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Abstract. Differential geometric guidance command (DGGC) is widely acknowledged as a better method of endoatmospheric
interception than three-dimensional (3D) pure proportional navigation (PPN). DGGC can be regarded as an intelligent method due
to its sophisticated sense of Lyapunov. However, traditional DGGC cannot guarantee line of sight (LOS) finite time convergence
(FTC) to zero against maneuvering targets, particularly in regard to a stable, robust trajectory, which effectively lowers the
overall intelligence of the method. This study proposes employment of the fuzzy self-adaptive guidance law to estimate target
acceleration and enhance guidance intelligence, which in turn enhances the intelligence of the traditional DGGC method, making
it more adaptive and applicable to practical interception scenarios. Finally, the effectiveness of this newly-proposed guidance
method is demonstrated by numerical simulation.

Keywords: Differential geometric guidance command (DGGC), finite time convergence (FTC), fuzzy self-adaptive guidance law,
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1. Introduction

Missile guidance and control systems are extremely
complex due to their multi-variable, non-linear nature
and dependence on time variation, both of which
are easily affected by environment. In recent years,
missile guidance systems have largely investigated
improvements in maneuverability by improving speed,
acceleration, etc. However, the traditional PPN guid-
ance law is unable to meet the increasing difficulty of
interception requirements, particularly for targets that
exhibit great maneuverability. Therefore, the develop-
ment of a new guidance law has become a priority for
military technology as time convergence and intelli-
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gence capabilities become increasing more important
for anti-missile systems. While the fuzzy guidance law
provides stabilization, robustness and intelligence, new
adaptations are sought to strengthen terminal guidance
systems [6, 18].

Proportional navigation (PN) has been widely used
due to the non-maneuverability of targets in early
engineering practices of the missile guidance com-
munity [14]. However, PN performance is greatly
reduced against highly maneuverable targets. Much
recent research has been devoted to the development
of new guidance laws which aim to improve the intelli-
gence of anti-missile systems, enabling them to handle
increasingly agile targets based on modern control the-
ories such as adaptive and H-∞ control.

The differential geometric guidance command
(DGGC) is a novel guidance law, the purpose of which
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is to improve endoatmospheric interception of maneu-
vering targets. Chiou and Kuo [2, 21] initially studied
the three-dimensional motion of missile and target in
the arc-length system with the aid of classical differ-
ential geometry theory, and proposed DGGC in the
arc-length system. C.Y. Li, et al. [3–5] translated the
DGGC of the arc-length system into the time domain,
and studied scenarios of DGGC interception of a tac-
tical ballistic missile, as well as the initial capture
condition of the case. K.B. Li, et al. [10–13] analyzed
DGGC according to the relative kinematic equations
established in the line of sight (LOS) rotation refer-
ence system, and proposed a new, simplified DGGC
formation. The primary contribution of DGGC is the
derivation of a new direction of command acceler-
ation, which better controls the LOS rate compared
to traditional 3D PPN. This property provides DGGC
the opportunity to improve performance by combining
with other guidance strategies. Ye, et al. [9] presented
a modified DGGC combined with sliding mode con-
trol theory; however, this modification guarantees only
the asymptotic convergence of the LOS, and requires
the upper bound of the target acceleration in order
to construct the guidance command. Ariff, et al. pro-
posed a differential geometric guidance law by using
the involute of the target trajectory. White, et al. [1, 15]
presented another differential geometric guidance law
which was thought to improve traditional PN.

For modern guidance laws designed for the inter-
ception of maneuverable targets, the finite time
convergence of the LOS rate is essential. Therefore,
much recent research has been devoted to investiga-
tion of this property. Haimo [19] initially proposed the
finite time control law in 1986. Gurfil, et al. [16] dis-
cussed the issue of finite time stability of guidance
systems. Wu, et al. [17] reported a finite time guid-
ance law designed to intercept fixed targets based on
the nonlinear three-dimensional relative kinematics of
the missile and target. Zhou, et al. [7] proposed a finite
time convergence guidance law specifically designed
for the interception of maneuverable targets that was
able to guarantee LOS rate convergence in finite time,
but required knowledge of the upper bound of the target
acceleration. Wang, et al. [20] proposed a partially-
integrated sliding mode guidance law; however, the law
was quite complex and required the use of higher order
variables in the guidance command that proved difficult
to measure, and had to be estimated by a sliding mode
observer.

