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Fuzzy optimization control for NOx
emissions from power plant boilers based
on nonlinear optimization1
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Abstract. Combustion optimization adjustment can effectively suppress NOx emissions from power plant boilers. Current combus-
tion optimization adjustment methods involve nonlinear optimization based on the boiler combustion model, such as optimization
by a genetic algorithm or particle swarm algorithm. The computational complexity of these methods results in poor real-time
performance, which limits their practical applications. To solve this problem, a fuzzy optimization control method with better
real-time performance is proposed. First, the space of the disturbance variables (DV), which are the input variables that combustion
systems cannot adjust, is divided into a certain number of sub-spaces. Each sub-space center is then obtained using the correspond-
ing optimal combustion mode by offline nonlinear optimization, thereby forming a complete expert rule base. The corresponding
optimal manipulated variables (MV), which are the input variables that combustion systems can adjust, are then quickly obtained
online by means of fuzzy inference for each inputted DV. The fuzzy optimization control of boiler combustion adjustment is then
determined. Simulation has shown that both the fuzzy optimization control method and the nonlinear optimization method can
achieve a consistent control effect. However, the fuzzy optimization control method has a better real-time performance.
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1. Introduction

Combustion optimization adjustment can effectively
suppress NOx emissions from power plant boilers [23].
This adjustment ensures that the combustion condition
adapts to the various operating conditions of the unit
during boiler operation by adjusting the corresponding
input parameters of the combustion system. Current
combustion optimization adjustment methods involve
nonlinear optimization based on the boiler combus-
tion model, which often uses artificial neural networks,
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support vector machines, and other modeling methods
to establish a boiler combustion model. Nonlinear opti-
mization is based on the theory of biological evolution;
animal population movement is used to obtain opti-
mal values for the combustion system output variables,
which are then directly utilized to guide online dynamic
adjustment. Wang, et al. [22] introduced the use of the
neural network model to describe the boiler combustion
process and the use of a genetic algorithm to determine
the optimal oxygen content in fuel gas. Yin, et al. [10]
proposed the use of support vector machines to establish
both boiler thermal efficiencies and the NOx emissions
model. The group then optimized the model by PSO
(Particle Swarm Optimization). However, the nonlin-
ear optimization algorithm demonstrates poor real-time
performance, is difficult to apply in engineering prac-
tice, and is time-consuming to improve.
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Both the fuzzy control theory and the expert con-
trol theory have also been applied to the combustion
optimization system. Gao [19] suggested providing
optimum blast volume by an expert system to improve
boiler combustion efficiency. Zhang [21] proposed the
combination of the fuzzy control theory and expert sys-
tems to improve the design of the expert system fuzzy
controller in the combustion system. Liu, et al. [17]
introduced the use of fuzzy control strategy in the boiler
combustion system. Yin, et al. [4] proposed using cas-
cade fuzzy control and fuzzy self-optimization control
in the pulverized coal boiler combustion system. How-
ever, fuzzy control and expert control can only achieve
fuzzy inference control when the knowledge base is
accurate and complete. Thus, the accuracy and integrity
of the data in the knowledge base is one of the keys to
fuzzy optimization control.

The key advantages to the nonlinear optimization
method and fuzzy optimization control are the ability
to obtain the optimal global solution and fast perfor-
mance, respectively. This paper proposes an online
fuzzy optimization control method with improved real-
time performance. The first step is to divide the space
of the disturbance variables (DV), which are the input
variables that combustion systems cannot adjust, into
a certain number of sub-spaces. Each sub-space cen-
ter obtains a corresponding optimal combustion mode
by offline nonlinear optimization, thereby forming a
complete expert rule base. For any inputted DV, the cor-
responding optimal manipulated variable (MV), which
is an input variable that combustion systems can adjust,
is achieved by fuzzy inference, ultimately determining
the fuzzy optimization control for boiler combustion
adjustment. This method can not only provide the
optimal global solution, but also solves the issues of
the nonlinear optimization method, which is too time-
consuming in the optimization process and is difficult
for practical applications.

