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Abstract. In this paper, a fuzzy frequent itemset (FFI)-Miner algorithm is developed to mine the complete set of FFIs without
candidate generation. It uses a novel fuzzy-list structure to keep the essential information for later mining process. An efficient
pruning strategy is also developed to reduce the search space, thus speeding up the mining process to directly discover the FFIs.
Experiments are conducted to show the performance of the proposed FFI-Miner algorithm compared to the Apriori-based and tree-
based approaches in terms of execution time and the number of traversal nodes for discovering FFIs under variants of membership
functions.
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1. Introduction

Depending on the various requirements of the mined
knowledge, association-rule mining (ARM) is the fun-
damental way to find the potential relationships among
the items from the binary databases [10, 11, 13].
Agrawal et al. first presented the Apriori algorithm to
mine association rules (ARs) in a level-wise way [11].
Han et al. then designed the frequent pattern (FP)-tree
structure with a FP-growth mining algorithm to find
FIs without candidate generation [5]. In real-life situa-
tions, it is difficult to handle the quantitative databases
based on the crisp sets. Fuzzy-set theory was proposed
to handle the quantitative databases [7]. In the past,
Chan et al. proposed the F-APACS algorithm to dis-
cover the fuzzy association rules (FARs) [6]. Hong
et al. stated the fuzzy data mining approach to discover
fuzzy frequent itemsets (FFIs) in a level-wise way [14].
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Hong et al. then presented an efficient algorithm
to merge the same fuzzy sets of the transformed
transactions into smaller transformed databases, thus
speeding up the computations for level-wisely mining
the FARs [15].

Instead of the generate-and-test mechanism, fewer
studies have been proposed to derive FARs or FFIs
based on tree structures. Lin et al. respectively designed
the fuzzy frequent pattern (FFP)-tree [1], compressed
fuzzy frequent pattern (CFFP)-tree [2], and upper-
bound fuzzy frequent pattern (UBFFP)-tree structures
to mine FFIs [3]. Some studies for efficiently min-
ing fuzzy association rules are still developed in
progress [4, 8].

2. Preliminaries and problem statement

2.1. Preliminaries

Let I = {i1, i2, . . . , im} be a finite set of m dis-
tinct items (attributes) in a quantitative database QD =
{T1, T2, . . . , Tn}, where each transaction Tq ∈ QD is
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Table 1
A quantitative database

TID Items

1 A:5, C:10, D:2, E:9
2 A:8, B:2, C:3
3 B:3, C:9
4 A:5, B:3, C:10, E:3
5 A:7, C:9, D:3
6 B:2, C:8, D:3
7 A:5, B:2, C:5
8 A:3, C:10, D:2, E:2

Fig. 1. The used linear membership functions of linguistic 3-terms.

a subset of I, contains several items with its purchase
quantities viq and has an unique identifier, called TID.

An itemset X is a set of k distinct items {i1, i2, . . . ,
ik}, where k is the length of an itemset called k-itemset.
An itemset X is said to be contained in a transaction Tq

if X ⊆ Tq. A minimum support threshold is defined as
δ. The user-specified membership functions is set as µ.
A quantitative database is shown in Table 1 as a running
example to illustrate the proposed approach. It consists
of 8 transactions and 5 items, which are respectively
denoted as (A) to (E). The minimum support threshold
is initially set as δ (= 25%). The membership functions
can be set as Fig. 1. Note that all items in the given exam-
ple used the same membership functions to fuzzifier
their quantitative values.

Definition 1. The linguistic variable Ri is an attribute
of a quantitative database whose value is the set of
fuzzy terms represented in natural language as (Ri1,
Ri2, . . . , Rih) and can be defined in the membership
functions µ.

Definition 2. The quantitative value of i denoted as viq,
is the quantitative of the item i in transaction Tq.

Definition 3. The fuzzy set, denoted as fiq, is the set
of fuzzy terms with their membership degrees (fuzzy
values) transformed from the quantitative value viq of
the linguistic variable i by the membership functions
µ as:

fiq = µi(viq)(= fviq1

Ri1
+ fviq2

Ri2
+ · · · + fviqh

Rih

), (1)

where h is the number of fuzzy terms of i transformed by
µ,Ril is the l-th fuzzy terms of i,fviql is the membership
degree (fuzzy value) of viq of i in the l-th fuzzy terms
Ril and fviql ⊆ [0, 1].

