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Fuzzy neural network-based robust adaptive
control for dynamic positioning of underwater
vehicles with input dead-zone

Guoqing Xia, Chengcheng Pang∗ and Jingjing Xue
College of Automation, Harbin Engineering University, Nangang District, Harbin City, Heilongjiang Province, China

Abstract. This paper proposes a design for a robust adaptive controller for the Dynamical Positioning (DP) of underwater vehicles
with unknown hydrodynamic coefficients, unknown disturbances and input dead-zones. First, for convenience of controller design,
the Multi-Input Multi-Output (MIMO) system is divided into several Single-Input Single-Output (SISO) systems. Next, a Dynamic
Recurrent Fuzzy Neural Network (DRFNN) with feedback loops is employed to approximate the unknown portion of the controller,
which can greatly reduce the number of neural network inputs. A fuzzy logic dead-zone compensator is designed to cope with the
unknown dead-zone characteristics of actuators. The upper bounds of the approximation errors and disturbances of the network,
which are often used in existing works, are not necessary in this paper due to the presentation of a special robust compensator.
Stability analysis is conducted according to the Lyapunov theorem, and the tracking error is proved to converge to zero. Simulation
results indicate that the proposed controller demonstrates good performance.
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1. Introduction

Underwater vehicles have been widely used in
marine missions for some time, for such uses as marine
science, submarine rescue, data gathering, etc. For some
specific tasks, the vehicles are required to precisely
maintain positions near structure [3, 20]. Therefore, six
Degree of Freedom (DOF) dynamic positioning con-
trollers are necessary for these situations. Due to 6-DOF
control issues, the design of controllers is complicated
due to the existence of strong coupling character, non-
linear nature, unknown parameters and time-variable
disturbances. Therefore, it is a significant and challeng-
ing task to design a 6-DOF controller with the ability
to handle these factors.
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tion, Harbin Engineering University, No.145 Nantong Street,
Nangang District, Harbin City, Heilongjiang Province, China. Tel.:
+86 13836191964; Fax: +86 451 82534007; E-mail: pcc mail@
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Many researchers have made outstanding contribu-
tions to the control issues of underwater vehicles [22].
Mode-based controllers are often utilized in underwater
vehicle systems, such as the Lyapunov method, back-
stepping technique, feedback linearization, and some
combined methods [4, 18]. However, most controllers
require an accurate mathematical model of the vehicle,
which is often difficult to obtain. Adaptive controllers
have been developed in many studies to overcome these
problems by estimating the unknown and/or slowly-
varying parameters [8, 21]. An adaptive PD controller
for 4-DOF positioning of a Remotely Operated Vehi-
cle (ROV) is discussed to maintain the position of the
ROV close to an underwater structure [6], and the dis-
turbing force caused by ocean current, passive arms,
and umbilical cables are compensated for by adaptive
estimation. Zhu and Gu proposed an MIMO nonlin-
ear adaptive robust controller with estimated unknown
hydrodynamic parameters and slowly varying distur-
bances [12].
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Approximation-based control methods such as neu-
ral networks and fuzzy logic systems are also effective
tools to overcome the limitations of the controller
[24–26]. These methods are typically utilized to deal
with the unknown terms, nonlinear terms or time-
varying disturbances. Ishaque described an efficient
fuzzy controller which reduced the conventional two-
input fuzzy controller to a single-input fuzzy controller
[13, 14]. The primary advantage of this approach was
that rule inferences were greatly reduced and the cal-
culation procedure was simplified. An adaptive fuzzy
sliding mode controller with a novel fuzzy adap-
tation technique was presented for an Autonomous
Underwater Vehicle (AUV) in the presence of exter-
nal disturbances and parameter uncertainties. Li and
Lee proposed an effective control method, in which the
uncertain parameters of AUVs were approximated by
a single hidden layered neural network [9]. Also they
presented a semi-globally stable adaptive controller for
diving control of an AUV, with a neural network to com-
pensate for the unknown terms in pitch motion [10].
Wavelet Neural Networks (WNN) have great advan-
tages in dynamic responses and information storing
abilities [1, 2]. A WNN-based adaptive robust con-
troller was investigated to resolve the MIMO tracking
control system. Further study introduced a Recur-
rent Wavelet Neural Backstepping Control (RWNBC)
scheme including a neural network and a smooth com-
pensator, which was developed for MIMO systems.
An adaptive output feedback controller for AUV was
proposed by Zhang, and a Dynamic Recurrent Fuzzy
Neural Network (DRFNN) was employed to estimate
the dynamic uncertain nonlinear mapping [15]. Since
there is an internal feedback loop in this type of neu-
ral network, the neural network is able to capture the
dynamics of a system, requiring fewer network inputs
than conventional neural networks. This paper employs
a DRFNN approach to deal with the unknown portion
in the ideal controller, which includes the uncertain
parameters of the vehicles.