The primary cause of missed missile targets is
target acceleration. Recently, a Lyapunov function

based on a switching fuzzy controller has attracted
much attention in the field of control systems, and
has become a popular research focus [8, 22]. It has
also become popular to use the fuzzy self-adaptive
guidance law (FSG) to estimate target acceleration
during the guidance process. Because the fuzzy control
method does not require the establishment of a precise
mathematical model, an estimate of the interference
quantity of target acceleration and other measurements
are initially obtained. Next, fuzzy control technology
is applied to determine the switching coefficient,
so as to weaken the chattering and robustness of
the system.

In this paper, DGGC with FTC and FSG (DGGC-FE)
is proposed to overcome the disadvantages of Zhou’s
approach and improve the endoatmospheric inter-
ception of maneuverable targets. Simulation results
indicate that the use of the differential geometric guid-
ance command and the fuzzy self-adaptive guidance
law enables the proposed method to enhance guidance
intelligence.

This paper is organized as follows. Section 2 intro-
duces the theory of variable universe fuzzy control.
Section 3 describes the differential geometry theory
and the basic components of DGGC; the finite time
stabilization of nonlinear systems is briefly articulated,
and a new DGGC with FTC (DGGC-F) is described.
Section 4 estimates the target acceleration according
to FSG, and DGGC-FE is proposed. In Section 5, the
effectiveness of DGGC-FE is validated via numerical
simulation. Section 6 presents conclusions based on the
obtained data and simulation results.

2. Variable universe fuzzy control theory

2.1. Definitions of basic elements of the fuzzy
control theory

In order to facilitate the mathematical description,
one may consider the fuzzy set as a set of peaks. Ã =
{A

ĩ

}0≤i≤n of the membership functions are used as a

group of regular peaks on X. The peak value is xi(i =
0, 1, · · · , n); Ã represents a base for X and A∼i

is a

basic element of Ã. For any x ∈ X, if there exist at
most two adjacent primitives A∼i

and A
∼i+1

which meet

A∼i
/= 0 /= A

∼i+1
, then Ã represents the two-phase base

group of X.
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2.2. Interpolation mechanism of fuzzy control

Fuzzy control output can be assigned to the con-
trolled object only after the solution is determined to
be fuzzy. Calculation of the exact output value is a pro-
cess of interpolation. The mathematical expression of
the output function is expressed as follows:

F (x) =
n∑

i=0

A∼i
(x)yi (1)

where A∼i
is the membership degree of a judgment “x

is A∼i
”, and yi represents the true value corresponding

to y, according to the rule statement. The interpola-
tion takes the form of a piecewise function, particularly
when the member functions as a triangular waveform.
The fuzzy control structure was applied to a two-
dimensional fuzzy controller, used in the two-phase
base form described above, which obtains the following
output function:

U(x, y) = PxPy(x, y) =
n∑

i=0

A∼i
(x)

⎛
⎝ m∑

j=0

B∼i
(y)uij

⎞
⎠ =

n∑
i=0

A∼i
(x)

m∑
j=0

B∼i
(y)uij

(2)
The formula first requires an input as a fixed param-

eter. The other parameter is interpolated, and the
parameters are then inputted together. The formula can
also be regarded as a data interpolation set.

2.3. Variable universe fuzzy control theory

Fuzzy control is used to achieve high-precision con-
trol, which requires an increase in the number of rules;
fuzzy control is more successful when the error is large.
Failure of fuzzy control is often due the inability to
insert additional rules in the vicinity of zero. There-
fore, the primary obstacle to the application of fuzzy
control in missile guidance is a dearth of rules near a
zero point. Thus, the use of a variable universe is a
method by which to increase the number of rules in the
vicinity of zero, and is realized by a scaling factor.