2. Establishment of NOx emissions model

2.1. Structure of NOx emissions model

The experimental boiler is a 1099.3t/H forced cir-
culation boiler (Alsthom Ltd., France), and the double-
arch furnace with a “W”-shape flame acts as the primary
feature of its combustion system. The following
parameters were used for the experimental boiler [20]:
ten input variables of model were selected, including
three DVs, seven MVs, and one output variable. The
DVs consist of load, L; the calorific value of the coal,
Q; and the fuel volatility, V. The MVs are the pressure
of primary air, PA; the jaw opening of the secondary air
register, SE; the jaw opening of the tertiary air register,
SR; and the oxygen content in fuel gas, O2. The output
variable is NOx emission. The structure of the model is
shown in Fig. 1.

2.2. Establishment of NOx emissions LS-SVM
(Least squares support vector machine) model

A total of 105 sets of modeling data were obtained
under steady operation conditions by a large number of

Fig. 1. Structure of the model.

Table 1
A portion of the total 105 sets of modeling data

DV MV Output

L (MW) Q (%) V (%) PA (KPa) SEA (%) SEB (%) SEC (%) SRU (%) SRD (%) O2 (%) NOx (mg·m–3)

238.78 22.79 9.02 3.46 41 7 30 20 50 3.33 675.82
238.87 22.65 8.95 3.46 41 1 42 20 50 3.33 604.63

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
254.04 21.68 9.44 3.1 41 5 30 50 100 3.71 733.14
254.43 19.36 9.77 2.94 41 10 42 20 50 2.69 608.85

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
348.3 21.02 9.27 4.13 67 30 55 33 57 1.16 708.77
348.92 21.08 9.46 3.85 80.5 30 47 33 45 1.26 685.34

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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orthogonal experimental [7] and historical data sources
[11, 12]. A selected portion of the modeling data is
presented in Table 1.

The first 90 sets of data were selected as the train-
ing sample set, and the remaining 15 sets of data were
selected as the test sample set. LS-SVM [8, 9] were
used to establish NOx emission models. The modeling
process is described in Equation 1.

φ(NOX) = f (DV, MV ) (1)

where φ(NOx) represents the NOx emission, and f is
the nonlinear model function of NOx emissions.
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Fig. 2. Training sample error of LS-SVM model.
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Fig. 3. Test sample error of LS-SVM model.

Table 2
LS-SVM model error

Training sampling error Test sample error

Absolute error Relative Absolute Error Relative
(mg·m–3) error (%) (mg·m–3) error (%)

1.5760 0.23 38.6923 5.73

Figure 2 shows the training sample error of the LS-
SVM model, and Fig. 3 demonstrates the test sample
error of the LS-SVM model. Absolute error was cal-
culated according to Equation 2, relative error was
calculated according to Equation 3, and the LS-SVM
model error results are detailed in Table 2.

eA = |yP − yT | (2)

eR = |yP − yT |
yT

(3)

In Equations 2 and 3, eA is the absolute error, eR is
the relative error, yP is the predictive value, and yP is
the true value.

As shown in Table 2, the absolute error and the rela-
tive error of both training samples and test samples are
exceptionally small. The output of the LS-SVM model
is significantly close to the actual data, which indicates
that the LS-SVM model is a useful approach in terms of
performance, popularizing ability, and predictive accu-
racy.