Robust controllers are well known for their immu-
nity to disturbances, and have been widely used in
underwater vehicles [5, 11, 16]. Robust terms were
often employed to handle the approximation errors
of neural networks, external disturbances, and estima-
tion errors of adaptive controllers. However, the upper
bounds of the signals were necessary to most exist-
ing works, which is difficult to implement in actual
systems.

Additionally, from a practical perspective, saturation
and dead-zones of the actuators often exist, which will

affect the performance of the DP system [19, 23]. This
type of vehicle often uses thrusters as actuators, and
thrusters have certain inherent nonlinear characteristics
such as saturation and dead-zones. However, many con-
trol strategies ignored the saturation and dead-zones,
due to their different control objectives. As to the DP
system under investigation, the speed of the underwa-
ter vehicle of the system usually works at low or zero
speeds. Also, the existence of the pre-filter will not
cause large changes in the error vector, so that the con-
troller outputs will barely reach saturation. Therefore,
in this paper, only the effect of the dead-zone will be
taken into account.

In current studies, the most common problems in the
existing methods of underwater vehicles are as follows:
a) AUV controllers are typically designed according to
3-DOF motion. Six-DOF control is more complicated
and presents additional challenges; b) The derivation of
the transform matrix is used in many controllers, which
is very complex, and the derivation is difficult to obtain
for the 6-DOF system; c) In some research, robust terms
are used to suppress or offset the effect of jamming, and
the upper limits of the disturbances are customarily nec-
essary; d) Most controllers can ensure that the tracking
error converges to a neighborhood of zero, which can-
not satisfy the precision demands; e) The dead-zone of
the actuator was not taken into account in many DP
systems.

The primary contribution of this paper is to propose
a DRFNN-based adaptive robust controller for 6-DOF
underwater vehicles. The controller can be designed
without explicit knowledge about the model of the
vehicle, and the derivation of the transform matrix. A
feed-forward fuzzy compensator is designed to elim-
inate the effects caused by dead-zones. Additionally,
a special robust controller is developed to handle the
approximation error of the neural network, estima-
tion error and equivalent disturbances. The bounds
of the disturbances are not necessary by utilizing the
robust compensator, and the error can converge to
zero.

The structure of this paper is organized as follows.
Section II describes the control problem of underwater
vehicles subject to uncertain terms and disturbances.
Section III presents the design of the dynamic
recurrent fuzzy neural network-based controller, a
fuzzy dead-zone compensator and a robust con-
troller. In section IV, simulation studies are described
to verify the effectiveness of the proposed control
scheme. Finally, conclusions are made in the final
section.
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2. Problem formulation

2.1. Underwater vehicles’ kinematics and
dynamics

For the underwater vehicle positioning system, the
kinematics and dynamics can be described by the fol-
lowing equations:

