +5◦/s
and −5◦/s of CT motions.

The filter initial model set remained unchanged and
the TPM was continuously adapted as Equation (14)
in the simulation. FLMAMMF adopting Equation (12)

Fig. 6. The target trajectory 2.

Fig. 7. The comparison of algorithm calculation time.

to calculate �τ′
i and then got τi. At last the TPM is

calculated by using Equation (5). The TPM is given by

P(mj
k|mi

k−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.7 0.10 0.10 0.05 0.05

0.15 0.60 0.05 0.15 0.05

0.15 0.05 0.60 0.05 0.15

0.15 0.15 0.15 0.50 0.05

0.15 0.15 0.15 0.05 0.50

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

5.2. Simulation results

After 100 Monte Carlo simulation runs, the average
computation time for trajectory 1 at each time step is
shown in Fig. 7. Since the target type information is not
the arrival, at the first 50 seconds the computation time
of the proposed algorithm and that of IMM algorithm
are basically the equal. From the 51 second, after the
target type information comes up, the computation time
of the proposed algorithm is obviously reduced. The
position root mean square error (RMSE) and velocity
RMSE during track process are shown in Fig. 8. The
proposed algorithm and IMM algorithm have similar
precision.

The filtering results target motion trajectory 2 are
shown in Fig. 9. It can be seen that FLMAMMF shows
a superior performance to the fixed structure IMM algo-
rithm, especially at the beginning of each maneuver,
where the position and velocity RMSEs of the proposed
algorithm is significantly reduced compared to the IMM
algorithm.
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Fig. 8. The RMSE of Position and velocity of trajectory 1.

Fig. 9. The RMSE of Position and velocity of trajectory 2.

6. Conclusion

The wide diverse categories of GA aircrafts are easily
affected by meteorological environment in flight, which
leads to the difficult problem of effectively track. This
paper proposed a FLMAMMF for maneuvering GA tar-
get tracking. The relationship of target category and
meteorological environment with the TPM is mapped
into a set of fuzzy rules. By applying fuzzy logic in
the standard IMM and designing the fuzzy system, the
proposed algorithm introduces the target classification
information and the meteorological environment infor-
mation into the auxiliary filtering. Adjusting the model
TPM by these two factors makes it more close to the
actual flight mode, thus improves the tracking preci-
sion of the GA target, and reduce the computation time.
Simulation experiments show that the estimation per-
formance of the algorithm is better than that of the IMM
algorithm. Future works may include introducing more

influence factors and to quantify the influencing factors
in further studies on the TPM.
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