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Teaching-learning-based optimization
with a fuzzy grouping learning strategy
for global numerical optimization

Zhibo Zhai, Shujuan Li∗ and Yong Liu Zhanlong Li
School of Mechanical and Instrumental Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China

Abstract. The Teaching-Learning-Based Optimization (TLBO) algorithm is a novel heuristic method that is inspired by the
philosophy of teaching and learning in a class. In the “Teacher Phase” of the original TLBO algorithm, all learners are combined
in one group and learn only from the teacher, which quickly leads to declining population diversity. Utilizing fuzzy K-means
clustering to objectively divide all learners into smaller-sized groups more closely conforms to the modern idea of intra-class
grouping for teaching and learning. Furthermore, fuzzy K-means clustering can objectively divide learners as nearly as possible
according to their interests and abilities, which helps each learner to grow to his or her fullest extent. This paper presents a novel
version of TLBO, TLBO with a Fuzzy Grouping Learning Strategy (FGTLBO), in which fuzzy K-means clustering is used to
create K centers, each of which acts as the mean of its corresponding group. Performance and accuracy of the FGTLBO algorithm
are examined on CEC2005 standard benchmark functions, and these results are compared with various other versions of TLBO.
The experimental results verify that the FGTLBO algorithm is very competitive in terms of solution quality and convergence rate.
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1. Introduction

Rao, et al. [21] initially proposed the Teaching-
Learning-Based Optimization (TLBO) algorithm,
which is based on swarm intelligence and applied
to continuous, non-linear, multivariable, multimodal,
large-scale optimization problems [22]. TLBO was
inspired by the traditional teaching and learning
phenomenon of a classroom. Compared with other
evolutionary algorithms, such as Particle Swarm Opti-
mization (PSO) [9], Differential Evolution (DE) [18],
Artificial Bee Colony (ABC) [3], Group Search
Optimizer (GSO) [24], Cuckoo Search (CS) [26],
Water Cycle algorithm (WCA) [6], Differential Search
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algorithm (DSA) [15], Backtracking Search algorithm
(BSA) [14], and Interior Search algorithm (ISA) [2],
the TLBO algorithm has simple computational charac-
teristics and few specific controlling parameters. These
features have attracted great interest among researchers
in recent years.

Since its introduction, the TLBO algorithm has
been applied in various optimization problems such
as parameters optimization of selected casting pro-
cesses [20], multi-objective design optimization of a
plate-fin heat sink [19], multi-objective optimization
of heat exchangers [23], Dynamic Economic Emis-
sion Dispatch [25], Dynamic Voltage Restorer (DVR)
compensator [13], and combinatorial problems on flow
shop and job shop scheduling cases [1]. Niu, et al.
put forward an improved TLBO algorithm to identify
the parameters of PEM fuel cell and solar cell models
[17]. Similarly, Ghasemi et al. proposed an improved
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TLBO algorithm using the Lévy mutation strategy
for non-smooth optimal power-flow [12]. Li, et al.
discussed a discrete TLBO algorithm for realistic flow-
shop rescheduling problems [10]. Finally, Hosseinpour
et al. used Teaching–Learning-Based optimization cou-
pled with Simulated Annealing algorithm (SA-TLBO)
method to determine the optimal placement of on-load
tap changers in distribution networks [7].

Although TLBO has been successfully applied in
many fields, Zou, et al. [5] report that the original TLBO
algorithm features some undesirable dynamical proper-
ties that degrade its searching ability. One of the most
important problems is that the TLBO algorithm tends to
get trapped in local optima solutions because of diver-
sity loss; in other words, over a certain period of time,
each member in the population tends toward a fixed
value.

Several variants have been introduced to improve
the performance of the original TLBO. For example,
a ring neighborhood topology was introduced into the
original algorithm to maintain the exploration abil-
ity of the population and the diversity of individuals.
Results show that the proposed method increased the
solution quality [11]. The Gaussian sampling learn-
ing strategy was introduced into the original TLBO to
improve its performance, and it balanced the explo-
ration and exploitation in the “Teacher Phase” [4].
Subsequently, the quantum-behaved learning strategy
was introduced into the original TLBO algorithm to
enhance the exploitative nature of the population;
results show that the proposed algorithm is a challeng-
ing method [5].