η̇ = J(η)ν

Mν̇ + C(ν)ν + D(ν)ν + G(η) = τ +�f
(1)

where η = [
x, y, z, φ, θ, ψ

]T ∈ �6×1 is the position
and attitude vector of the vehicle with 6-DOFs in
the earth-fixed frame; ν = [

u, v,w, p, q, r
]T ∈ �6×1

represents the velocities in the body-fixed frame; τ ∈
�6×1 is the input vector, which include the forces and
moments produced by thrusters; M = MA + MRB is the
system inertial matrix,; C (ν) is the Coriolis and cen-
tripetal matrix; and C (ν) = CA (ν) + CRB (ν) ∈ �6×6.
The hydrodynamic damping matrix D (ν) ∈ �6×6 can
be divided into linear and nonlinear parts. G(η) ∈ �6×6

represents the gravitational forces and moments;�f ∈
�6 is a vector of bias forces and moments and con-
sists of slowly-varying environmental disturbances and
unmolded terms; And J (η) ∈ �6×6 is the transforma-
tion matrix, described as follows:

J(η) =
[

J1(η) 0

0 J2(η)

]
(2)

where J1 (η) and J2 (η) are complex functions of Euler
angles φ, θ, ψ. By defining y = η = [

y1, . . . , yn
]T,

system (1) can be rewritten as follows:

ÿ=[
f1(x) · · · fn(x)

]T+G(x) [τ1 · · · τn]T+[d1 · · · dn]T

(3)

where x =
[
ηT η̇T

]T
and is equivalent to:

ÿi = fi(x) + gi1(x)τ1 + · · · + gii(x)τi + · · · + di

(i = 1, . . . n)
(4)

Choose τi as the primary input value for the i-th
sub-system. Then, the sub-system can be rewritten as
follows: ⎧⎪⎪⎨

⎪⎪⎩
ÿ = fi(x) + gii(x)τi + dsi

dsi =
n∑

j=1, j /= i

gij(x)τj + di
(5)

where dsi is the equivalent disturbance of the i-th sub-
system. Therefore, the MIMO system is divided into
six SISO systems. Assume that the equivalent distur-
bance of the i-th sub-system satisfies ‖dsi‖ ≤ Dsi, and
gii(x) ≥ g0 > 0. Dsi and g0 are unknown constants.

2.2. Reference trajectory and control objective

Define the constant vector yd = [
yd1, . . . , ydn

]T as
the desired output value of the system. In order to make
the differential of yd always meaningful and improve
tracking performance, a smooth reference trajectory
yref = [

yref1, . . . , yrefn
]T for the tracking system will

be generated by the pre-filter:

Mrÿref + Drẏref + Gryref = Gryd (6)

where Mr, Dr, and Gr are positive design matrices.

Remark: In order to ensure that the reference sig-
nals yref , ẏref and ÿref are all smooth, let Dr =
2Mrξ�, Gr = Mr�

2, and ξ,� > 0 represent diag-
onal design matrices of relative damping ratios and
natural frequencies, and ξ = diag(ξ1, ξ2, . . . , ξn),� =
diag(ω1, ω2, . . . , ωn).

The control objective is to devise a neural network-
based adaptive output feedback controller τ, such that
the output signal y follows a desired reference trajec-
tory yref , and the signals in the closed-loop system
remain bounded.

3. Adaptive robust controller design

In this section, an adaptive robust controller is
employed for the DP system of an underwater vehicle.

Considering sub-system (5), the extensional error can
be defined as follows:

zi = ėi + λei (7)

where ei = yrefi − yi is the tracking error of the i-th
subsystem, and λ > 0 is a constant.

Therefore, the zi dynamics can be described as fol-
lows:

żi = ëi + λėi

= ÿrefi − ÿi + λėi

= −gii(x)τi + ai(ẏrefi, ÿrefi) + bi(x, ẏi) − dsi (8)
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where

ai(ẏrefi, ÿrefi)

= ÿrefi + λẏrefi, bi(x, ẏi) = −fi(x) − λẏi.

