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Abstract. An increasing number of applications require the integration of data from various disciplines, which leads to problems
with the fusion of multi-source information. In this paper, a special information structure formalized in terms of three indices (the
central presentation, population or scale, and density function) is proposed. Single and mixed Gaussian models are used for single
source information and their fusion results, and a parameter estimation method is also introduced. Furthermore, fuzzy similarity
computing is developed for solving the fuzzy implications under a Mamdani model and a Gaussian-shaped density function.
Finally, an improved rule-based Gaussian-shaped fuzzy control inference system is proposed in combination with a nonlinear
conjugate gradient and a Takagi-Sugeno (T-S) model, which demonstrated the effectiveness of the proposed method as compared
to other fuzzy inference systems.

Keywords: Gaussian density function, IF-THEN rule, multi-source information fusion, similarity computing, fuzzy control
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1. Introduction

The human brain obtains information from different
sources; it then merges this information to form con-
cepts and finally outputs natural language (NL), which
is powerful and versatile enough to describe the real
world. NL can be regarded as the fusion of disparate
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information; it is vague, ambiguous, and uncertain. The
quantitative calculation and qualitative analysis of NL
is the ultimate goal of artificial intelligence. There are
two strands of research linking the initial information
acquisition with NL: (1) how to simplify the presenta-
tion of NL and (2) how to form NL from multi-source
information. Usually, humans express emotions of cer-
tain objects by using sentences and affective words, but
they cannot fully express their intuitive perception of
an object simply through separating these terms. Natu-
ral Language Processing (NLP) was developed to solve
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this problem; however, many difficulties remain in this
field. Computing with Words (CW) was also introduced
to decrease the complexity related to linguistic variables
[16–18]. This has allowed for a more exact expres-
sion of the meaning of what a human is thinking about
and has provided a feasible direction for NLP under
weakened conditions. Zadeh introduced the framework
of this phenomenon of uncertainty using Fuzzy Sets
(FS) in 2005 [19]. The FS theory was also addressed to
describe objects at a coarse-grained level. Herrera and
Martı́nez [5] introduced a 2-tuple fuzzy linguistic repre-
sentation model for CW without any loss of information.
Furthermore, Lawry [13, 14] proposed Label Seman-
tics (LS) for vague concept modeling and reasoning
techniques so as to formalize uncertainty in presenta-
tion theory. Subsequently, Lawry and Tang [12, 34, 35]
proposed a new semantic understanding model: the
Prototype Theory (PT). These works discovered the
connection between fuzzy presentation technology and
high-level semantics. In engineering fields, linguistic
representation models combined with affective words
have had some applications, suchas fuzzydecisionmak-
ing [21, 31] and KANSEI Engineering (KE). Fuzzy
inference methodologies have also been shown to be
effective in our previous work on Rough Sets [7] and
Fuzzy Support Vector Machines (SVMs) [6].

However, it has been regarded as more feasible to
focus on multi-source information fusion rather than
on NL itself. Moreover, it is important to discover
the mechanics of integrating multi-source information
in the human brain. Due to the modular and vague
appearance of multi-source information, uncertainty
reasoning methods and their associated mathematical
tools are thought to offer more interpretability and a
much stronger generalization capability [24]. Yager
developed the theoretical foundation for multi-source
information fusion techniques based on set measure
and possibility theories [25, 26]. Normally, single-
source information consists of steady features that are
more easily formalized and parameterized. In previ-
ous studies, the sum, product, max/min, and Weighted
Arithmetic Mean (WAM) were used to combine single-
source information, and each output represented an
independent source of information that could be treated
separately [15].

Relative to mathematical research and understand-
ing the phenomenon of uncertainty, the integration of
information using fuzzy inference techniques pervades
many scientific disciplines, such as multivariate and
type-2 fuzzy sets; bipolar models [10, 11]; and probabil-
ity and possibility issues [9, 27]. Information fusion is

the merging of information from disparate sources with
differing conceptual, contextual, and typographical rep-
resentations. It has been successfully applied in data
mining and the consolidation of data from unstructured
or semi-structured resources, and it has also led to many
achievements in various fields [1, 4, 8]. Fusion meth-
ods include product fusion (such as the Bayes posterior
probability model), linear fusion (SVM classifiers), and
nonlinear fusion (super-kernel integration) [23]. Recent
developments and applications of fuzzy information
fusion can be found in pattern classification, image
analysis, decision-making, man-made structures, and
medicine [30, 32]. Furthermore, over the past several
years, there has been a number of successful applica-
tions of fuzzy integrals in decision-making and pattern
recognition that have employed multiple information
sources [3, 20].