Although these variants on the TLBO algorithm
show some improvements, they fail to focus objec-
tively on more groups. To this aim, we present a
novel version of the algorithm, TLBO with a fuzzy
grouping learning strategy (FGTLBO). In FGTLBO,
fuzzy K-means clustering is used to create K cen-
ters, which act as the means of their corresponding
groups in the “Teacher Phase” in order to form
groups objectively. This modification both improves
the diversity of the population, which needs to be
preserved in order to discourage premature conver-
gence, and achieves balance between the explorative
and exploitative tendencies inherent in pursuing better
solutions.

The structure of this paper is organized as follows:
Section 2 presents the original TLBO, which provides
the necessary preparation for understanding the rest
of the paper. Section 3 proposes FGTLBO. Section 4
analyzes the results of our comparative study and dis-

cusses the influence of the size of the group on the
performance of the FGTLBO algorithm. Finally, Sec-
tion 5 presents the conclusion and proposals for future
work.

2. Overview of original TLBO algorithm

Inspired by the philosophy of teaching and learn-
ing in a traditional classroom, Rao, et al. developed the
TLBO algorithm for the purpose of optimizing numer-
ical problems. This algorithm considers the population
as a group of learners, while different design variables
are analogous to different subjects offered to learners. In
the end, the learner’s grade is equivalent to the “fitness”
value of the optimization problem. The best solution
out of the entire population is considered to represent
the teacher, who is generally the most knowledgeable
person in a class and shares his knowledge with the
learners.

This method’s operating procedure consists of two
learning phases, namely the “Teacher Phase” and the
“Learner Phase.” The “Teacher Phase” is analogous to
learning from the teacher, whereas the “Learner Phase”
means learning through interaction among learners. The
phases are defined as follows:

Xnew, i = Xi + r(Xteacher − TFXmean ) (1)

where Xnew, i is a newly generated individual according
to Xi; r is a random vector in which each element is a
random number in the range [0,1]; Xteacher is the best
individual among the current population; TF represents
a teaching factor that decides the value of the mean to
be changed; and Xmean is the current mean value of all
of the individuals. The value of TF can be either 1 or
2, which is a heuristic step and decided randomly with
equal probability.

2.1. Learner phase

In this phase, improvement in the knowledge of a
learner Xi depends mainly on peer learning from an
optimal learner Xj . Based on the knowledge levels of
these two learners, two states may occur: if Xj is better
than Xi, Xi will move towards Xj; otherwise, it will be
moved from Xi. The learner phase can be expressed as
follows:

Xnew, j = Xi + r(Xj − Xi) (2)

Xnew, j = Xi + r(Xi − Xj) (3)
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3. TLBO with a fuzzy grouping learning
strategy (FGTLBO)

In the original TLBO, each learner is learning from a
teacher in only one class, which easily leads to declining
population diversity. On the other hand, utilizing fuzzy
K-means clustering to group learners objectively con-
forms to the modern model of intra-class grouping for
teaching and learning more closely. Motivated by these
facts, we propose FGTLBO, a novel version of TLBO
that incorporates a fuzzy grouping learning strategy.

3.1. Fuzzy K-means clustering

Fuzzy K-means clustering is a data clustering tech-
nique in which a dataset is grouped into K clusters such
that every data point in the dataset belonging to a clus-
ter will have a high degree of belonging or membership
within that cluster, while another data point that lies
far away from the center of the cluster will have a low
degree of belonging or membership within that cluster.
Traditional hard clustering demands that every point
within a data set be assigned into a cluster precisely.
Fuzzy K-means clustering is an extension of traditional
hard clustering such that the corresponding clustering
centers used in fuzzy K-means clustering are closer to
the real centers of groups than those used in traditional
hard clustering.

The clustering centers determined by these groups
may be far away from each other if the centers are
close to the actual centers of the groups under fuzzy k-
means clustering. Conversely, the centers may be close
to each other. According to formula (4) in the “Teacher
Phase” of the original TLBO algorithm, each cluster-
ing center is considered to be the center of a certain
group. If the centers of the these groups are close to
one another, some individuals of the next generation
will end up very similar; in other words, results easily
fall into local optima, greatly reducing the effectiveness
of the original TLBO algorithm. Therefore, the theory
of fuzzy K-means clustering makes a suitable addition
to the original TLBO algorithm.