3.1. Controller design without disturbances

An ideal controller is derived in this section for the
zi dynamics under the assumption dsi = 0:

τ∗i = λKiei + g−1
ii (x)(āi(yrefi, ẏrefi, ÿrefi)

+b̄i(x, yi, ẏi)), (i = 1, 2 · · · n) (9)

where āi(yrefi, ẏrefi, ÿrefi) = ai(ẏrefi, ÿrefi) + gii(x)
Kiẏrefi (Ki > 0), and b̄i(x, yi, ẏi) = bi(x, ẏi) −
gii(x)Kiẏi.

Considering the Lyapunov function candidate as
follows:

V ∗ = 0.5z2
i (10)

Therefore, the derivative of function along the trajec-
tory can be written as follows:

V̇ ∗ = ziżi = −gii(x)Kizi(ẏrefi − ẏi + λei)

≤ −g0Kiz
2
i ≤ 0 (11)

Thus, the asymptotic result is lim
t→∞ zi = 0. Therefore,

controller (9) can make the extensional error zi converge
to zero.

Considering the ideal controller , the second term of
the right side includes vehicle parameters. Let:

u∗
1 = g−1

ii (x)(āi(yrefi, ẏrefi, ÿrefi) + b̄i(x, yi, ẏi))
(12)

However, for 6-DOF underwater vehicles, it is often
impractical to obtain all values in the system matrix,
and the modelling error cannot be ignored. For these
reasons, a DRFNN is employed to approximate the
unknown function in controller, so the controller can
be rewritten as:

τi = λKiei + ûri + ε (13)

where ûri is the output of DRFNN (which will be
designed later), and ε is the approximate error.

3.2. Dynamic recurrent fuzzy neural network

Different to traditional fuzzy neural networks,
DRFNN with memory elements and an internal feed-
back loop can capture the dynamic response of a system.
The derivatives ẏ that cannot be obtained directly will

Fig. 1. The structure of DRFNN.

not be used as one of the input vector. For a neural
network with m inputs and n outputs, the structure is
introduced as follows, and as shown in Fig. 1.

The DRFNN comprises five layers: input layer, fuzzy
layer, fuzzy rule layer, normalized layer and output
layer. The variables xN , yN are the input and output
vectors of the neural network, respectively, and:

yN = WT�(xN ) (14)

where �(xN ) = [
ᾱ1, ᾱ2, . . . ᾱml

]T . Therefore:

yNj =
∑m

l=1
wojlᾱl, j = 1, 2, . . . r (15)

where wojl is the output weighting value,ml is the num-
ber of fuzzy rulers, and the normalized value can be
obtained as follows:

ᾱl = αl/
(∑m

j=1
αj

)
, l = 1, 2, . . . ml (16)

where:

ρal (k) = µ
i1
1 (xN1 (k)) . . . µinn (xNn (k))

αl(k) =
(

1 + e
−µ

(∑m

l=1
wR
l
αl(k−1)+zα

l
(k)−0.5

))−1

(17)
µi1(•) is a Gaussian function used to calculate the

membership function of every linguistic variable.
As shown by the above Equation (17), every rule

application degree at time k not only contains the value
at the current time, i.e. ρal (k), but also contains the
application degree at time k − 1.

The weight values wRl and wojl are collected into

WR and W. Define the parameter vector of the neural
network as follows:

E = [WT
i WRT

i ]T (18)
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According to the approximation theorem [7, 17],
there exist matrices W∗,WR∗, such that the contin-
uous function on a compact set can be approximated by
recurrent wavelet of the neural work, as follows:

u∗
ri = g−1

ii (x)(āi + b̄i) = yDRFNN (xN,E∗) + ε (19)

where ‖ε‖ < εN , and εN is the unknown upper bound
of the reconstruction error ε. Since the optimal values
are unknown, Ê is sued as the estimation of the opti-
mal values, which will be used in the final controller as
follows:

τi = λKiei + ûri + usi

ûri = yRWNN (xN, Ê) (20)

where usi is the robust term to compensate for the
approximate errors, and will be designed later.