3. Establishment of expert rule base based on
the nonlinear optimization

3.1. Division of DV space

Three variables, L, Q, and V, were selected to consti-
tute the DV space. First, the variables were normalized
to fit in the same range [–1, 1]. The data was then
converted to a dimensionless number. The ranges of
standardized variables are denoted as domain UL, UQ,
and UV. According to engineering practice, five fuzzy
subset centers were assigned, including –1, –0.5, 0,
0.5, and 1. The given fuzzy subset center belongs to
the domain [–1, 1]. The isosceles triangle membership
function curve was then selected (Fig. 4), and the UL,
UQ, and UV domains were simultaneously divided into
five fuzzy subsets. The fuzzy word set was {VS, LS,
MI, LB, VB} [2], where VS is Very Small, LS is Little
Small, MI is Middle, LB is a Little Big, and VB is Very
Big.

Domains UL, UQ, and UV constitute a three-
dimensional Euclidean space, which can also be
referred to as an “ordered pair” (L, Q, V) [5]. The given
fuzzy subset center combines freely as the form (L,
Q, V). Each (L, Q, V)represents a set of combustion
conditions. Since each fuzzy subset center represents a
corresponding fuzzy subset, the 125 freely-combined
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Fig. 4. Isosceles triangle membership function curve.

sets of combustion conditions can cover all actual com-
bustion conditions. Each “ordered pair” (L, Q, V) also
represents a corresponding subspace.

3.2. Establishment of expert rule base based on
nonlinear optimization

Each subspace center corresponding to the optimal
combustion mode based on the NOx emission LS-SVM
model can be obtained by the nonlinear optimization
[1, 3, 18], i.e., the MV optimal value corresponding
to 125 sets of freely-combined fuzzy subset centers is
obtained. To ensure the stability and safety of the unit
operation, each MV must be adjusted to fall within a
certain range. Therefore, each MV must be within the
actual adjustment range in the optimizing process. The
adjustment ranges of the MVs are shown in Table 4.

According to the MV adjustment ranges, 125 sets
of fuzzy rules were obtained [13], which were used to
constitute the expert rule base [16]. The form of fuzzy
rules in the expert rule base can be expressed as:

IF DV, THEN MVopt (4)

A portion of the expert rule base data is shown in
Table 3.

4. Fuzzy optimization control

4.1. The structure of optimization control system

After fuzzification and related fuzzy inference
achieved by the fuzzy inference engine and expert rule
base, the fuzzy linguistic variables are defuzzified to
obtain the exact optimal MV value for each set of actual
inputted DVs. The structure of the optimization control
system is shown in Fig. 5.

4.2. Fuzzification for DV

Equation 5 is first used to standardize each input
variable:

DV ′
i = DVi − DVi max+DVi min

2
DVi max−DVi min

2

(i = 1, 2, 3) (5)

where DV ′
i represents the standardized values of the

three input DVs, including L, Q, and V; DVi represents
the three input DVs; DVi max is the upper limit of the
input DV; DVi min is the lower limit of the input DV;
and the three input DV values all belong to the domain
[–1,1].

After standardization, each of the three input DV
corresponding fuzzy subset membership degrees are
obtained by the isosceles triangle membership func-

Table 4
Adjustment ranges of MVs

MV PA SEA SEB SEC SRU SRD O2
(KPa) (%) (%) (%) (%) (%) (%)

Upper Limit 2.9 30 1 30 5 20 3
Lower Limit 4.2 94 38 70 65 80 4.5

Table 3
Selected expert rule base data

DV MV

L (MW) Q (%) V (%) PA (KPa) SEA (%) SEB (%) SEC (%) SRU (%) SRD (%) O2 (%)

238.78 22.79 9.02 3.83 37.76 1.02 67.81 64.65 20.05 3.00
238.87 22.65 8.95 3.70 48.26 2.34 68.50 63.95 20.41 3.03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
302.47 22.31 9.94 3.46 92.50 1.67 69.96 53.90 21.24 3.01
302.48 20.93 9.60 3.09 91.97 1.32 64.99 50.52 79.66 3.18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
291.08 23.34 9.00 2.94 93.51 1.18 69.97 46.84 79.96 3.53
291.48 23.74 8.80 4.04 30.73 1.16 69.69 62.37 20.96 3.02

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 5. Structure of the optimization control system.

tion (Fig. 5). The process of DV fuzzification is then
complete.