In this paper, we formalize multi-source information
as a multivariable group and describe each information
structure as a special kind of triple, I = < P, d, ρ >,
where P denotes a typical point of positive examples
relative to the information structure I, d is a distance
measurement that represents the population of informa-
tion, and ρ is a Probability Density Function (PDF). The
basic idea of this formalized information structure is to
assume that the neighborhood radius of each informa-
tion structure is uncertain, which is limited by PDF-ρ.
Thus, we will calculate the value of P relative to an
information structure under a given level. An informa-
tion fusion technique was developed by formalizing
this special information structure; furthermore, infor-
mation fusion employing fuzzy sets was applied in this
paper. A Single Gaussian Model (SGM) was applied
to single-source information, and a Gaussian Mixed
Model (GMM) was applied to the fusion of this infor-
mation by incorporating probabilistic and statistical
methods [28, 36].

The remainder of this paper proceeds as follows. In
Section 2, we propose an information structure that
incorporates a definition of the information kernel,
boundary, and Gaussian PDF. An improved algorithm
for parameter estimation is also introduced. Section
3 introduces fuzzy similarity relations and IF-THEN
rules for this special information structure. These are
helpful for calculating the possibilities in a rule-based
fuzzy inference system (FIS). Section 4 develops a
rule-based information fusion model using a conju-
gate gradient and Takagi–Sugeno (T-S) model under
a rule-based Gaussian-shaped fuzzy inference system
(RGS-FIS). A time-series analysis using natural disas-
ter datasets is also introduced using RGS-FIS, and we
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demonstrate the effectiveness of our method in compar-
ison to other methodologies. Finally, in Section 5, we
give our conclusions and ideas for future work.

2. Information fusion models by using
probability density function

2.1. Definitions

Definitions for our information structure and kernel
computing method were established as follows.

Definition 1. Assume object � is described by the
multi-source information set I = {Ik|k = 1, 2, · · · , m}
and that measure set V = {vk|k = 1, 2, · · · , m} is a set
of information structures corresponding to set I. For
∀vk ∈ V , we define vk =< Pk, dk, ρk >, where Pk is
a typical point as the kernel of Ik. Moreover, dk is a
metric of the information structure vk related to the
population or scale of information and will be used for
boundary computing. Lastly, ρk is a density function on
the threshold of vk.

Definition 2. Let the fusion operator be ⊕ so that � can
be formalized as:

I1 + I2 + · · · + Im = v1 ⊕ v2 ⊕ · · · ⊕ vm (1)

where ⊕ is a minimum operator.

Definition 3. ∀Pk, Qk in an n-dimensional Euclidean
space Rn, Pk = [Pk1, Pk2, · · · , Pkn], and Qk =
[Qk1, Qk2, · · · Qkn]. Moreover, let d = ‖‖, and it has
the following properties:

(1) d(Pk, Pk) = ‖Pk‖ =
√

(
∑
i

Pki)

(2) d(Pk ± Qk) = ‖Pk ± Qk‖, ∀Pk, Qk ∈ Rn

(3) ∀α, β ∈ R, Pk, Qk ∈ Rn

We have d(αPk ± βQk) = ‖αPk ± βQk‖; in addi-
tion,

d(αPk + βQk) ≤ |α| d(Pk) + |β| d(Qk).

Definition 4. For sample points {Pl
k|l = 1, 2, · · · }, the

statistics-based kernel point computation is calculated
as:

Pk =
∑

l

Pl
k =

[∑
l

Pl
k1,
∑

l

Pl
k2, · · ·

∑
l

Pl
kn

]
(2)

Pl
ki indicates the value of the i-th dimension of the l-th

sample point in the k-th information source.
The boundary of vk gives the scale of the neigh-

borhood of all elements in this special information
structure. This is defined below.

Definition 5. For ∀Pk ∈ Rn, there exists a neighbor-
hood,

Nε
Pk

= {X| ‖Pk − X‖ < ε, X ∈ Rn} (3)

Definition 6. For calculating the boundary of I, two
sets were defined as:

- The Upper Approximation Boundary (UAB)

UPB = {Pl|Pl ∈ Nu
PK

} (4)

- The Lower Approximation Boundary (LAB)

LPB = {Pl|Pl ∈ Nt
PK

} (5)

Therefore, the boundary is PB = UPB\LPB =
B(u, t). Thus, we have PB = PK + λ(PB − PK), λ ∈
[0, 1], which exhibits fuzziness attributes at the
boundary.