3.3. Adaptation laws

Define the estimation error vectors as follows:

Ẽ = E − Ê (21)

Therefore, the reconstruction error of the RWNN can
be written as follows:

ũri = u∗
ri − ûri

= yDRFNN (xN,E∗) − yDRFNN (xN, Ê) + ε

= ẼT
∂yDRFNN (xN,E∗)

∂E

∣∣
E=Ê + o(Ẽ2) + ε (22)

where o(Ẽ2) are the high order terms, and

hi = o(Ẽ2) + ε (23)

Therefore, the reconstruction error ũri can be rewrit-
ten as follows:

ũri = ẼT
∂yRWNN (xN,E∗)

∂E

∣∣
E=Ê + hi (24)

For the i-th sub-system, the adaptive laws are defined
as follows:

˙̂E = γ

(
zi
∂yRWNN (xN,E∗)

∂E

∣∣
E=Ê − σ |zi| Ê

)
(25)

where γ > 0, σ > 0 are the adaptive gain.

3.4. Compensation of unknown dead-zone

However, when the speed of the vehicle is maintained
around zero, especially with small disturbance forces,
the engine of the thrusters must switch between forward

Fig. 2. Dead-zone nonlinearity.

and reverse in order to maintain the vehicle’s posi-
tion. Direct application of the control law mentioned
above will cause the motion of the vehicle to shock.
Therefore, the effect introduced by the dead-zone of the
thrusters should not be ignored. To compensate for the
non-symmetric nonlinear dead-zone, a fuzzy logic (FL)
feed-forward compensator is designed in this section.

The dead-zone nonlinearity of the actuator is shown
in Fig. 2, and it can be written as follows:

Ti = Du(τi) =

⎧⎪⎨
⎪⎩
τi − di−, τi < di−

0, di− ≤ τi < di+
τi − di+, τi ≥ di+

(26)

where τi is the controller output before the dead-zone
abd Ti is the output of the dead-zone, which represents
the real control force acting on the vehicles; and di− ∈
�−, di+ ∈ �+ are the unknown and bounded parame-
ters of the dead-zone. For convenience, the dead-zone
model can be expressed as follows:

Ti = τi − satd(τi) (27)

where satd(•) is the saturation function. From the prop-
erties of dead-zones, define the fuzzy rules as follows:

If (τi ∈ X+(τi)) then (τFi = d̂i+)
If (τi ∈ X−(τi)) then (τFi = d̂i−)

where X+(·) and X−(·) are the membership functions
(MFs) defined as follows:

X+(ωi) =
{

0, τi < 0

1, τi ≥ 0
, X−(ωi) =

{
1, τi < 0

0, τi ≥ 0
(28)

Let di = [
di+, di−

]T, X(τi) = [X+(τi), X−(τi)]T .
The forward compensator is designed here to compen-
sate for the effect of the dead-zone, and make τi ≈ Ti.
The new control input τ̄i can be written as follows:

τ̄i = τi + τFi, and τFi = d̂i X(τi) (29)
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Therefore, when using a compensator, the real con-
trol force Ti is expressed as follows:

Ti = Du(τ̄i) = τi − d̃Ti κ̄ + d̃Ti δ (30)

where ϒ = uS(d̃Ti ) X(τi)�(τi); uS(•) is a unit step
function; d̃i = di − d̂i is the estimation error; and�(τi)
is a piecewise function, described as follows:

�(τi) =

⎧⎪⎨
⎪⎩

0

1 − τi/d̃i−
1 − τi/d̃i+

τi < d̃i−/τi > d̃i+
d̃i− ≤ τi < 0

0 ≤ τi < d̃i+
(31)

As shown by the definition, ‖ϒ‖ ≤ 1. Using
Lyapunov’s direct method, the adaptive tuning law of
the estimated dead-zone widths can be determined as
follows:

˙̂di = γd(ziκ̄ − σd |zi| d̂i) (32)

where γd > 0 and σd > 0 are design parameters.