Fuzzy K-means clustering was initially developed by
Dunn and later generalized by Bezdek [8] by means of
a family of objective functions. Fuzzy K-means cluster-
ing is an iterative method that minimizes the objective
function defined as follows:

Jm(U, C) =
N∑

i=1

K∑
j=1

um
ij

∥∥xi − cj

∥∥2
, 1 < m < ∞

(5)

where xi represents feature data, m is a weighting expo-
nent on each fuzzy member, uij is the membership
degree of ith object with the jth cluster center, cj is thr
j-dimension center of the cluster, and ‖∗‖ is a matrix
norm expressing the similarity between measured data
and the center. Let U = (uij) be a fuzzy matrix; then,
the characteristics of uij are as follows:

uij ∈ [0, 1], ∀i ∈ 1, 2, · · · , N; j ∈ 1, 2, · · · , K

(6)

K∑
j=1

uij = 1, ∀i ∈ 1, 2, · · · , N (7)

0 <

N∑
i=1

uij < N, ∀j ∈ 1, 2, · · · , K (8)

The membership functions and cluster centers are
updated by the following expressions:

uij = 1
K∑

k=1

[‖xi−cj‖
‖xi−ck‖

] 2
m−1

(9)

and

cj =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

(10)

This iteration will stop when maxij =
∣∣∣ut+1

ij − ut
ij

∣∣∣
≤ e is satisfied, where e is a termination criterion
between 0 and 1, and t is the iteration step.

3.2. Fuzzy grouping

Intra-class grouping for teaching and learning consti-
tutes a method of classroom management that divides
learners into two or more groups within the classroom to
provide for individual differences. To more closely sim-
ulate the processes of teaching and learning in a modern
class, we will divide all learners into small sized groups
using fuzzy K-means clustering. Fuzzy K-means clus-
tering can objectively divide learners as accurately as
possible according to their interests and abilities, which
will help grow their abilities and creativities to their
fullest extents. The number K of cluster centers in fuzzy
K-means clustering is identical to the number m of the
dividing group strategy. For simplicity, we will divide
all learners into groups based on Euclidean distance,
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Table 1
The pseudo code for fuzzy grouping

Begin
Input: N, D, K, e, m, t
Set: X = {x1,x2, . . . ,xN};U(0) = rand(K,N);U(0)

=U(0)./(ones(K,1)*sum(U(0)));
Dist(K,N) = 0;U(K,N) = 0;P(K, D) = 0;t = 0;
01 While 1
02 t = ıt+1; U(t) = U(0).∧m; P = U(t)*X./(ones(D,1)*sum(U(t)’))’;
03 For i = 1:K
04 For j = 1:N
05 Dist (i,j) = norm(P(i,:)-X(j,:));
06 End For
07 End For
08 U(t) = 1./(Dist.∧m.*(ones(K,1)*sum(Dist.∧(-m))));
09 fitness(t) = sum(sum(U(t).*Dist.∧2));
10 If norm(U(t)-U0,Inf)<e
11 break;
12 End If
13 U(0) = U(t); re = [];
14 For i = 1:N
15 tmp = [];
16 For j = 1:K
17 tmp = [tmp norm(x(i,:)-P(j,:))];
18 End For
19 [junk index] = min(tmp); re = [re;x(i,:) index];
20 End For
21 End While
22 x1 = []; x2 = []; . . . ;xK = [];
23 For i = 1:N
24 If re(i,D+1)==1
25 x1 = [ x1;re(i,1: D)];
26 Else If re(i,4)==2
27 x2 = [ x2;re(i,1: D)];
28 . . .
29 Else If
30 Else If
31 xK = [xK; re(i,1: D)];
32 End If
33 End For
Output: X = {Group(1),Group(2), . . . , Group(K)}
End

and each group uses its own members to search for a
better area in the search space. Once these groups are
constructed, we can utilize them to update the corre-
sponding group mean. Table 1 summarizes the pseudo
code for fuzzy grouping as explained above.