4.3. Design of fuzzy inference engine

The fuzzy rules in the expert rule base are constituted
by antecedent parameters [14] and consequent parame-
ters. Antecedent parameters are freely combined fuzzy
subset centers that are used to divide the DV space,
and consequent parameters are corresponding optimal
MV values obtained by nonlinear optimization, which
can be expressed as DV ⇒ MVopt . Additionally, the
membership degree of every fuzzy subset center cor-
responding to fuzzy sets is 1. Equation 6 can be used
to calculate the membership degree of each set of DV
corresponding to fuzzy rules.

µDV = µDVL · µDVQ
.µDVV (6)

After fuzzification of each DV inputted, there are
two sets of fuzzy subsets that increase the correspond-
ing membership degree to a positive value. Since the
selected DV has three variables, there are eight types
of fuzzy subset combinations, making each set of DV-
corresponding fuzzy subset membership degree greater
than zero. This can be described by corresponding
fuzzy variables and level variables; each set of input
DVs corresponds to eights sets of fuzzy rules in the
expert rule base, which can be expressed as DVi ⇒
MViopt (i = 1, 2, · · · , 8). Equation 6 is used to calculate
the membership degree of each set of DVs correspond-
ing to fuzzy rules. Each calculated value represents the
membership degree of the DV input corresponding to
fuzzy rules in the expert rule base.

4.4. Defuzzification

The fuzzy variables are converted to final exact val-
ues by a weighted average judgment method [6, 15],
demonstrated by the following equation:

YMVopt =

8∑

i=1
µi · MVi

8∑

i=1
µi

(7)

where YMVopt is the final optimal MV; for each DV
inputted, there are eight corresponding sets of fuzzy
rules in the expert rule base. Thus, µi is the member-
ship degree of the corresponding eight sets of fuzzy
rules; MVi represents the optimal MV; and the conse-
quent parameters correspond to the eight sets of fuzzy
rules.

5. Simulation study

The PC machine for simulation had the following
characteristics: operating system, Windows 7; CPU,
2.5 GHz; and RAM, 4GB. A total of 105 sets of mod-
eling data were selected, and the corresponding NOx
emissions derived from the method based on nonlinear
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optimization and the method based on fuzzy optimiza-
tion control were compared (Fig. 6).

The predicted results based on fuzzy optimization
control and the actual value are significantly close. The
absolute error is 21.60896, and the relative error is
4.1396%. In addition to the similarity of results, they
both meet environmental requirements. Moreover, the
average time for each step of online optimization based
on nonlinear optimization is 17.2s, while only 0.03s
are required for each step of online optimization based
on the fuzzy optimization control. It is evident that
the online real-time optimization performance based
on fuzzy optimization control is superior to the method
based on nonlinear optimization.

6. Conclusions

Fuzzy optimization control based on the nonlinear
optimization of power plant boiler NOx emissions can
be described as follows: First, the DV space is divided
into a certain number of subspaces. Each subspace cen-
ter obtains an optimal corresponding combustion mode
by offline nonlinear optimization, thereby forming a
complete expert rule base. The corresponding optimal
MV is then quickly obtained online by fuzzy inter-
ference for each inputted DV. The fuzzy optimization
control for the boiler combustion adjustment is then
realized.

Both the method based on nonlinear optimization and
the method based on fuzzy optimization control can
produce the same control effect. However, the optimiza-
tion process based on the fuzzy optimization control
method offers a simpler algorithm and fewer calcu-
lations, is less time-consuming online, and is more
suitable for the real-time application of combustion
adjustment.

The combustion model established by the orthogonal
experiment can only reflect the current characteristics
of the boiler; once the boiler equipment, coal or envi-
ronmental factors change, the model can no longer
accurately reflect the boiler situation. Thus, further
research must be conducted to improve the adaptive
capacity of the model.
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