3.5. Final control scheme

To obtain the final controller, a robust term should
first be designed to handle the errors.

Define the total residual error of the system as fol-
lows:

�i = hi + σ
∥∥Ẽ

∥∥2 + g−1
0 Dsi + σd ‖di‖2 + ∥∥d̃i∥∥

(33)
where�i is an unknown slowly-varying bounded func-
tion.

A special robust controller usi is chosen as follows
to balance the estimation errors and the disturbances in
the system, and make the tracking errors approach zero.

usi = zi |zi| �̂i/(|zi|2 + δi) (34)

where

˙̂�i = γ� |zi|
δ̇i = −γ� |zi| �̂i/(|zi|2 + δi) (35)

where γ� > 0 is the adaptive gain, and δi > 0.

Remark: The existence of |zi| = zisign(zi) will result
in chattering phenomenon when using the robust con-
troller. In order to reduce chattering, the sign function
sign(•) can be replaced by the hyperbolic tangent func-
tion tanh(•). This will not affect the stability of the
system.

From the above sub-sections, the final control scheme
is obtained, and which is illustrated in Fig. 3.

Fig. 3. Architecture of the underwater vehicle control system.

As shown in Fig. 3, τ̄i is the final control law designed
for the i-th sub-system, and has the form:

τ̄i = λKiei + ûri + usi + τFi

ûri = yRWNN (xN, Ê)

usi = zi |zi| �̂i/(|zi|2 + δi)

τFi = d̂i X(τi) (36)

Therefore the final control law is comprised of a
DRFNN controller ûri, a dead-zone compensator τFi
and a robust controller usi. The DRFNN parameters’
adaptive laws are chosen as in Equation (25), and the
adaptive law of the dead-zone commentator is as shown
in Equation (32). The parameters of the robust con-
troller are adjusted according to Equation (35).

4. Stability analysis

In this section, the stability of the designed control
scheme will be proved. Ti is the real control vector act-
ing on the vehicle. Substituting Equation (30) obtains
the zi dynamic, as follows:

żi = −gii(x)Ti + ai + bi − dsi

= −gii(x)(λKiei + ûri + usi − d̃Ti κ̄) − gii(x)d̃Ti δ

+αi+βi − gii(x)g−1
ii (x)(āi + b̄i) + gii(x)u∗

ri − dsi

= −gii(x)τ∗i + ai + bi + gii(x)d̃Ti κ̄ − gii(x)d̃Ti δ

+gii(x)ũri − gii(x)(usi − g−1
ii (x)dsi) (37)
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Substituting the estimation error ũri into Equation
(37) will yield:

żi=−gii(x)λKizi + gii(x)

(
ẼT
∂yRWNN (ξ,E∗)

∂E

∣∣
E=Ê

)

+gii(x)d̃Ti κ̄ − gii(x)(usi − hi − g−1
ii (x)dsi)

−gii(x)d̃Ti δ
(38)

By defining �̃i = �i − �̂i, a Lyapunov function is
chosen as follows:

V = 0.5z2
i + 0.5gii(x)(γ−1ẼTẼ + γ−1

d d̃Ti d̃i

+γ−1
� �̃i�̃i + γ−1

� δiδi)
(39)

Taking the time derivative of the Lyapunov function
obtains the following:

V̇ = ziżi − gii(x)(γ−1Ẽ
Ṫ

Ê + γ−1
d d̃Ti

˙̂di

+γ−1
� (�̃i̇̂�i + δiδ̇i))

= −gii(x)λKiz
2
i − gii(x)zi(usi − hi − g−1

ii (x)dsi)

+gii(x)d̃Ti (ziκ̄ − γ−1
d

˙̂di) − gii(x)(γ−1
� �̃i̇̂�i

−γ−1
� δiδ̇i)

+gii(x)(ẼT (zi
∂yRWNN (ξ,E∗)

∂E
∣∣
E=Ê − γ−1̇̂E) − zid̃

T
i δ) (40)

Substituting the update laws of Equations (25), (32),
and (35) into (40), obtains the following.