3.3. The pseudo code for the FGTLBO algorithm

We developed FGTLBO by incorporating the fuzzy
grouping learning strategy into the “Teacher Phase”
of the original TLBO framework. Table 2 presents the
pseudo code for the FGTLBO algorithm.

Table 2
The pseudo code for the FGTLBO algorithm

Input: N, D, K, e, m,t, FESMAX, K = 3;
01 t = 0;
02 Generate an initial population: X = {x1,x2, . . . ,xN};
03 Function Evaluations: FES = N;
04 While FES< = FESMAX
05 fuzzy Grouping: X = {Group(1),Group(2), . . . ,Group(K)};
06 P = {P1,P2, . . . ,PK};
07 Evaluate the objective function values: f(X);
08 Find the best learner: gbest(t);
09 Set: mbest1 = P1; mbest2 = P2; mbest3 = P3;
10 For i = 1:size(Group(1))
11 TF = round(1 + rand);
12 For j = 1: D
13 X(j)

new,i = Group(1)i
(j)+rand(gbest(j)-TFmbest1(j));

14 If X(j)
new,i>lu2

(j)

15 X(j)
new,i = max(lu1

(j),2lu2
(j)-X(j)

new,i);
16 End If
17 If X(j)

new,i<lu1
(j)

18 X(j)
new,i = max(lu2

(j),2lu1
(j)-X(j)

new,i);
19 End If
20 End For
21 End For
22 For i = 1:size(Group(2))
23 TF = round(1 + rand);
24 For j = 1: D
25 X(j)

new,i = Group(2)i
(j)+rand(gbest(j)-TFmbest2(j));

26 If X(j)
new,i>lu2

(j)

27 X(j)
new,i = max(lu1

(j),2lu2
(j)-X(j)

new,i);
28 End If
29 If X(j)

new,i<lu1
(j)

30 X(j)
new,i = max(lu2

(j),2lu1
(j)-X(j)

new,i);
31 End If
32 End For
33 End For
34 For i = 1:size(Group(3))
35 TF = round(1 + rand);
36 For j = 1: D
37 X(j)

new,i = Group(3)i
(j)+rand(gbest(j)-TFmbest3(j));

38 If X(j)
new,i>lu2

(j)

39 X(j)
new,i = max(lu1

(j),2lu2
(j)-X(j)

new,i);
40 End If
41 If X(j)

new,i<lu1
(j)

42 X(j)
new,i = max(lu2

(j),2lu1
(j)-X(j)

new,i);
43 End If
44 End For
45 End For
46 Evaluate the objective function values: f(X);
47 FES = FES+1;
48 Execute the “Learner Phase": update population X;
49 t = t+1;
50 End while
Output: the individual with the smallest objective function

value in the population.

3.4. The global convergence analysis of the
FGTLBO algorithm based on Markov chain

We consider only the minimum global optimization
problem without loss of generality. Letx satisfy solution
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space � for the FGTLBO algorithm, namely x ∈ �.
Let X

(t)
teacher be the best individual in the tth evolutional

generation. Note that {X(t)
teacher. t = 0, 1, · · · } forms a

discrete time stochastic process. Based on the parent
individuals, the FGTLBO algorithm produces the next
generation according to random variables. Let X

(t)
teacher

be the best individual of the parent groups, and let its
corresponding state denote Ei. Let X

(t+1)
teacher be the best

individual of the progeny groups, and let its correspond-
ing state denote Ej . This state transfer forms a discrete
Markov chain, which shows that offspring only relate
to their parent groups and have no relation to previous
groups. Because the standard deviation adjusts dynasti-
cally with evolutional generation t, the Markov chain is
not time homogeneous. This suggests that state transfer
probability relates to evolutional generation t. Let p

(t)
ij

be the state transfer probability from generation t state
transfer Ei to generation t + 1 state transfer Ej . The

equation of p
(t)
ij is as follows:

p
(t)
ij =

⎧⎪⎨
⎪⎩

p
(t)
ij = 1 − ∑

Ei∈C

p
(t)
ij if f (Ej) ≥ f (Ei)

p
(t)
ij = 0, if f (Ej) < f (Ei)

(11)

Definition 1. For global solution x∗, if there exists a
discrete time stochastic process {X(t)

teacher.t = 0, 1, · · · }
satisfying lim

t→∞

[
p(f (X(t)

teacher) = f (x∗))
]

= 1, then the

algorithm converges to global solution x∗ with proba-
bility 1.

