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Abstract. Many researchers have combined rough set theory and fuzzy set theory in order to easily approach problems of
imprecision and uncertainty. Covering-based rough sets are one of the important generalizations of classical rough sets. Naturally,
covering-based fuzzy rough sets can be studied as a combination of covering-based rough set theory and fuzzy set theory. It is
clear that Pawlak’s rough set model and fuzzy rough set model are special cases of the covering-based fuzzy rough set model. This
paper investigates the properties of covering-based fuzzy rough sets. In addition, operations of intersection, union and complement
on covering-based fuzzy rough sets are investigated. Finally, the corresponding algebraic properties are discussed in detail.
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1. Introduction

Rough set theory, first proposed by Pawlak [35],
is an excellent tool with which to handle vagueness
and uncertainty in data analysis. The theory has been
applied to the fields of medical diagnosis, conflict
analysis, pattern recognition and data mining [7, 12,
17, 19].

Pawlak rough set theory is built on equivalence rela-
tions. However, an equivalence relation is restrictive for
many real-world applications [8, 14, 22]. To overcome
this limitation, there are two primary methods to gen-
eralize Pawlak rough set theory. Rough set theory has
been generalized from the perspective of extending the
equivalence relation to other binary relations, such as
dominance relations, tolerance relations and similarity
relations [15, 32]. In addition, one of the most impor-
tant generalizations is to replace a partition obtained by
the equivalence relation with a covering [3, 9–11, 24,
26–28, 30, 33, 34]. Zakowski, in 1983, first employed
the covering of a universe to establish a covering-
based generalized rough set. Since then, the study of
covering-based rough set theory has attracted many
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researchers. Many kinds of lower and upper approxi-
mation operators have been proposed [18, 24, 25, 27,
29, 31]. Yao proposed approximation operators based
on coverings produced by the predecessor and/or suc-
cessor neighborhoods of serial or inverse serial binary
relations [33]. Zhu, et al. studied six types of approx-
imation operators and investigated the properties and
relationships among them [26–28]. Qian, et al. simulta-
neously investigated five pairs of dual covering-based
approximation operators by employing the notion of
the neighborhood [13]. In addition, Yun, et al., also dis-
cussed covering rough sets and solved an open problem
identified by Zhu and Wang [27]. To construct the lower
and upper approximations of an arbitrary, Chen, et al.
proposed a new covering-based on generalized rough
set [3].

Alternatively, rough set theory was generalized by
combining with other theories that deal with uncertain
knowledge. The fuzzy rough set model which combines
fuzzy set theory with rough set theory is one of the most
important adaptations. It is well known that fuzzy set
theory and rough set theory are complementary in terms
of handling different kinds of uncertainty. Rough set
theory deals with uncertainty resulting from ambiguity
of information [1], while fuzzy set theory is adept at
dealing with probabilistic uncertainty, connected to the
imprecision of states, perceptions and preferences. The
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two theories can be encountered in many specific prob-
lems. Therefore, rough set theory has been generalized
by combining it with fuzzy set theory. Many researchers
have discussed the fuzzy rough set model from various
perspectives [1, 4–6, 21]. Dubois and Prade proposed
the concepts of the rough fuzzy set and the fuzzy rough
set [2]. Morsi, et al. discussed some axioms of fuzzy
rough sets [16]. Wu, et al. studied the (I, T )-fuzzy rough
approximation operators [20]. Xu, et al. proposed the
multi-granulation fuzzy rough set model and studied
the properties of multi-granulation fuzzy rough sets
[23]. However, it is still an open problem regarding the
research of covering-based fuzzy rough sets.

In this paper, the primary objective is to investigate
covering-based rough set theory when combined with
fuzzy set theory. The paper is organized as follows.
In Section 2, some basic concepts of Pawlak’s rough
set theory and fuzzy rough set theory are described.
Furthermore, the concept of the monotone covering
is proposed. In Section 3, the properties of covering-
based fuzzy approximation operators are investigated.
In Section 4, the operations of intersection, union and
complement on covering-based fuzzy rough sets are
discussed, as are the algebraic properties of covering-
based fuzzy rough sets. Finally, Section 5 concludes
this study.

2. Preliminaries

In this section, some basic concepts and notions
according to Pawlak’s theory rough sets, fuzzy sets,
and covering are described. Additional details can be
found in various references [23, 25, 35].