V̇ = −gii(x)λKiz
2
i − gii(x)zi(usi − hi − g−1

ii (x)dsi)

+σd |zi| gii(x)d̃Ti d̂i + σ |zi| gii(x)ẼT Ê

−gii(x)(zid̃
T
i δ+ �̃i |zi| + |zi| �̂i/(|zi|2 + δi))

(41)
Since:

ẼTÊ ≤ ẼT(E∗ − Ẽ) ≤ −0.5
∥∥Ẽ

∥∥2 + ∥∥E∗∥∥2 (42)

In the same way, d̃Ti d̂i ≤ −0.5
∥∥d̃i∥∥2 + ‖di‖2.

Therefore:

V̇ ≤ −g0λKiz
2
i − 0.5σdg0 |zi|

∥∥d̃i∥∥2

−0.5σg0 |zi|
∥∥Ẽ

∥∥2

+ |zi| gii(x)(σd ‖di‖2 + σ
∥∥E∗∥∥2

+hi + g−1
0 Dsi +

∥∥d̃i∥∥)

−gii(x)(�̃i |zi| + δi |zi| �̂i/

(|zi|2 + δi)) − zigii(x)usi

= −g0λKiz
2
i − 0.5σdg0 |zi|

∥∥d̃i∥∥2

−0.5σg0 |zi|
∥∥Ẽ

∥∥2
(43)

From the inequality of V̇ given by Equation (43),
it is demonstrated that V̇ is a negative semi-definite
function, i.e. V̇ ≤ 0. This implies that zi, Ẽ, �̃i, δi
are bounded. Since V is a non-increasing and bounded
function, and lim

t→∞V (t) = V (∞), let:

L(zi, d̃i, Ẽ) = g0λKiz
2
i + 0.5σdg0 |zi|

∥∥d̃i∥∥2

+0.5σg0 |zi|
∥∥Ẽ

∥∥2
(44)

Therefore,

∞∫
0

L(zi, d̃i, Ẽ) ≤ V (0) − V (∞) < ∞ (45)

Since the functionL(zi, d̃i, Ẽ) is bounded, according
to Barbalat’s Lemma, the convergence can be guaran-
teed, i.e., L(zi, d̃i, Ẽ) → 0, t → ∞. Furthermore, this
implies that |zi|,

∣∣d̃i∣∣ and
∣∣Ẽ∣∣ converge to zero as t → ∞.

5. Case study

To validate the proposed DRFNN-based robust adap-
tive controller, it is assessed in the MATLAB simulation
environment with a 6-DOF nonlinear model of a vehi-
cle. The desired position and attitude can be described
as yd = [ 5 2 5 5 5 5]T .

Assume that the dead-zone widths are:

[
di−, di+

] = [−300, 400] , i = 1, 2, . . . , 6.

To verify the effectiveness of the controller and the
control effect, unpredictable disturbances and param-
eter uncertainties are introduced. The environmental
disturbances acting on the underwater vehicle and the
uncertainties of the model can be treated together, as
follows:

�f = [200, 200, 100, 100, 100, 200]T∗ sin(0.05t)

The pre-filter is utilized to produce a smooth target
path for the controller, and the parameter matrices can
be chosen as follows:



2592 G. Xia et al. / Fuzzy neural network-based robust adaptive control for dynamic positioning of underwater vehicles

0 20 40 60 80 100
0

2

4

6

time(s)

N
or

th
 d

ire
ct

io
n

reference trajectory X
ref

 (m)

the derivative of X
ref

 (m/s)

0 20 40 60 80 100
0

0.5

1

1.5

2

time(s)