Theorem1. The FGTLBO algorithm converges to
global solution x∗ with probability 1.

Proof: Suppose that all learners are sorted in ascending
order according to their results. There exists a transi-
tion probability matrix P (t) of finite state Markov chain
generation t steps satisfying the following:

P (t) = (p(t)
ij ) |�| |�| =

⎡
⎢⎢⎢⎢⎢⎢⎣

p
(t)
11

p
(t)
21 p

(t)
22

...
...

. . .

p
(t)
[�]1 p

(t)
[�]2 . . . p

(t)
[�][�]

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)
where P (t) denotes a lower triangular matrix,
p

(t)
ij > 0, i > j,

∑
p

(t)
ij

= 1, and p
(t)
i11 = 1.

Based on the nature of the Markov chain P (k) = Pk

and the convergence to a positive stable random matrix
by the means of P (k),

P∞ = lim
k→∞

Pk = (1, 1, cdots, 1)T (p1, p2, · · · , pn)

(13)
where vector (p1, p2, · · · , pn) only meets
(p1, p2, · · · , pn)P = (p1, p2, · · · , pn),∑n

i=1 pi = 1, and pi = limk→∞ p
(k)
ij > 0. The k

denotes kth step Markov chain for transfer matrix
P (k). Moreover, the vector (p1, p2, · · · , pn) is a pre-
multiplication feature vector of Eigenvalues for 1 and
each component for a positive number. Consequently,

lim
k→∞

Pk = (1, 1, · · · , 1)T (1, 0, · · · , 0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1 0

...
...

. . .

1 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)
Furthermore,

⎧⎪⎨
⎪⎩

lim
k→∞

p
(k)
i1 = 1, Ei ∈ �

lim
k→∞

p
(k)
ij = 0, j /= 1, Ei ∈ �

(15)

Therefore,

lim
t→∞

[
f (X(t)

teacher) = f (x∗)
]

= 1 (16)

Thus, the FGTLBO algorithm can converge to a
global solution with probability 1.

4. Experiments and comparisons

4.1. Benchmark functions used in experiments

A large set of CEC2005 tested benchmark functions
[16] were used in experiments to assess the performance
of the FGTLBO algorithm. Based on shape character-
istics, the set of benchmark functions are grouped into
unimodal functions (F1 to F5), basic multimodal func-
tions (F6 to F12), and expanded multimodal functions
(F13 to F14).

4.2. Experimental environment, termination
criteria, and control parameters

All experiments were conducted using Matlab7.9 on
the same machine with a Celoron2.26 GHz CPU, 2GB



2350 Z. Zhai et al. / Teaching-learning-based optimization with a fuzzy grouping learning

of memory, and a Windows XP operating system. For
the purpose of decreasing statistical errors, all exper-
iments were independently run 25 times for 14 test
functions of 30 variables, with 300,000 Function Eval-
uations (FES) as the stopping criterion. The FGTLBO
algorithm uses as parameters N = 50 and K = m = 3. The
parameters of the other algorithms agree well with the
original papers.

4.3. Performance metric

The mean value Fmean and standard deviation SD of
the error value function F (x) − F (x∗) were recorded
to evaluate the performance of each algorithm, where
F (x) and F (x∗) denote the test problem’s best fitness
value and real global optimization value, respectively.
Statistical analysis was used to compare the results
obtained by the algorithms and to verify whether
overall optimization performance differs significantly
among various algorithms. To statistically compare the
FGTLBO algorithm with four other TLBO algorithms,
the Wilcoxons rank sum test [27] was applied at a 0.05
significance level to evaluate the median fitness val-
ues Fmean of two solutions from any two algorithms.
This statistical tool is frequently employed in the liter-
ature to compare problem-solving success among the
Computational-Intelligence algorithms.