(U, R) is referred to as an approximation space,
in which U = {x1, x2, · · · , xn} is a non-empty finite
set. R = {R1, R2, · · · , Rm} is a set of the equiva-
lence relations. Denote [x]R = {y |(x, y) ∈ R }, U/R =
{[x]R |x ∈ U}; then, [x]R is called the equivalence class
of x and the quotient set U/R is called the equivalence
class set of U.

Definition 2.1. Let (U, R) be an approximation space
and R be an equivalence relation. For any X ⊆ U,
R(X)={x ∈ U|[x]R ⊆ X}, R(X)={x ∈ U|[x]R ∩ X /=
φ}.

These are the Pawlak lower and upper approxima-
tions of X with respect to equivalence relation R,
respectively.

Let U represent a non-empty finite set. A fuzzy set
X is a mapping from U into the unit interval [0, 1];

X : U → [0, 1], where each X(x) is the membership
degree of x in X. The set of all the fuzzy sets defined
on U is denoted by F (U).

Definition 2.2. Let (U, R) be an approximation space
and R be an equivalence relation. For any X ⊆ U,
denote

R(X)(x) = ∧{X(y) |y ∈ [x]R }
R(X)(x) = ∨{X(y) |y ∈ [x]R }.

R(X) and R(X) are the lower and upper approxima-
tions of the fuzzy set X with respect to equivalence
relation R, where ∧ represents “min” and ∨ represents
“max”.

Definition 2.3. Let U be the universe and C a family of
nonempty subsets of U. If ∪C = U, then C is a covering
of U. The ordered pair (U, C) represents a covering
approximation space.

Let (U, C) be a covering approximation space. For
any x ∈ U, {Kx ∈ C |x ∈ Kx } is denoted as st(x, C),
i.e., st(x, C) = {Kx ∈ C |x ∈ Kx }.

Definition 2.4. Let C be a covering of U. For any
x ∈ U and st(x, C) = {Kx1 , Kx2 , · · · , Kxn}. If Kx1 ,

Kx2 , · · · , Kxn can be reordered to Kxi1 , Kxi2 , · · · , Kxin

such that Kxi1 ⊆ Kxi2 ⊆ · · · Kxin , then C is a mono-
tone covering of U, and (U, C) is a monotone covering
approximation space.

Furthermore, we denote Kmin
x = Kxi1 and C

min =
{Kmin

x |x ∈ U} . In addition, denote, C
MIN = {Kmin

xi
,

i = 1, 2, · · · , m}, where C
MIN must satisfy the follow-

ing three conditions.
(1) For any Kmin

xi
∈ C

MIN , Kmin
xi

∈ C
min, i = 1,

2, · · · , m;
(2) For any Kmin

xi
,Kmin

xj
∈C

MIN,Kmin
xi

∩ Kmin
xj

=φ,

i /= j, i, j = 1, 2, · · · , m;
(3) For any Kmin

x ∈ C
min, there exists Kmin

xi
∈ C

MIN

such that Kmin
xi

⊆ Kmin
x .

Remark 2.1. For any K ∈ C
MIN and any x ∈ K, by

the construction of C
MIN , K = Kmin

x can be easily
obtained.

Example 2.1. LetU = {x1, x2, · · · , x8},K1 = {x1, x2,

x3, x4, x5}, K2 = {x3, x4, x5},K3 = {x5}, K4 = {x6,

x7, x8}, and K5 = {x8}, C = {K1, K2, K3, K4, K5}.
Then C is a monotone covering of U. Moreover, Cmin =
{{x1, x2, x3, x4, x5}, {x3,x4,x5},{x5},{x6,x7,x8}, {x8}},
C

MIN = {{x5}, {x8}}.
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Definition 2.5. Let (U, C) be a covering approximation
space. For any fuzzy set X ∈ F (U), denote

C(X)(x) = ∨Kx∈C{∧{X(y) |y ∈ Kx }}
C(X)(x) = ∧Kx∈C{∨{X(y) |y ∈ Kx }}.

C(X) and C(X) are the lower and upper cover-
ing fuzzy approximations of X, respectively. The pair
(C(X), C(X)) is the covering fuzzy rough set of X

and C̃ = {(C(X), C(X)) |X ∈ F (U)} represent all of
the covering fuzzy rough sets.

Remark 2.2. In a special case, when C is a partition of
the universe, then C(X) and C(X) of Definition 2.5 will
degenerate into R(X) and R(X) of Definition 2.2.