Definition 1. The function α : X → [0, 1], X| →
α(x) represents a scaling factor of the domain X, if it
satisfies the following conditions:

– (∀x ∈ X) (α(x) = α(−x));
– α(0) = 0;

– α is strictly monotonic when α ∈ [0, E];
– (∀x ∈ X)(|x| ≤ α(x)E);
– α(±|E) = 1, β(±U) = 1.

The scaling factor function adjusts the size of
the variable universe according to the established
error. Thus, α(x) = 1 − λ exp(−kx2), λ ∈ (0, 1), k >

0 represents an input signal scaling factor, and β(u) =
K|e/E|τ3|ec/EC|τ4 represents an output signal scaling
factor.

3. Basic control theory of missile-target
engagement and the guidance command
with finite time convergence

The flight trajectories of an endoatmospheric missile
and target can be approximately regarded as continuous
smooth space curves. As shown in Fig. 1, t, n, and
b represent the tangential, normal, and binormal unit
vectors of a space curve, respectively.

The Frenet-Serret formula [2] is essential to describe
the motions of space curves, and is expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dt

ds
= κn

dn

ds
= −κt + τb

db

ds
= −τn

(3)

where κ represents the curvature, τ is the torsion, and ds

represents the derivative with respect to the trajectory
of the space curve:

ds/dt = V. (4)

Fig. 1. Space curve and Frenet frame.
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The kinematic equation describing a rotating line of
sight (LOS) is expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
ėr = ωseθ

ėθ = −ωser + �seω

ėω = −�seθ

(5)

where er is the unit vector along LOS; eω is the unit
vector along the LOS angular velocity; eθ = eω × er

is the normal unit vector of LOS; er, eθ , and eω

form the bases of the rotating LOS coordinate
system; er and eθ constitute the plane of instanta-
neous rotation of LOS (IRPL); and ωs is the rate of
instantaneous LOS. IRPL may rotate around er in three-
dimensional space, and �s represents the IRPL rate
of rotation.

The relative dynamic equation set is expressed as
follows: ⎧⎪⎪⎨

⎪⎪⎩
r̈ − rω2

s = atr − amr

rω̇s + 2ṙωs = atθ − amθ

rωs�s = atω − amω

(6)

where r is the relative distance; a represents accel-
eration; subscripts t and m represent the quantities
belonging to the target and missile, respectively; and
subscripts r, θ, and ω represent projections along er,
eθ , and eω, respectively.

K.B. Li [10–12] proposed a simple DGGC expres-
sion in the time domain:

aDGGC = amθ

(nm · eθ)
nm (7)

where amθ represents the desired commanded acceler-
ation of the guidance law vertical to LOS; and nm is the
designated direction of the commanded acceleration,
which is identical to the normal direction of the missile
trajectory.

As described by Equation (6), the first two equa-
tions determine the relative motion in the instantaneous
rotation plane of LOS (IRPL) between the missile and
target, while the third equation determines the rotation
of IRPL. Since the rotation of IRPL does not affect
the final interception, the primary challenge to guid-
ance lies in the countermeasure between the missile
and target in the IRPL. According to the characteristics
of relative motion and from the perspective of system
control theory, amθ can be selected as the control vari-
able, and ωs can be selected as the state variable. In
order to achieve parallel relative motions of the missile
and target approach, an effective control variable amθ

must be obtained to restrain ωs or decrease it to a value
of 0.

Substituting Equation (7) into Equation (6), obtains
the following:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r̈ − rω2
s = atr − amθ

nm · eθ

(nm · er)

rω̇s + 2ṙωs = atθ − amθ

rωs�s = atω − amθ

nm · eθ

(nm · eω)

(8)

A solution of nm is described as follows [12].
According to the definition of Equation (7), suppose

the following expression:

nm · eθ = γ (9)

where γ < 1 is a constant. Simultaneously, nm must
meet the following requirements:{

nm · tm = 0

|nm| = 1
(10)

where tm is the direction of the missile velocity, which
is identical to the tangential direction of the missile
trajectory. According to the the simultaneous solutions
to Equations (9) and (10), the following is obtained:

nm

=
{

γ [eθ−(tm ·eθ) tm] ± (tm×eθ)
√

1−(tm ·eθ)2−γ2
}

1 − (tm · eθ)2

(11)
Substituting Equations (9) and (11) into Equation (7),

the following expression is obtained:

aDGGC = amθ

1 − (tm · eθ)2

·
{

[eθ−(tm ·eθ) tm] ± (tm×eθ)

γ

√
1 − (tm · eθ)2 − γ2

}
(12)

This successfully obtains a three-dimensional
expression of DGGC.