Thus, the Table 1 is then transformed by the mem-
bership functions shown in Fig. 1. Take TID (= 1) as
an example to illustrate the process. In this process,
the items with their quantitative values are transformed
as: ( 0.2

A.L
+ 0.8

A.M
, 0.2

C.M
+ 0.8

C.H
, 0.8

D.L
+ 0.2

D.M
, 0.4

E.M
+ 0.6

E.H
).

The other transactions are processed in the same way
as the transformed databases.

Definition 4. The support of the transformed fuzzy
terms, denoted sup(Ril), is the summation of scalar car-
dinality of the fuzzy values of fuzzy term Ril, which can
be defined as:

sup(Ril) =
∑

Ril⊆Tq∧Tq∈QD′
fviql, (2)

where QD′ is the quantitative database QD trans-
formed by membership functions (= µ).

Definition 5. The support of fuzzy k-itemsets (k ≥ 2),
denoted as sup(X), is the summation of scalar car-
dinality of the fuzzy values for X, which can be
defined as:

sup(X) = {X ∈ Ril|
∑

X⊆Tq∧Tq∈QD′
min(fvaql, fvbql),

a, b ∈ X, a /∈ b}

(3)

2.2. Problem statement

The problem of fuzzy frequent-itemset mining
(FFIM) in this paper is to discover the complete set
of fuzzy frequent itemsets (FFIs) as:

FFIs← {X|sup(X) ≥ δ× |QD|}. (4)

3. Proposed list-based FFI-Miner algorithm

In this section, a new fuzzy-list structure is built to
maintain the fuzzy information, which can be used to
efficiently and effectively speed up the computations for
directly discovering FFIs. The phases of the designed
FFI-Miner algorithm are described below.
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3.1. Fuzzification phase

In the proposed algorithm, the maximum scalar car-
dinality strategy is adopted, thus making the number of
transformed terms used in later processing equal to the
number of the original items. This strategy can be used
to find the most represented term of each item in the
original databases.

Strategy 1. (Maximum scalar cardinality) For a lin-
guistic variable i, the fuzzy terms Ril with the maximum
scalar cardinality (support) among the transformed
fuzzy terms is used to present the linguistic variable
(item) of FAM.

After that, the fuzzified quantitative database is then
revised to keep the represented fuzzy terms if they are
considered as the fuzzy frequent 1-itemsets. The kept
transformed fuzzy terms of each transformed transac-
tion are sorted in their support-ascending order. This
strategy can be used to easier find the fuzzy values
between the transformed fuzzy terms based on the
designed fuzzy-list structures.

Strategy 2. (The support-ascending order) For the
remaining fuzzy terms with their fuzzy values in a
transaction Tq, the fuzzy terms are sorted in their
support-ascending order to perform the intersection
operation for discovering their support values among
the fuzzy k-terms (k≥ 2).

Based on the maximum scalar cardinality and
the support-ascending order strategies, the original
databases can be transformed as the fuzzified databases.

3.2. Fuzzy-list structure

After the original quantitative database is trans-
formed, the remaining fuzzy terms in L1 are used to
build their own fuzzy-list structures for keeping the
fuzzy information. The definitions used in the fuzzy-list
structure are respectively given below.

Definition 6. A fuzzy term Ril in transaction Tq, and
Ril ⊆ Tq. The set of fuzzy terms after Ril in Tq is
denoted as Tq/Ril.

Definition 7. The internal fuzzy value of a fuzzy term
Ril in transaction Tq is denoted as if (Ril, Tq).

Definition 8. The resting fuzzy value of a fuzzy term Ril

in transaction Tq is denoted as rf (Ril, Tq) by performing
the union operation to get the maximum fuzzy value of

Fig. 2. The initial constructed fuzzy-list structures.

all the fuzzy terms as the upper-bound value in Tq/Ril

in Tq, which is defined as:

rf (Ril, Tq) = max{if (z, Tq)|z ∈ (Tq/Ril)}. (5)

In the constructed fuzzy-list structure, each element
consists of three attributes as:

1. Transaction TID(tid), which indicates a transac-
tion Tq containing Ril.

2. Internal fuzzy value (if ), which indicates the
fuzzy value of Ril in Tq.

3. Resting fuzzy value (rf ), which indicates the max-
imum fuzzy value of the resting fuzzy terms after
Ril in Tq.

The initial fuzzy-list structures of the fuzzy terms in
L1 are first constructed. Since the support-ascending
order of the fuzzy terms in L1 are (D.L < B.L <

C.H < A.M), the results are shown in Fig. 2. The con-
struction algorithm of fuzzy-list structure is shown in
Algorithm 1.