Example 2.2. Let U = {x1, x2, x3, x4}, K1 = {x1, x2},
K2 = {x2}, K3 = {x1, x3}, K4 = {x3, x4}, and C =
{K1, K2, K3, K4}. C is a covering of U. For fuzzy set
X = (0.3, 0.4, 0.2, 0.5), C(X) = (0.3, 0.4, 0.2, 0.5),
C(X) = (0.3, 0.4, 0.3, 0.5).

3. Covering-based fuzzy approximation
operators

In the section, the properties of the lower and upper
covering fuzzy approximation operators in a covering
approximation space are considered.

Proposition 3.1. Let (U, C) be a covering approxi-
mation space and X, Y ∈ F (U). Then, the following
properties hold:

(1) C(U) = C(U) = U, C(φ) = C(φ) = φ;

(2) C(X) ⊆ X ⊆ C(X);

(3) X ⊆ Y ⇒ C(X) ⊆ C(Y ), C(X) ⊆ C(Y );

(4) C(∼ X) =∼ C(X), C(∼ X) =∼ C(X).

Proof: The properties can be easily proved by
Definition 2.5. �

Example 3.1. (Continued from Example 2.2) For
another fuzzy set Y = (0.3, 0.2, 0.4, 0.1), C(X)∩
C(Y ) = (0.3, 0.2, 0.2, 0.1). C(X ∩ Y )= (0.2, 0.2, 0.2,

0.1). C(X) ∩ C(Y ) /= C(X ∩ Y ). Similarly, C(X) ∪
C(Y ) /= C(X ∪ Y ).

If C is a monotone covering of U, then the following
properties are observed.

Proposition 3.2. Let (U, C) be a monotone covering
approximation space and X, Y ∈ F (U). Then the fol-
lowing properties hold:

(1) C(X ∩ Y ) = C(X) ∩ C(Y );

(2) C(X ∪ Y ) = C(X) ∪ C(Y ).

Proof: (1) (⇒:) can be proved easily by Proposition
3.1.

(⇐:) For ∀x ∈ U, we have C(X ∩ Y )(x)

= ∨Kx∈C{∧{(X ∩ Y )(y) |y ∈ Kx }}
= ∧{(X ∩ Y )(y)

∣
∣
∣y ∈ Kmin

x }

≥ {∧{X(y)
∣
∣
∣y ∈ Kmin

x }} ∧ {∧{Y (y)
∣
∣
∣y ∈ Kmin

x }}
= C(X)(x) ∧ C(Y )(x)

= (C(X) ∩ C(Y ))(x)

(2) The item can be proved similarly to (1). �

Proposition 3.3. Let (U, C) be a monotone covering
approximation space and X ∈ F (U). Then the follow-
ing properties hold:

(1) C(C(X)) = C(X);

(2) C(C(X)) = C(X).

Proof: (1) (⇒:) can be proved easily by Proposition
3.1.

(⇐:) For any x ∈ U, we have C(C(X))(x)

= ∨Kx∈C{∧{C(X)(y) |y ∈ Kx }}
= ∧{C(X)(y)

∣
∣
∣y ∈ Kmin

x }
= C(X)(y0)(whereC(X)(y0) = min

y∈Kmin
x

C(X)(y))

= ∨Ky0 ∈C{∧{X(z)
∣
∣z ∈ Ky0 }}

= ∧{X(z)
∣
∣
∣z ∈ Kmin

y0
}

≥ ∧{X(z)
∣
∣
∣z ∈ Kmin

x }
= ∨Kx∈C{∧{X(z) |z ∈ Kx }}
= C(X)(x)

(2) The item can be proved similarly to (1). �
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Proposition 3.4. Let (U, C) be a monotone covering
approximation space and X, Y ∈ F (U). Then the fol-
lowing properties hold:

(1) C(C(X) ∩ C(Y )) = C(X) ∩ C(Y );

(2) C(C(X) ∪ C(Y )) = C(X) ∪ C(Y );

(3) C(C(X) ∩ C(Y )) = C(X) ∩ C(Y );

(4) C(C(X) ∪ C(Y )) = C(X) ∪ C(Y ).

Proof: (1) It is clear according to Proposition 3.1 and
Proposition 3.2.

(2) (⇒:) is clear according to Proposition 3.1.