However, amθ remains unknown according to Equa-
tion (12); therefore aDGGC cannot be used as a direct
command. Some scholars posit the determination of
amθ according to PN concepts, which cannot guarantee
the finite time convergence of the LOS rate. In addi-
tion, the use of PN is ineffective for the interception
of highly-maneuverable targets. This paper proposes a
new determination of amθ to improve the interception
of maneuverable targets according to the new theory,
described below.
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Traditional robust control methods are based primar-
ily on Lyapunov theorems of asymptotic or exponential
stability. The theoretical results indicate only that the
state of the system will converge to zero or its small
neighborhood as time approaches infinity. Finite time
control is able to guide the system states to zero in finite
time, which provides stronger robustness and results in
better performance of the control system.

3.1. Nonlinear control systems

This section first introduces the basic tenets of finite
time stability theory for nonlinear systems [7].

Definition 2: Consider a system in the following form:

ẋ = f (x, t) , f (0, t) = 0, x ∈ Rn (13)

where f : U0 × R → Rn is continuous on U0 × R, and
U0 is an open neighborhood of origin x = 0. The state of
the system will converge to its local equilibrium x = 0
in finite time if, for any given initial time t0 and ini-
tial state x (t0) = x0 ∈ U, there exists a settling time
T ≥ 0, which is dependent on x0 so that every solution
of the system x (t) = ϕ (t, t0, x0) ∈ U

/{0}, satisfies the
following requirements:⎧⎨

⎩
lim

t→T (x0)
ϕ (t, t0, x0) = 0, t ∈ [t0, T (x0))

ϕ (t, t0, x0) = 0, t ≥ T (x0)
(14)

Moreover, if the local equilibrium of the system x =
0 is Lyapunov stable with finite time convergence in a
neighborhood of the origin U ⊂ U0, then the system
equilibrium is determined to be stable in finite time. If
U = Rn, then the origin is a global finite time stable
equilibrium.

Lemma 1. Consider the nonlinear system described by
Equation (13). Suppose that a C1 (continuously differ-
entiable) function V (x, t) is defined in a neighborhood
�

U = Rn of the origin, and that there are real numbers
α > 0 and 0 < λ < 1 such that V (x, t) is positive-

definite on
�

U and that V̇ (x, t) + αVλ (x, t) ≤ 0 on
�

U.
Then, the zero solution of system (13) is finite-time
stable.

3.2. Guidance command

Zhou [7] discussed the relative motion of the missile-
target system in three-dimensional space. The design of
the guidance law was conducted in the horizontal and

vertical planes of LOS, because the three relative kine-
matic equations were not decoupled, thus increasing the
complexity and computational cost of the guidance law.
The differential geometry guidance model is used here
to simplify the guidance law by decoupling the relative
motion between the missile and the target in IRPL from
the IRPL rotation.

The second expression of Equation (8) could be
rewritten as follows:

ω̇s = −2ṙ (t)

r (t)
ωs − 1

r (t)
amθ + 1

r (t)
atθ (15)

where amθ is the control variable, and atθ represents the
uncertainty and disturbance. Suppose the initial time
of terminal guidance t0 = 0, and the initial states are
represented by r (0), ṙ (0), and ωs (0). Meanwhile, in
the terminal guidance process:

ṙ (t) < 0, 0 < r (t) < r (0) , ∀t > 0 (16)

Next, the theory introduced in Section 3.1 will be
used to design the control variable described by Equa-
tion (15) in order to obtain a finite time convergence
guidance command. The following theorem represents
an extension of Theorem 1 [4], in three-dimensional
space.