4.4. Numerical experiments and results

This section compares the FGTLBO algorithm with
four other TLBO variants. Corresponding tables present
the experimental results, and the last three rows of
each table summarize the comparison results. The best
results are shown in bold.

4.4.1. Comparison of FGTLBO algorithm and four
relevant TLBO algorithms

This section compares the FGTLBO algorithm with
four relevant TLBO algorithms. Based on the statistical
results in Table 3, it appears that none of the algorithms
can perfectly solve the fourteen CEC2005 standard
benchmark functions. Judging by the Wilcoxon’s rank
sum test listed in the last three rows of Table 3, the
FGTLBO algorithm outperforms the original TLBO
algorithm on all test functions except F4. For test
function F3, the mean value Fmean of the FGTLBO
algorithm yields 4.07E-22, which is a significantly bet-
ter result than those produced by the other four relevant
TLBO algorithms.

The incorporation of a fuzzy grouping learning
strategy allows the FGTLBO algorithm to achieve
promising results on unimodal and multimodal func-
tions. The FGTLBO algorithm outperforms TLBO,
ETLBO, NSTLBO, and DGSTLBO on twelve, eight,
thirteen, and thirteen of the fourteen test functions,
respectively. The TLBO algorithm performs best on
test function F4, while the DGSTLBO algorithm per-
forms worse than other four relevant algorithms on test
functions F1, F3, F5, F6, and F12. The ETLBO algo-
rithm performs better than FGTLBO algorithm only
on test functions F4, F6, F12, and F13. The NSTLBO
algorithm performs worse than other four relevant algo-
rithms on test functions F2, F4, F9, F10, F11, F13,
and F14. Notably, the DGSTLBO, NSTLBO, ETLBO,
TLBO, and DATLBO algorithms perform similarly on
test function F4.

Figure 1 presents the convergence graphs of the
five relevant TLBO algorithms on fourteen test func-
tions for D = 30. Based on the convergence graphs, the
FGTLBO algorithm shows better convergence, stabil-
ity, and robustness in most cases than the other four
algorithms for test functions F1, F2, F3, F5, F6, F8,
F9, F10, F11, F12, F13, and F14. In the case of test
function F4, the convergence rate of the FGTLBO algo-
rithm is similar to those of the other four relevant TLBO
algorithms. For test function F7, on the other hand, the
convergence rate of the FGTLBO algorithm is worse
than those of the other four algorithms.

The TLBO algorithm shows better convergence,
stability, and robustness than the other four relevant
TLBO algorithms only on test functions F4 and F12.
The ETLBO algorithm shows better convergence than
the TLBO algorithm only on test function F12. The
DGSTLBO algorithm shows worse convergence on
test functions F1, F2, F5, F6, F12, and F13, and the
NSTLBO algorithm shows worse convergence on test
functions F4, F9, and F10. Overall, the FGTLBO algo-
rithm performs significantly better than the ETLBO,
NSTLBO, DGSTLBO, and original TLBO algorithms.
This analysis suggests that fuzzy grouping draws its
strength from increasing the diversity of the popula-
tion to discourage premature convergence. Therefore,
the FGTLBO algorithm has a higher probability of effi-
ciently exploring the search space and finding a global
solution.

4.4.2. Influence of the number of groups on the
performance of the FGTLBO algorithm

In order to consider the influence of different num-
bers of groups on the performance of the FGTLBO
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Fig. 1. Continued
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Fig. 1. Convergence graphs of the mean function error values versus the number of FES on fourteen test functions, with comparisons of five
algorithms’ results.

algorithm, the group quantity m was set from 2 to 11
while other parameters remained the same as described
in Section 4.2. All of the experiments were conducted
on test functions F1 through F14. Tables 4-5 show
the statistical results for different numbers of groups.
These results illustrate that FGTLBO (m = 3) demon-

strated significantly better overall performance than
other cases. Moreover, as m increased from 4 to 11,
the performance of the FGTLBO algorithm did not
improve, which shows that a situation with more groups
is not optimal choice for the FGTLBO algorithm.
Because smaller m values may result in premature
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Table 3
Results of five algorithms over 25 independent iterations of 14 test functions