(⇐:) For ∀x ∈ U, C(C(X) ∪ C(Y ))(x)

= ∨Kx∈C{∧{(C(X) ∪ C(Y ))(y) |y ∈ Kx }}
= ∧{(C(X) ∪ C(Y ))(y)

∣
∣
∣y ∈ Kmin

x }

≥ {∧{C(X)(y)
∣
∣
∣y∈Kmin

x }}∨{∧{C(Y )(y)
∣
∣
∣y∈Kmin

x }}
= C(C(X))(x) ∨ C(C(Y ))(x)

= C(X) ∪ C(Y )(x).

(3) This item can be proved similarly to (2).
(4) This item can be proved similarly to (1). �

Proposition 3.5. Let (U, C) be a monotone covering
approximation space. For any x ∈ U and X ∈ F (U), if
Kmin

x = {x}, then C(X)(x) = C(X)(x).

Proof: Clear according to Definition 2.5. �

Proposition 3.6. Let (U, C) be a monotone covering
approximation space. For ∀x, y ∈ U and X ∈ F (U), if
Kmin

x = Kmin
y , the following properties hold:

(1) C(X)(x) = C(X)(y);

(2) C(X)(x) = C(X)(y).

Proof: Clear according to Definition 2.5. �

4. Covering-based fuzzy rough sets

4.1. Operations on covering-based fuzzy rough sets

In this section, the operations of intersection, union
and complement on covering-based fuzzy rough sets are

investigated. We first propose the concepts of intersec-
tion, union and complement of covering-based fuzzy
rough sets.

Definition 4.1. Let (U, C) be a covering approxima-
tion space. For any (C(X), C(X)), (C(Y ), C(Y )) ∈ C̃,
the intersection and union are defined as follows:

(1) (C(X), C(X)) ∩ (C(Y ), C(Y ))

= (C(X) ∩ C(Y ), C(X) ∩ C(Y ));

(2) (C(X), C(X)) ∪ (C(Y ), C(Y ))

= (C(X) ∪ C(Y ), C(X) ∪ C(Y )).

Definition 4.2. Let (U, C) be a covering approximation
space. For any (C(X), C(X)) ∈ C̃, the complement is
defined as follows:

∼ (C(X), C(X)) = (∼ C(X), ∼ C(X))

Here, a question is raised: do all the covering-based
fuzzy rough sets satisfy the operations of intersection,
union and complement as defined above? The following
will employ an example to illustrate the question.

Example 4.1. Let U = {x1, x2, x3}, K1 = {x1, x2},
K2 = {x2, x3}, C = {K1, K2}. Clearly, C is a cover-
ing of U. For fuzzy sets X = (0.1, 0.2, 0.3) and Y =
(0.3, 0.2, 0.1), we have C(X) ∩ C(X) = (0.1, 0.2, 0.1)
and C(X) ∩ C(Y ) = (0.2, 0.2, 0.2). Clearly, there
does not exist a fuzzy set V ∈ F (U) such that
(C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )).

Example 4.1 indicates that all the covering-based
fuzzy rough sets do not meet the operation of inter-
section.

Let (U, C) be a monotone covering approximation
space. If C satisfies the following condition (*).

For any x ∈ U, either Kmin
x = {x} or there exists y ∈

U such that Kmin
x = Kmin

y . (∗)
Thus, we can present the following proposition.

Proposition 4.1. Let (U, C) be a monotone covering
approximation space and C satisfy the condition (*).
For any X, Y ∈ F (U), the following properties hold:

(1) C(V ) = C(X) ∩ C(Y ), C(V ) = C(X) ∩ C(Y );

(2) C(W) = C(X) ∪ C(Y ), C(W) = C(X) ∪ C(Y ).

Proof: (1) Suppose that C
MIN = {K1, K2, · · · , Km}.
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For K1 ∈ C
MIN , choose x11 ∈ K1 randomly.

According to Remark 2.1, K1 = Kmin
x11

can be obtained.
Let st(x11, C) = {K1

x11
, K2

x11
, · · · , Kn

x11
}. Since C is a

monotone covering, without loss of generality, suppose
that x11 ∈ Kmin

x11
= K1

x11
⊂ K2

x11
⊂ · · · ⊂ Kn

x11
.