2.2. Probability density function

–Single Gaussian Model for single-source informa-
tion

The Gaussian distribution is a continuous probability
distribution with a bell-shaped PDF in one-dimensional
space:

f (x, µ, σ2) = 1√
2πσ

e− 1
2 ( x−µ

σ
)2

(6)

The parameter µ is the mean or expectation, and σ2 is
the variance. The SGM is applied to induct the density
function of the proposed information structure I, and
we define:

δ(X, µ, 
) = 1√
(2π)n |
|e

− 1
2 (X−µ)T 
−1(X−µ) (7)

where X is a vector in n-dimensional space, 
 is the
covariance matrix, and µ is the mean value of the
density function. The density function’s properties are
determined by (
, µ), so this is a parameter estima-
tion problem [29]. For any point Pi ∈ Rn, its probability
density function is δ(Pi, µ, 
), and if, for any infor-
mation structure vk, each Pi in vk is regarded as an
independent event, then the PDF of vk is:

δk = δ(vk, µ, 
) =
m∏
i

δ(Pi, µ, 
) (8)
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The maximum likelihood estimation can be used to
estimate the parameters (
, µ) under (8). Taking the
logarithm of (8), we have:

O(µ, 
) = ln(
m∏
i

δ(Pi, µ, 
))

=
m∑
i

ln(δ(Pi, µ, 
))

=
m∑
i

−n

2
ln(2π) − 1

2
ln |
| (9)

+1

2
(Pi − µ)T 
−1(Pi − µ)]

= −nm

2
ln(2π) − m

2
ln |
|

−m

2

∑
i

[Pi − µ)T 
−1(Pi − µ)]

Taking the partial derivative w.r.t. µ of O(µ, 
) and
setting it to 0, we obtain the following:

∂µ(O(µ, 
)) = −1

2

m∑
i

[−2
−1(Pi − µ)

= �−1
m∑
i

[(Pi − µ)]

= �−1[
m∑
i

Pi − mµ]

= 0

(10)

This gives µ̂ = 1
2

∑
i

Pi. Similarly, for 
, we can

obtain 
̂ = 1
n−1

∑
i

(Pi − µ̂)(Pi − µ̂)T . Thus, if the

density of each point in vk is δ(P, µ̂, 
̂), then our
estimation of the parameter µ is:

µ̂ =
(

1

n

∑
i

e1i,
1

n

∑
i

e2i, · · · 1

n

∑
i

eni

)
(11)

where eli is the coordinate of Pi in Rn.

The covariance 
̂ is converted to


̂ = 1

n − 1

∑
i

[e1i − µ̂1, e2i − µ̂2, · · · , eni − µ̂n]

⎡
⎢⎢⎢⎣

e1i − µ̂1

e2i − µ̂2

· · ·
eni − µ̂n

⎤
⎥⎥⎥⎦

= 1

n − 1

n∑
j=1

n∑
i=1

(eji − µ̂j)2

(12)

- Gaussian Mixed Model and parameter estimation
For multi-source information fusion, we need to cal-

culate all of Ik’s density functions as well as calculate
the new density function. For m multi-source informa-
tion structures, let Ifusion =∑l

i=1 αiδ(P, µi, 
i) for
a normalized weight parameter α: i.e.,

∑
i αi = 1. To

calculate and simplify the covariance matrix 
, let


 =

⎡
⎢⎢⎢⎢⎣

σ2 0 · · · 0

0 σ2 · · · 0

0 · · · · · · 0

0 0 · · · σ2

⎤
⎥⎥⎥⎥⎦ = σ2�I (13)

From the SGM, we have that

δ(P, µ, σ2�I) = 1√
(2π)n

σ−1e
− (P−µ)T (P−µ)

2σ2 (14)

Calculate:

∂µ[δ(P, µ, σ2�I)] = 1√
(2π)n

∂µ(σ−1e
− (P−µ)T (P−µ)

2σ2 )

= 1√
(2π)n

σ−1e
− (P−µ)T (P−µ)

2σ2 ∂µ(− (P − µ)T (P − µ)

2σ2 ))