Algorithm 1 Fuzzy-list Construction

Input: Px.FL, the fuzzy-list of Px; Py.FL, the
fuzzy-list of Py .

Output: Pxy.FL the fuzzy-list of x and y.
1: Pxy.FL← null.
2: for each Ex ∈ Px.FL do
3: if ∃Ey ∈ Py.FL and Ex.tid == Ey.tid then
4: Exy.tid ← Ex.tid.
5: Exy.if ← min(Ex.if, Ey.if ).
6: Exy.rf ← Ey.rf .
7: Exy ←< Exy.tid, Exy.if, Exy.rf >.
8: append Exy to Pxy.FL.
9: end if
10: end for
11: return Pxy.FL.



2376 J.C.-W. Lin et al. / A fast algorithm for mining fuzzy frequent itemsets

Definition 9. The SUM.Ril.if is to sum the fuzzy values
of an itemset Ril in D, which can be defined as:

SUM.Ril.if =
∑

Ril⊆Tq∧Tq∈QD′
if (Ril, Tq). (6)

Definition 10. The SUM.Ril.rf is to sum the resting
fuzzy values after Ril in D, which can be defined as:

SUM.Ril.rf =
∑

Ril⊆Tq∧Tq∈QD′
rf (Ril, Tq). (7)

3.3. Search space of fuzzy-list

Based on the designed fuzzy-list structure, the search
space of the proposed FFI-Miner algorithm can be
represented as an enumeration tree according to the
developed support-ascending order strategy. In this
example, the search space of the enumeration tree is
shown in Fig. 3.

Since the complete search space of the enumeration
tree is very huge for discovering all fuzzy frequent item-
sets, it is necessary to reduce the search space but still
can completely find the fuzzy frequent itemsets.

Strategy 3. For an itemset X, if its SUM.X.if is no
less than the minimum support count, it is considered
as a fuzzy frequent itemset. Also, if min(SUM.X.if,
SUM.X.rf) of X is no less than the minimum support
count, the supersets of X are required to be generated
and determined.

Theorem. Given the fuzzy-list of a fuzzy term Ril. If
the sum of resting fuzzy values of Ril is no less than
minimum support count (δ× |QD|), any extensions of
Ril are not the fuzzy frequent itemsets.

Fig. 3. An enumeration tree of the used example.

Proof. For ∀Tq ⊇ X′, suppose fuzzy term Ril is denoted
as X, and X’ is the extension of X, thus:

(X′ −X) = (X′/X).

X ⊂ X′ ⊆ Tq ⇒ (X′/X) ⊆ (Tq/X).

∴ if (X′, Tq) = min{if (X, Tq), if ((X′ −X), Tq)}
= min{if (X, Tq), if ((X′/X), Tq)}
= min{if (X, Tq), rf (Ril, Tq)}

∵ X ⊂ X′ ⇒ X′tids ⊆ X.tids.

∴ if (X′) =∑
X′⊆Tq∧Tq∈QD′ if (X′, Tq)

≤∑
X′⊆Tq∧Tq∈QD′ if (X′/X, Tq)

≤∑
X′⊆Tq∧Tq∈QD′ rf (X′/X, Tq)

= SUM.X.rf.

Thus, if the summation of the resting fuzzy values
of the itemset X is no larger than the minimum sup-
port count, any extensions of X will not be a fuzzy
frequent itemsets and can be directly ignored to avoid
the construction phase of the fuzzy-list structures of the
extensions of X. The proposed fuzzy-frequent itemset
(FFI)-Miner algorithm is described in Algorithm 2.

Algorithm 2 FFI-Miner

Input: FLs, fuzzy-list of 1-itemsets; δ.
Output: FFIs, the set of complete fuzzy frequent itemsets.

1: for each fuzzy-list X in FLs do
2: if SUM.X.if ≥ δ× |QD| then
3: FFIs← X ∪ FFIs.
4: end if
5: if SUM.X.rf ≥ δ× |QD| then
6: exFLs← null.
7: for each fuzzy-list Y after X in FLs do
8: exFL← exFLs+ Construct(X, Y ).
9: end for
10: FFI-Miner(exFLs, δ).
11: end if
12: end for
13: return FFIs.