Function Result TLBO DGSTLBO ETLBO NSTLBO FGTLBO

F1 Fmean 3.39E-27- 6.86E-09- 1.90E-27- 2.77E-21- 3.53E-28
SD 1.49E-27 8.83E-09 2.69E-27 2.66E-21 1.43E-28

F2 Fmean 1.56E-09- 5.46E-00- 5.08E-11- 6.81E-00- 2.42E-14
SD 4.20E-09 5.41E-00 1.61E-10 2.05E-00 3.49E-14

F3 Fmean 6.81E+05- 3.54E+06- 1.87E+05- 1.81E+06- 4.07E-22
SD 4.08E+04 2.15E+06 3.24E+05 3.71E+05 6.05E-22

F4 Fmean 7.35E+01+ 3.63E+02- 5.88E+01+ 7.01E+03- 3.38E+02
SD 9.78E+01 2.79E+02 1.86E+02 2.64E+03 3.72E+02

F5 Fmean 3.16E+03- 4.79E+03- 3.53E+02≈ 3.96E+03- 3.45E+02
SD 6.77E+02 1.19E+03 1.11E+03 6.07E+02 3.06E+02
– 4 5 3 5
+ 0 0 1 0
≈ 1 0 1 0

F6 Fmean 5.36E+01- 8.26E+03- 6.84E-01+ 1.44E+02- 2.25E+01
SD 4.12E+01 2.33E+04 2.16E+00 8.34E+01 2.06E+01

F7 Fmean 4.70E+03≈ 4.70E+03≈ 4.70E+03≈ 4.70E+03≈ 4.75E+03
SD 1.45E-12 6.78E-13 1.49E+03 2.23E-12 9.59E-13

F8 Fmean 2.09E+01- 2.09E+01- 2.08E-01- 2.09E+01- 2.00E+01
SD 3.52E-02 4.71E-02 6.35E-02 4.17E-02 5.60E-02

F9 Fmean 8.59E+01- 6.37E+01- 1.44E+01- 1.22E+02- 5.76E-00
SD 1.92E+01 2.59E+01 4.56E+01 2.55E+01 4.20E-00

F10 Fmean 1.23E+02- 1.04E+02- 1.14E+01- 2.03E+02- 7.97E-00
SD 3.30E+01 5.02E+01 3.62E+01 2.97E+01 5.75E-00

F11 Fmean 3.09E+01- 1.94E+01- 2.49E-00- 3.30E+01- 4.40E-02
SD 3.39E-00 3.19E+00 7.88E-00 4.88E-00 8.40E-02

F12 Fmean 9.93E+03- 3.46E+04- 1.45E+03+ 2.00E+04- 1.13E+04
SD 1.17E+04 1.60E+04 4.58E+03 1.86E+04 9.87E+03
– 6 6 4 6
+ 0 0 2 0
≈ 1 1 1 1

F13 Fmean 4.33E-00- 4.49E-00- 3.66E-01+ 7.46E-00- 2.31E-00
SD 9.27E-01 4.06E+00 1.16E-00 3.05E+00 7.17E-01

F14 Fmean 1.29E+01- 1.30E+01- 1.23E+01- 1.31E+01- 6.62E-00
SD 1.87E-01 1.89E-01 3.89E-00 2.68E-01 6.64E-01
– 2 2 1 2
+ 0 0 1 0
≈ 0 0 0 0
– 12 13 8 13
+ 0 0 4 0
≈ 2 1 2 1

“–”, “+”, and “≈” denote that the performance of an algorithm is significantly worse than, significantly better than, or similar to that of FGTLBO,
respectively.

convergence while larger m values greatly decrease
the probability of finding the correct search direction.
Therefore, we recommend that the number of groups m

for the FGTLBO algorithm be set at 3.