Theorem 1: Consider the guidance system (15). If there
exists a control amθ such that the system state satisfies
the following:

ωs

[
ω̇s + β |ωs|η · sgn ωs

r (t)

]
≤ 0, ∀t ≥ 0 (17)

where β = const. > 0, −1 < η = const. < 1, and
|x (0)| 
 1, thenωs converges to zero in finite time. Fur-
thermore, the convergence rate increases as the value of
β increases or the value of η decreases.

Proof: Choose a continuously differentiable positive-
definite function as follows:

V1 = ω2
s (18)

According to Equations (16) and (17), taking a
derivative of V1 with respect to time obtains the fol-
lowing:

V̇1 ≤ − 2β

r (t)
V

1+η
2

1 < − 2β

r (0)
V

1+η
2

1 , ∀t > 0 (19)
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According to Lemma 1, ωs converges to zero in
finite time tr1, and the settling time is given by the
following:

tr1 ≤ |ωs (0)|1−η r (0)

β (1 − η)
(20)

According to Equation (20), the rate of convergence
increases with the value of β. Moreover, in practice, the
absolute value of the initial angular rate of LOS |ωs (0)|
must be significantly smaller than 1 rad/s. Thus, the rate
of convergence increases with the value of η.

Substituting Equation (15) into Equation (17) obtains
the following:

ωs

[
−2ṙ (t)

r (t)
ωs − 1

r (t)
amθ + 1

r (t)
atθ

+β |ωs|η · sgn ωs

r (t)

]
≤ 0

(21)

Thus, the following guidance law is obtained:

amθ = −Nṙ (t) ωs + atθ + β |ωs|η · sgn ωs,

N = const. > 2
(22)

where β = const. > 0, −1 < η = const. < 1, and
|x (0)| 
 1, which converges ωs to zero in finite time.
Furthermore, the rate of convergence increases as the
value of β increases or the value of η decreases.

According to Equation (22), there exists a singularity
at ωs = 0 if −1 < η < 1. Hence, 0 ≤ η < 1 serves as
a reasonable range of η.

Equation (22) involves a signum function, which
indicates that the control variable may switch during
the guidance process. In a practical system, switch-
ing cannot occur completely instantaneously, and the
switch delay introduces the chattering effect. To remove
chattering, the signum function may be smoothed
by replacing it with a saturation function satδ (x),
expressed as follows:

satδ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x > δ

x/δ, |x| ≤ δ

−1, x < −δ

(23)

Then, the guidance law can be rewritten as follows:

amθ = −Nṙ (t) ωs + atθ + β |ωs|η · satδωs,

N = const. > 2
(24)

Substituting Equation (24) into Equation (12), the
differential geometric guidance command with finite
time convergence (DGGC-F) is obtained as follows:

aDGGC F = −Nṙ (t) ωs + atθ + β |ωs|η · satδωs

1 − (tm · eθ)2 ·
{

[eθ−(tm ·eθ) tm] ± (tm × eθ)

γ

√
1 − (tm · eθ)2 − γ2

}
(25)

4. Guidance command with finite time
convergence and fuzzy self-adaptive
guidance law

Although Equation (27) can guarantee the finite time
convergence of the system state, the target acceleration
atθ is not easy to obtain. In the following section, FSG is
utilized to estimate atθ , which completes the guidance
law.

According to Equation (15), let ωs = x1 and expand
the term with atθ as a single order state:

1

r (t)
atθ = x2 (26)

Let ẋ2 = g (x2), and g (x2) represent an unknown
quantity, resulting in the system construction as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = −2ṙ (t)

r (t)
x1 + x2 − 1

r (t)
amθ

ẋ2 = g (x2)

y = x1

(27)

Based on state filtering theory, Equation (27) corre-
sponds to the ESO as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e = z1 − y

ż1 = z2 − β01e − 2ṙ (t)

r (t)
z1 − 1

r (t)
amθ

ż2 = −β02 · fal (e, a1, δ)

(28)

where z1 and z2 are observed values of x1 and x2,
respectively. Replacing x2 with its observed value z2
and substituting it into Equation (26) obtains the fol-
lowing:

atθ = x2r (t) = z2r (t) (29)
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In addition, the variables a1, β01, β02 and δ in Equa-
tion (28) represent the ESO parameters. The function
fal (·) is defined as follows:

fal (e, a1, δ) =
{ |e|a1 · sgn (e) , |e| > δ

e/δ1−a1 , |e| ≤ δ
(30)

Substituting Equation (29) into Equation (25), we
now obtain the expression of DGGC-F as follows:

aDGGCF = −Nṙ (t) ωs + z2r (t) + β |ωs|η · satδωs

1 − (tm · eθ)2 ·
{

[eθ−(tm · eθ) tm] ± (tm×eθ)

γ

√
1 − (tm · eθ)2 − γ2

}
(31)

where N = const. > 2, β = const. > 0, −1 < η =
const. < 1.