= δ(P, µ, σ2�I)(
P − µ

σ2 )

and

∂�[δ(P, µ, σ2−→I )) = 1√
(2π)n

(
(−1)σ−2e

− (P−µ)T (P−µ)

2σ2

)

+ 1√
(2π)n

σ−1e
− (P−µ)T (P−µ)

2σ2

[
(P − µ)T (P − µ)

σ3

]

= δ(P ; µ, σ2−→I )

(
(P − µ)T (P − µ)

σ3
− 1

σ2

)

Then, for � = c�I, c ∈ R, GMM is defined as
G(P) =∑i αiδ(P, µi, σi), i = 1, 2, · · · , lf . The
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number of parameters for estimation is 3l. If we let
θ = [α1, α2, · · · , αl, µ1, µ2, · · · µl, σ

2
1 , σ2

2 , · · · , σ2
l ],

the object is that:

L(θ) = ln

[∏
i

G(Pi)

]
=
∑

i

ln(GPi))

=
∑

i

ln

⎛
⎝ l∑

j=1

α1δ(Pi, µj, σ
2
j )

⎞
⎠ (15)

which can be differentiated w.r.t. µj and σj . Thus, we
have that:

∂µj (L(θ)) =
∑

i

αjδ(Pi, µj, σ
2
j )

l∑
j=1

αiδ(Pi, µj, σ
2
j )

Pi − µj

σ2
j

(16)

Let ϕj(Pi) = αjδ(Pi,µj,σ
2
j

)
l∑

j=1

αjδ(Pi,µj,σ
2
j

)

, so that:

∂µj (L(θ)) =
∑

i

ϕj(Pi)

(
Pi − µj

σ2
j

)
(17)

Similarly, we can find:

∂σj
(L(θ)) =

∑
i

αjδ(Pi; µj, σ
2
j )

l∑
j=1

αiδ(Pi; µj, σ
2
j )

[
(Pi − µj)T (Pi − µj)T

σ3
j

− 1

σ2
j

]

=
∑

i

ϕj(Pi)

[
(Pi − µj)T (Pi − µj)T

σ3
j

− 1

σ2
j

]

(18)

Setting the above two equations equal to 0, we have

µ̂j =
∑
i

ϕj(Pi)Pi∑
i

ϕj(Pi)
(19)

σ̂2 = 1

3

∑
i

ϕj(Pi)(Pi − µj)T (Pi − µj)∑
i

ϕj(Pi)
(20)

For αj , under the constraint
∑

j αj = 1, we use
Lagrange multipliers to re-define the object as:

J = L(θ) + λ

(
1 −

∑
i=1

αi

)

=
∑

i

ln

⎛
⎝∑

j

αjδ(Pi, µj, σ
2
j )

⎞
⎠+ λ

(
1 −

∑
i=1

αi

)

(21)
Differentiating this new object w.r.t. αj , we have that:

∂αjJ =
∑

i

δ(Pi, µj, σ
2
j )

l∑
j=1

αjδ(Pi, µj, σ
2
j )

− λ

= 1

αj

∑
i

ϕj(Pi) − λ = 0 (22)

[α̂1, α̂2, · · · α̂l] =

[
1

λ

∑
i

ϕ1(Pi)],
1

λ

∑
i

ϕ2(Pi), · · · 1

λ

∑
i

ϕk(Pi)

]
(23)

α̂1 + α̂2 + · · · + α̂l = 1

λ

(∑
i

(ϕ1(Pi)+ϕ2(Pi) + · · · + ϕk(Pi)

)
= 1

(24)
Furthermore, we know λ = l, so:

[α̂1, α̂2, · · · α̂l] =

[
1

lf

∑
i

ϕ1(Pi)],
1

l

∑
i

ϕ2(Pi), · · · ,
1

l

∑
i

ϕk(Pi)

]
(25)

where ϕ is also a function of parameters, and we can
resolve this using the following iteration:

Step 1: Let
θ = [α1, α2, · · · αl, µ1, µ2, · · · µl, σ

2
1 , σ2

2 , · · · σ2
l ]

Given an initial value and in order to achieve conver-
gence, µ1, µ2, · · · µm may be calculated by the cluster
method.

Step 2: Calculate ϕj(Pi).

Step 3: Calculate µ̃j =
∑

i

ϕj(Pi)Pi∑
i

ϕj(Pi)
.

Step 4: Calculate

σj = 1

lf

∑
i

ϕj(Pi)(Pi − µ̃j)T (Pi − µ̃j)∑
i

ϕj(Pi)
.