(1K1 ) IfK1
x11

has only one element, i.e.,K 1
x11

= {x11}.
Denote V (x11) = (C(X) ∩ C(Y ))(x11) = (C(X)∩

C(Y ))(x11) according to Proposition 3.5. If K1
x11

has at
least two elements, i.e., {x11} ⊂ K 1

x11
. According to

Proposition 3.6, we denote V (x11) = (C(X) ∩ C(Y ))
(x11). For ∀ x ∈ K 1

x11
/{x11}, let V (x) = (C(X) ∩ C(Y ))

(x).
(2K1 ) If K2

x11
/K1

x11
has only one element, suppose

that K2
x11

/K1
x11

= {x12}. According to proposition 3.5,
we denote V (x12) = (C(X) ∩ C(Y ))(x12) = C(X) ∩
C(Y )(x12). If K2

x11
/K1

x11
has at least two ele-

ments, according to Proposition 3.6, denote V (x12) =
(C(X) ∩ C(Y ))(x12). For ∀ x ∈ K 2

x11
/ (K 1

x11
∪ {x12}),

let V (x) = (C(X) ∩ C(Y ))(x).
(3K1 ) If K3

x11
/K2

x11
has only one element, sup-

pose that K 3
x11

/K 2
x11

= {x13}. According to Proposition
3.5, denote V (x13) = (C(X) ∩ C(Y ))(x13) = C(X) ∩
C(Y )(x13). If K3

x11
/K2

x11
has at least two elements,

according to Proposition 3.6, we denote V (x13) =
(C(X) ∩ C(Y ))(x13). For ∀ x ∈ K 3

x11
/ (K 2

x11
∪ {x13}),

let V (x) = (C(X) ∩ C(Y ))(x).
· · · · · ·
(nK1 ) If Kn

x11
/Kn−1

x11
has only one element, suppose

that K n
x11

/K n−1
x11

= {x1n}. According to Proposition
3.5, denote V (x1n) = (C(X) ∩ C(Y ))(x1n) = C(X) ∩
C(Y )(x1n). If Kn

x11
/Kn−1

x11
has at least two elements,

according to Proposition 3.6, denote V (x1n) = (C(X) ∩
C(Y ))(x1n). For ∀ x ∈ K n

x11
/ (K n−1

x11
∪ {x1n}), let

V (x) = (C(X) ∩ C(Y ))(x).
For Ki ∈ C

MIN, i = 2, 3, · · · , m, repeat the above
steps from 1K1 to nK1 , respectively. Finally, a fuzzy set
V ∈ F (U) is obtained such that C(V ) = C(X) ∩ C(Y )
and C(V ) = C(X) ∩ C(Y ).

(2) The property can be proved according to (1). �

Remark 4.1. For any two covering-based fuzzy rough
sets (C(X), C(X)), (C(Y ), C(Y )) ∈ C̃, two fuzzy sets
V, W ∈ F (U) can be obtained such that (C(V ),
C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) and (C(W),
C(W)) = (C(X), C(X)) ∪ (C(Y ), C(Y )).

Example 4.2. (Continued from Example 2.1) It is
clear that C satisfies condition (*). For two fuzzy sets

X= (0.3, 0.1, 0.2, 0.4, 0.5, 0.4, 0.3, 0.4) and Y = (0.2,

0.3, 0.4, 0.2, 0.6, 0.3, 0.2, 0.1), fuzzy sets V = (0.1,

0.5, 0.2, 0.5, 0.5, 0.1, 0.3, 0.1) and W = (0.2, 0.6,

0.2, 0.6, 0.6, 0.3, 0.4, 0.4) can be obtained such that
(C(V),C(V))= (C(X),C(X))∩(C(Y ),C(Y ))and (C(W),
C(W)) = (C(X), C(X)) ∪ (C(Y ), C(Y )).

Moreover, for Z = (0.2, 0.3, 0.4, 0.5, 0.4, 0.6, 0.1,

0.3), Let C = (0.2, 0.5, 0.4, 0.5, 0.5, 0.1, 0.6, 0.3),
D = (0.2, 0.5, 0.2, 0.5, 0.4, 0.1, 0.4, 0.3), then (C(C),
C(C))= ((C(X),C(X)) ∩ (C(Y ),C(Y ))) ∪ (C(Z),C(Z))
and (C(D), C(D)) = ((C(X), C(X)) ∪ (C(Y ), C(Y ))) ∩
(C(Z), C(Z)).

4.2. Algebraic properties of covering-based fuzzy
rough sets

In this section, the algebraic properties of covering-
based fuzzy rough sets are investigated. Suppose that
(U, C) is a monotone covering approximation space
and that C satisfies condition (*). Then, we obtain the
following conclusions.

Proposition 4.3. (C̃, ∪, ∩, ∼) is an assignment lattice.