Next, a fuzzy process for aDGGCE is added to obtain
aDGGCF E. As shown in Fig. 2, the subordinate function
of the error, error change and the output of the linguistic
variables are adopted in the same form.

The fuzzy controller selects the error E and the error
change EC as the input variable, and the basic variable
universe is selected as e, ec ∈ [−1, 1]. The output vari-
able universe is selected as u ∈ [−1, 1], and the fuzzy
variable universe corresponding to the basic variable
universe is expressed as:

E = EC = U = {−3, −2, −1, 0, 1, 2, 3} .

Fig. 2. Membership function of variable.

Table 1
Membership functions of linguistic variables

EC E

NB NM NS ZE PS PM PB

NB PB PB PM PM PS PS ZE
NM PB PM PM PS PS ZE NS
NS PM PM PS PS ZE NS NS
ZE PM PS PS ZE NS NS NM
PS PS PS ZE NS NS NM NM
PM PS ZE NS NS NM NM NB
PB ZE NS NS NM NM NB NB

From the perspective of the variable universe, the
fuzzy controller of the variable universe does not
require expert knowledge, and thus utilizes the control
rules depicted in Table 1.

The specific form of the scaling factor of error, error
and output are expressed as follows:

aDGGC FE (e) = |e/E|τ1 (32)

aDGGC FE (ec) = |ec/EC|τ2 (33)

β (u) = |e/E|τ3 |ec/EC|τ4 (34)

where τ1, τ2, τ3, τ4 ∈ (0, 1) is constant.
According to Equation (33) all variables and param-

eters can be easily obtained in practical interception
scenarios for the guidance command of DGGC-FE,
allowing its practical application. In addition, according
to the above deduction and analysis of DGGC-FE, the
nonlinear dynamics of the three-dimensional intercep-
tion situation have also been fully taken into account,
which represents major progress from the method orig-
inally proposed by Zhou.

5. Simulation and results

In this section, numerical simulation is conducted to
analyze interception scenarios of an endoatmospheric
maneuvering target. The performances of DGGC-F and
DGGC-FE are analyzed and validated. PPN is used as
a benchmark guidance law, expressed as follows:

aPPN = Nωs × Vm (35)

where ωs = ωseω is the LOS angular velocity, and Vm

represents the velocity of the missile. The navigation
constant is selected as 4, and the sampling period is T =
0.01s. The dynamic lag of the missile is not considered.

The initial states of the missile and target in the
Launch Inertial Coordinate System are shown in
Table 2.

Table 2
Initial states of missile and target

Missile X Y Z

Position (m) 0 0 0
Velocity (m/s) 629.7667 216.0948 216.0948
Target X Y Z
Position (m) 10000 3000 3000
Velocity (m/s) –400 0 0



2534 Y.-W. Ma et al. / Intelligent guidance method based on DGGC and fuzzy self-adaptive guidance law

0 2 4 6 8 10
-30

-15

0

15

30

a ty
(m

/s
2
)

Time/s

Fig. 3. Target acceleration in ys direction.

0 2 4 6 8 10
-10

-5

0

5

Time/s

a tz
/(

m
/s

2
)

Fig. 4. Target acceleration in zs direction.

0

2000

4000

0

5000

10000
0

1000

2000

3000

Z/mX/m

Y
/m

Target
PPN
DGGC-F
DGGC-FE

Fig. 5. 3D trajectories.

The parameter values of FSG are selected as follows:
a1 = 0.5, β01 = 10, β02 = 20, δ = 0.01. Moreover,
γ = 0.7 is selected for both of DGGC-F and DGGC-FE.