Step 5: Calculate αj = 1
lf

∑
i

ϕj(Pi).
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Step 6: Let
θ̂ = [α̂1, α̂2, · · · α̂l, µ̂1, µ̂2, · · · µ̂l, σ̂

2
1 , σ̂2

2 , · · · σ̂2
l ] If∥∥θ − θ̂

∥∥ < δ for a given threshold δ, then stop the pro-
cess; otherwise, proceed to Step 2.

In actuality, the density function of information
fusion under this special structure is a product of the
fusion of SGMs. For all information structures vk and
their SGM densities δ(vk), δ(Ifusion) =∏k δ(vk); there-
fore, we have that:

∏
k

δ(vk) =
∏
k

1√
(2π)nσk

e
− 1

2σ2
k

(P−µ)T (P−µ)

= 1√
(2π)nk

∏
k

σk

e

∑
k

− 1
2σ2

k

(P−µ)T (P−µ)

= 1√
(2π)nk

∏
k

σk

eαP2+βP+γ

= 1√
(2π)nk · C ·∏

k

σk

e
− 1

2σ2
k

(P ′−µ′)T (P ′−µ′)

= C′δ
(26)

where C is an undetermined constant.
In particular, in a one-dimensional space with σ = 1,

we have that:

δ(Ifusion) = 1√
(2π)nk

∏
k

σk

eαx2+βx+γ

= 1√
(2π)nk

eαx2+βx+γ

= 1√
(2π)nk

ex′2+β′x′+γ ′

= C
1√

(2π)n
e(x′−µ)2

(27)

This is a linear transformation of the basic Gaus-
sian function. Thus, for any two information structures
vi, vj , the fusion result is vij =< αPij, βdij, γδij >

where α, β, and γ are undetermined coefficients.

3. Fuzzy implications of information structure
under IF-THEN rules

3.1. Fuzzy implications of information structures
under IF-THEN rules

In fuzzy sets, the rule “IF x is Ā, THEN y is B̄” indi-
cates a fuzzy implication between Ā and B̄ as denoted
by Ā → B̄. If we let x, y ∈ [0, 1] be the memberships
of Ā and B̄, respectively, we list the Mamdani model
for the membership computing as t ∀x, y ∈ [0, 1],
F (x, y) = Min{x, y}.

We construct a fuzzy membership based on a new
fuzzy implication and inference system. We also derive
a similarity relationship and apply this to the Gaussian
density function-based fuzzy rule inference system. For
δk in a rule-based IF-THEN inference system, suppose
that the rule set is:

IF I1 is v1, then Io is vo, ω1, I2 is v2, then Io is vo,
ω2.

We can integrate these rules as:
IF I1 is v1 and I2 is v2, THEN Io is vo,

ωij = δ(Ifusion) = δ(vij) (28)

The Mamdani model for δk in two-dimensional space
(x, y) will be:

Min

⎛
⎜⎝ 1√

2πσ11σ12
e

− 1
2

[
(x−µ11)2+(y−µ12)2

σ2
11

+σ2
12

]
,

1√
2πσ21σ22

e

− 1
2

[
(x−µ21)2+(y−µ22)2

σ2
21

+σ2
22

]⎞
⎟⎠ (29)

In particular, if σ11 = σ12 = σ21 = σ21 = 1 and
µ11 = µ12 = µ21 = µ22 = 0, we have that:

M(x, y) = 1√
2π

e
−
[

x2+y2

4

]
(30)

Thus, for any other implication operators, the func-
tion of rules will have the form:

M(x, y) = 1√
2π

e− 1
2 (Ax2+By2+Cx+Dy+E). (31)

4. Applications

4.1. Mamdani model-based fuzzy control inference
system using nonlinear conjugate gradient

In the previous section, information was formalized
as vk =< Pk, dk, ρk > where Pk is a central point
in Rn, dk ∈ R, and ρk is a Gaussian density function.
Pk and dk operate as fuzzy numbers using the fuzzy
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logical operation in Section 2. In our fuzzy rule-based
inference system if different information (multi-source
information) implies the same conclusion, then this
information is integrated. Supposing that the multi-
source information structure vk will conclude with a
particular assertion at the ρk level, we have that:

IF I1 is v1 and I2 is v2 and · · · , and Im is vm THEN Io is vo, �

(32)

This can be simplified to,

IF v1 and v2 and, · · · , and vm THEN�(v1, v2, · · · , vm)

and

IF P1 and P2 and, · · · , and Pm THEN P1 ∧ P2 ∧ · · · ∧ Pm

IF d1 and d2 and, · · · , and dm THEN d1 ∧ d2 ∧ · · · ∧ dm

IF ρ1 and ρ2 and, · · · and ρm THEN �(ρ1, ρ2, · · · , ρm).