Proof: For any (C(X), C(X)), (C(Y ), C(Y )) and
(C(Z), C(Z)) ∈ C̃, we have

(1) (C(X), C(X)) ∩ (C(X), C(X))

= (C(X), C(X)) (C(X), C(X)) ∪ (C(X), C(X))

= (C(X), C(X))

(2) (C(X), C(X)) ∩ (C(Y ), C(Y ))

= (C(Y ), C(Y )) ∩ (C(X), C(X))

(C(X), C(X)) ∪ (C(Y ), C(Y ))

= (C(Y ), C(Y )) ∪ (C(X), C(X))

(3) ((C(X), C(X)) ∩ (C(Y ), C(Y ))) ∩ (C(Z), C(Z))

= ((C(X), C(X)) ∩ ((C(Y ),C(Y )) ∩ (C(Z),C(Z)))

((C(X), C(X)) ∪ (C(Y ), C(Y ))) ∪ (C(Z), C(Z))

= ((C(X), C(X)) ∪ ((C(Y ), C(Y )) ∪ (C(Z),C(Z)))

(4) ((C(X), C(X)) ∩ ((C(X),C(X)) ∪ (C(Y ),C(Y )))

= (C(X), C(X))

((C(X),C(X)) ∪ ((C(X),C(X)) ∩ (C(Y ),C(Y )))

= (C(X), C(X))
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(5) ((C(X), C(X)) ∩ (C(Y ), C(Y ))) ∪ (C(Z), C(Z))

= ((C(X), C(X)) ∪ (C(Z), C(Z)))

∩((C(Y ), C(Y )) ∪ (C(Z), C(Z)))

((C(X), C(X)) ∪ (C(Y ), C(Y ))) ∩ (C(Z), C(Z))

= ((C(X), C(X)) ∩ (C(Z), C(Z)))

∪((C(Y ), C(Y )) ∩ (C(Z), C(Z))).

Hence, (C̃, ∪, ∩, ∼) is an assignment lattice. �
Let (φ, φ) = 0, (U, U) = 1, then the following con-

clusion is obtained.

Proposition 4.4. (C̃, ∪, ∩, ∼) is a soft algebra.

Proof: (1) For any (C(X), C(X)), (C(Y ), C(Y )) ∈ C̃,

(C(X), C(X)) ∪ 0 = (C(X), C(X))

(C(X), C(X)) ∩ 0 = 0

(C(X), C(X)) ∪ 1 = 1

(C(X), C(X)) ∩ 1 = (C(X), C(X)).

Thus, 0 and 1 are the minimal and maximal element
of (C̃, ∪, ∩, ∼), respectively.

(2) ∼ (∼ (C(X), C(X))) =∼ (∼ C(X), ∼ C(X))

= (C(X), C(X))

(3) ∼ ((C(X), C(X)) ∩ (C(X), C(X)))

= ∼ ((C(X) ∩ C(Y ), C(X) ∩ C(Y )))

= (∼ (C(X) ∩ C(Y )), ∼ (C(X) ∩ C(Y )))

= (∼ C(X)∪ ∼ C(Y ), ∼ C(X)∪ ∼ C(Y ))

= (∼ C(X), ∼ C(X)) ∪ (∼ C(Y ), ∼ C(Y ))

= ∼ (C(X), C(X))∪ ∼ (C(Y ), C(Y )).

Similarly,

∼ ((C(X), C(X)) ∪ (C(X), C(X)))

=∼ (C(X), C(X))∩ ∼ (C(Y ), C(Y )).

Hence, (C̃, ∪, ∩, ∼) is a soft algebra. �

5. Conclusion

To easily deal with problems of uncertainty and
imprecision, Xu, et al. proposed the multi-granulation
fuzzy rough set model based on equivalence relations

[23]. The model is a meaningful contribution toward
the generalization of the classical rough set model.

It is well known that a multi-granulation rough set
is a generalization of a Pawlak rough set. Covering-
based rough sets are also an important generalization
of classical rough sets. In this paper, we proposed the
covering-based fuzzy rough set model and discussed its
corresponding properties. Although many researchers
have studied many properties of rough sets, the opera-
tions of intersection, union and complement on rough
sets have yet to be investigated. In this paper, we pro-
posed the concept of monotone covering and researched
the operations of intersection, union and complement
on covering-based fuzzy rough sets. Thus, the construc-
tion of the covering-based fuzzy rough set model is a
meaningful generalization of rough set theory.
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