The initial Frenet Frame of the target is represented
by: tt0 = [−0.5985; 0; 0.8012], nt0 = [0; 1; 0], and
bt0 = [0.8012; 0; −05985]. The curvature of the tar-
get is selected as κt = 20/V 2

t , and the torsion τt = 0.07.
Figures 3 and 4 depict the target acceleration in different
directions.

The simulation results are depicted in the following
figures.

Figure 5 depicts the three-dimensional trajectories of
the missile and target. Results indicate that the trajec-
tory of the missile guided by PPN produces a relatively
smooth curve, while the trajectories of missiles guided
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Fig. 6. Missile acceleration.
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Fig. 8. 3-D LOS rate curves.

by DGGC-F and DGGC-FE demonstrate greater vari-
ability.

Figure 6 depicts the commanded acceleration curves
of the three guidance laws. Results indicate that the
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commanded acceleration of PPN is smallest at the
beginning of the guidance process, but that it increases
dramatically during the terminal phase. The initial com-
manded acceleration of DGGC-F is the largest, which
chatters dramatically between 4 s and 8 s. There is some
small chattering observed in the commanded acceler-
ation of DGGC-FE at the beginning of the guidance
process induced by the initial estimation error of the
FSG, but the curve becomes increasingly smooth and
is the smallest by the conclusion of the engagement.
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Fig. 12. Zero effort miss curves.

Results indicate that the distribution of the commanded
acceleration of DGGC-FE is much more even and sta-
ble than those provided by the other two guidance
laws.

Figure 7 depicts an estimation of the target accel-
eration vertical to LOS. Results indicate that the
FSG estimation of the target maneuvering acceleration
demonstrates relatively high precision and converges
rapidly, although there are some small variations at the
beginning of the guidance process and when the target
maneuver acceleration changes dramatically.

Figure 8 depicts the 3-D LOS rate curves of the three
guidance laws. Results indicate that PPN is not capable
of keeping the LOS rate under control as the LOS rate
diverges in the latter half of the engagement; the LOS
rate of DGGC-F converges to zero very rapidly. DGGC-
FE results in a gradual decrease in the LOS rate, which
approaches zero by the end of the engagement.

Figures 9 and 10 depict the LOS elevation and
azimuth rate curves of the three guidance laws. Results
indicate that their change tendencies are consistent with
those of the 3-D LOS rate curves of the three guidance
laws.

Figure 11 depicts the γ curves of the three guidance
laws. Results indicate that γ remains constant when
DGGC-F and DGGC-FE are applied, thus prohibiting
the singularity of Equation (7).

Figure 12 depicts the zero effort miss (ZEM) curves
of the three guidance laws. The ZEM of PPN is larger
than those of DGGC-F and DGGC-FE during the major-
ity guidance process. The ZEM of DGGC-F converges
to zero very rapidly, while the ZEM of DGGC-FE grad-
ually converges to the neighborhood of zero.

According to the above simulation results, the choice
of proper guidance parameters can successfully achieve
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the finite time convergence of DGGC-FE, while the
target acceleration can be precisely estimated with the
use of FSG. Thus, DGGC-FE can be easily applied to
practical interception scenarios.

6. Conclusions

According to simulation results and analysis, the fol-
lowing conclusions can be drawn:

– DGGC is effective in endoatmospheric intercep-
tion scenarios, and can be combined with other
guidance approaches to improve the interception
performance of airborne missiles.

– The finite time control theory can be combined
with DGGC to improve control of the LOS rate.
However, the target acceleration or its upper bound
must be known initially, which limits its applica-
tion to guidance command.

– FSG is able to effectively estimate the target accel-
eration vertical to LOS when employed in the
guidance command, and the proposed DGGC-
FE is robust and easy to implement in practical
interception scenarios in which the finite time con-
vergence of the LOS rate can be guaranteed.

It must be noted that this paper only discusses the
deterministic problem; future research may explore the
statistical repercussions. Additionally the influences of
measurement errors, missile dynamic lags, and other
factors on DGGC-FE guidance performance may also
require further study and analysis.
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