E
as

t 
di

re
ct

io
n

reference trajectory Y
ref

 (m)

the derivative of Y
ref

 (m/s)

0 20 40 60 80 100
0

2

4

6

time(s)

D
et

h 
di

re
ct

io
n

reference trajectory Z
ref

 (m)

the derivative of Z
ref

 (m/s)

0 20 40 60 80 100
0

2

4

6

time(s)

R
ol

l 

reference trajectory φref
 (deg)

the derivative of φref
 (deg/s)

0 20 40 60 80 100
0

2

4

6

time(s)

P
itc

h 

reference trajectory θref
 (deg)

the derivative of θref
 (deg/s)

0 20 40 60 80 100
0

2

4

6

time(s)

Y
aw

 

reference trajectory ψref
 (deg)

the derivative of ψref
 (deg/s)

Fig. 4. The reference trajectory generated by the pre-filter.

Mr = diag([1, 1, 1, 1, 1, 1])

Dr = 2Mrξ�; Gr = Mr�
2,

ξ = diag([3, 3, 3, 3, 3, 3])

� = diag([2, 2, 2, 2, 2, 2])

The reference trajectory generated by the pre-filter is
shown in Fig. 4.

As shown by the control law in Equation (37), results
indicate that the feedback gain Ki is similar to the pro-
portional of the PID controller. According to experience
and multiple simulation results, an appropriate value
of Ki can be obtained. The controller parameters were
chosen as:

λ = 0.7; K = diag([300 200 200 300 200 200])
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Fig. 5. 3-D trajectory of the underwater vehicle.
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A DRFNN with ten nodes in the product layer is
used in the control system; the input vector of the

neural network is ξ =
[
yT ,yTref

]T
, and the parameters

of the weight updating laws are chosen as: γ = 20 and
σ = 6.2.

The parameters of the robust controller are chosen as
γ� = 0.1. The initial value of �̂ is zero, and the initial
value of δ is 0.5.

The 3-D trajectory of the vehicle is shown in Fig. 5,
indicating that the proposed controller can drive the
vehicle from the initial position y0 = [ 0 0 0 0 0 0]T to
the given position yd .

Figure 6 shows the curves of the vehicle’s posi-
tion and attitude; the red lines represent the outputs
of the pre-filter, and blue lines are the time history of
x, y, z, φ, θ, ψ. As shown by the curves, the output of
the vehicle can follow the reference trajectory well.
The blue line represents a case with dead-zone com-

pensation, while the red line represents a case without
dead-zone compensation.

Figure 7 shows the time history of the error func-
tion with and without dead-zone compensation. As
shown by Fig. 7, the error function reaches zero at
15–25s using the proposed controller. The performance
of the controller is also improved by using dead-zone
compensation.

Figure 8 shows the curves of control inputs by using
the proposed method. In general, the better tracking pre-
cision requires greater efforts, and may cause oscilla-
tions in control. As shown in Fig. 5, there are few slight
oscillations at the beginning due to the existence of the
DRFNN, but the outputs of the thruster are smooth and
steady. In addition, the given signals required by the
controller are given by the pre-filter, so the errors change
smoothly and slowly, ensuring that the magnitude of the
thruster can never achieve maximum values.
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Fig. 6. The trajectory of the underwater vehicle.
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Fig. 8. Control input using the proposed controller.

6. Conclusions

This paper investigated the problem of location
maintenance for underwater vehicles with parameter
uncertainties and unknown external disturbances. At

first, the MIMO system was divided into several SISO
systems via transformation so that the output of the
system was decoupled from the control input. Next, A
DRFNN approach is used to estimate the unknown term
in the ideal controller, and a special robust controller is
designed to compensate for the approximate and equiv-
alent errors. The effect of the dead-zone is eliminated by
a fuzzy logic system. The tracking errors can converge
to zero. The excellent performance of the aforemen-
tioned control scheme is validated by simulation for
location maintenance of an underwater vehicle.
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