4. Experimental evaluation

In this section, the proposed FFI-Miner algorithm is
evaluated to compare the state-of-the-art FDTA [14],
CFFP-tree [2], GDF [15], and UBFFP-tree [3] algo-
rithms. Two real-life chess, mushroom datasets [9] and
one synthetic c20d10k dataset [9] are used in the exper-
iments. The quantities of items are randomly assigned
in the range of [1, 11] interval in the used datasets by



J.C.-W. Lin et al. / A fast algorithm for mining fuzzy frequent itemsets 2377

43 44 45 46 47
10

1

10
2

10
3

10
4

(a) 2−terms chess

Minmum support threshold (%)

R
un

tim
e(

s)

11 12 13 14 15
10

2

10
3

10
4

(b) 2−terms mushroom

Minmum support threshold (%)
R

un
tim

e(
s)

17 18 19 20 21
10

2

10
3

10
4

(c) 2−terms c20d10k

Minmum support threshold (%)

R
un

tim
e(

s)

50 50.5 51 51.5 52
10

1

10
2

10
3

10
4

(d) 3−terms chess

Minmum support threshold (%)

R
un

tim
e(

s)

10 10.5 11 11.5 12
10

2

10
3

10
4

(e) 3−terms mushroom

Minmum support threshold (%)

R
un

tim
e(

s)

24.5 25 25.5 26 26.5
10

1

10
2

10
3

10
4

(f) 3−terms c20d10k

Minmum support threshold (%)

R
un

tim
e(

s)
FFI−Miner CFFP−tree UBFFP−tree FDTA GDF

Fig. 4. Runtime w.r.t. variant minimum support thresholds.

adopting normal distribution. In the conducted exper-
iments, the linear membership functions for 3-terms
were shown in Fig. 1 and the linear membership func-
tions for 2-terms are respectively shown in Fig. 6.

4.1. Runtime

The execution time of four algorithms compared
to the designed FFI-Miner with different types mem-
bership functions under different minimum support
thresholds in three datasets is conducted and shown in
Fig. 4. From Fig. 4, it can be observed that the proposed
algorithm is faster than the previous algorithms under
varied minimum support thresholds in three datasets
whether in 2-terms or 3-terms membership functions.
The proposed FFI-Miner algorithm has almost up to
one or two orders of magnitude faster than other algo-
rithms. The reason is that the CFFP-tree algorithm
is very sensitive of the transaction length since each
node in the CFFP-tree structure requires more com-
putations to attach an array. Although the UBFFP-tree
algorithm uses an efficient structure to keep the FFIs,
it still requires an additional database scan to find the

actual counts of the remaining itemsets. The FDTA
and GDF can efficiently mine the FFIs to handle the
condense datasets but the sparse one since the number
of remaining itemsets is not very large to perform the
generate-and-test mechanism for mining the FFIs.

4.2. Number of traversal nodes

The number of traversal nodes in the tree structure
is evaluated. The FDTA and GDF algorithms perform
the generate-and-test approach to mine FFIs. Thus, the
proposed FFI-Miner algorithm only compares to the
CFFP-tree and UBFFP-tree algorithms. The results are
shown in Fig. 5. From Fig. 5, it can be observed that the
number of traversal nodes of the designed FFI-Miner
algorithm is much less than those of the CFFP-tree
and UBFFP-tree algorithms under varied minimum
support thresholds in three datasets. The proposed FFI-
Miner algorithm requires less memory usage to keep
the required information in the list structure. Besides,
the number of tree nodes that required to be analyzed
can be greatly pruned in the enumeration tree based
on the designed pruning strategy. Thus, the amount of
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Fig. 6. Linear membership functions for 2-terms.

tree nodes and iterative operations for building subtree
will be reduced compared to whether the CFFP-tree and
UBFFP-tree algorithms.

5. Conclusion

In this paper, we first propose a list-based FFI-Miner
algorithm to efficiently discover FFIs from the quan-
titative databases. An efficient pruning strategy is also
developed in the designed fuzzy-list structures to early

prune the unpromising candidates for later mining pro-
cess. From the conducted experiments, it can be easily
observed that the proposed algorithm has better perfor-
mance than the state-of-the-art algorithms for mining
fuzzy frequent itemsets.
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