5. Conclusions and future work

This paper presented FGTLBO, a new version of
the TLBO algorithm in which a fuzzy K-means clus-
tering strategy is used to create K centers, each of
which acts as the mean of its corresponding group
in the algorithm’s “Teacher Phase.” To more closely

simulate the processes of teaching and learning in a
modern classroom, we objectively divided all learners
into small-sized groups. This conforms to the idea of
modern intra-class groupings for teaching and learn-
ing. As fuzzy K-means clustering can objectively divide
learners as nearly as possible on the basis of their
interests and abilities, it can help each learner grow
to his or her fullest extent. We examined the perfor-
mance and accuracy of the FGTLBO algorithm on
CEC2005 standard benchmark functions and compared
the results with various classical versions of the TLBO
algorithm. The experimental results verify that the
FGTLBO algorithm is very competitive in terms of
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Table 4
Results of FGTLBO algorithm based on different numbers of groups

Function Result m = 2 m = 3 m = 4 m = 5 m = 6

F1 Fmean 5.79E-28- 3.53E-28 1.26E-27≈ 2.37E-27- 6.43E-27-
SD 9.09E-09 8.83E-09 5.61E-09 7.69E-09 3.45E-09

F2 Fmean 8.09E-13+ 2.42E-14 3.04E-13- 2.13E-13≈ 6.18E-12-
SD 2.22E-14 3.49E-14 1.53E-10 3.65E-12 2.74E-13

F3 Fmean 3.42E-23+ 4.07E-22 8.81E-21≈ 6.25E-20- 5.18E-20-
SD 2.04E-21 6.05E-22 2.62E-23 3.01E-20 4.96E-19

F4 Fmean 5.25E+02- 3.38E+02 6.08E+02- 1.07E+03- 3.62E+02≈
SD 6.08E+02 3.72E+02 4.66E+02 3.52E+03 3.55E+02

F5 Fmean 5.47E+02- 3.45E+02 3.93E+02- 3.06E+03- 1.15E+03-
SD 4.42E+02 3.06E+02 1.01E+03 5.17E+02 2.08E+02
– 3 3 4 4
+ 2 0 0 0
≈ 0 2 1 1

F6 Fmean 5.36E+01+ 8.26E+03 6.84E-01+ 1.44E+02+ 2.25E+01+
SD 4.12E+01 2.33E+04 2.16E+00 8.34E+01 2.06E+01

F7 Fmean 4.75E+03≈ 4.75E+03 4.75E+03≈ 4.75E+03≈ 4.75E+03≈
SD 1.88E-12 9.59E-13 1.09E-10 2.42E-12 9.59E-13

F8 Fmean 2.03E+01- 2.00E+01 2.05E+01≈ 2.05E+01- 2.06E+01-
SD 2.32E-02 5.60E-02 6.31E-02 3.97E-02 5.02E-02

F9 Fmean 4.57E-01+ 5.76E-00 9.04E-00- 6.25E-00≈ 9.66E-00-
SD 1.92E-00 4.20E-00 4.84E-00 2.08E-00 8.90E-00

F10 Fmean 6.98E-00- 7.97E-00 8.84E-00- 8.92E-00- 9.07E-00-
SD 7.32E-00 5.75E-00 1.69E-00 5.77E-00 6.76E-00

F11 Fmean 9.62E-02- 4.40E-02 8.19E-02- 7.70E-02≈ 6.49E-02≈
SD 5.09E-01 8.40E-02 9.85E-02 4.88E-02 9.49E-02

F12 Fmean 1.93E+04- 1.13E+04 2.05E+04- 2.16E+04- 2.21E+04-
SD 2.10E+04 9.87E+03 4.50E+03 3.06E+04 3.87E+04
– 4 4 3 4
+ 2 1 1 1
≈ 1 2 3 2

F13 Fmean 2.30E-00≈ 2.31E-00 2.29E-00+ 2.35E-00- 2.36E-00-
SD 8.21E-01 7.17E-01 1.06E-00 5.02E-01 8.26E-01

F14 Fmean 1.23E+01- 1.22E+01 1.51E+01- 1.46E+01- 1.47E+01
SD 4.32E-01 6.16E-01 6.09E-01 6.38E-01 6.82E-01
– 1 1 2 2
+ 0 1 0 0
≈ 1 0 0 0
– 8 8 9 10
+ 4 2 1 1
≈ 2 4 4 3

“–”, “+”, and “≈” denote that the performance of the FTLBO (m = 3) algorithm is significantly worse than, significantly better than, or similar to
those of other cases.

solution quality and convergence rate under most exper-
imental conditions. Further research can assess how
well the FGTLBO algorithm performs in parameter
optimization of a multi-pass milling process.
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