Now, we only discuss the density function δk(here
ρk) in our FIS. Letting � = [δ1, δ2, · · · , δn], we have
that:

IF � THEN �(�). (33)

From the previous section, we know that �(�) is a
Gaussian density function, so the rule is re-labeled as
IF X THEN f (X). For this rule set, we have

Ri : IF X THEN fi(X)

However, as f (X) is a nonlinear function, it is dif-
ficult to find its minimum point under the Mamdani
model, so we need to linearize f (X) and use the non-
linear conjugate gradient algorithm to optimize the
parameters of f (X).

If we suppose that f (X) = [Ax − b]T [Ax − b], then
the gradient is ∇xf (x) = 2AT (Ax − b), and the objec-
tive is to find x subject to ∇xf (x) = 0. The nonlinear
conjugate gradient requires f being twice differen-
tiable, but as f is a Gaussian function, it is infinitely
differentiable. Starting from the opposite direction as
�x0 = −∇xf (x0) with step size α, we have that:

α0 = arg min
α

f (x0 + α�x0) (34)

x1 = x0 + α0�x0 (35)

This is the first iteration in the direction of �x0, and
by setting the initial conjugate direction s0 = �x0, the
following steps will calculate �xn:

Step 1: Calculate �xn = −∇xf (xn).
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Fig. 1. Mamdani model-based fuzzy inference system using non-
linear conjugate gradient for (1) and (2) as compared with a
non-Mamdani model (3)-(4).

Step 2: Calculate βn : βn = �xT
n (�xn−�xn−1)
�xT

n−1�xn−1
.

(Polak–Ribière)

Step 3: Update the conjugate direction sn = �xn +
βnsn−1.

Step 4: Calculate αn = arg min
α

f (xn + αsn).

Step 5: Update xn+1 = xn + αnsn.
The algorithm is based on the quadratic function

that we use to normalize the Gaussian function f (x) in
order to speed up the iterations. Considering a simpli-
fied Mamdani model and from formula (20), we know
that:

M(x, y) = 1√
2π

e− 1
2 (Ax2+By2+Cx+Dy+E) (36)

Using the nonlinear conjugate gradient, we obtain the
results given in Fig. 1 and Table 1 by comparing with
other special functions. From Table 1, we know that the
Gaussian density function will be approximated in just
a few steps by the nonlinear conjugate gradient algo-
rithm, which is the reason we selected the Gaussian
distribution as the density function of this special struc-
ture. We also compare other forms of density function,
which appear to require more steps under the nonlinear
conjugate gradient algorithm.
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Table 1
Start point, steps, and gradient by nonlinear conjugate gradient

Functions Initial (x, y) Steps Gradient

(A, B, C, D, E) = (2,1,1,0,-3) 0 (32.2, 18.9) 2 4
(A, B, C, D, E) = (1,1,0,0,3) 1.7 (0, 0) 0 1
x+y√

2π
e− (2x2+y2−3)

2 –1.32 (–0.4, –0.8) 7 18

Sin(x + y) –1 (–0.78, –0.78) 5 13

4.2. Takagi–Sugeno model in RGS-FIS

Takagi and Sugeno [18] proposed a fuzzy IF-THEN
rules system as the local input–output relations of a
nonlinear system to scale the population of rules under
a multi-dimensional fuzzy inference system, known as
the T-S model [21]. The normal rules for the T-S model
under the special information structure proposed for our
information fusion method are:

RT−S : IF INPUT - is I1, INPUT - is I2, · · · ,

INPUT - n n is In THEN If = f (I1, I2, · · · Im).

The T-S model outputs a linear, non-constant func-
tion that will reduce the population of rules.

From rule set RT−S , we can simplify If =∑n
i=1 aiδi + bidi, in which ai and bi are undetermined

constants. Let the standard deviation in Equation (6)

σ = �I, µ = 0, and thus, If = 1√
2π

∑n
i=1 aie

− x2
2

i + bix.
The first part of If is a GMM model that can be esti-
mated by Section 2.2-(2), and the second part of If is
a linear function (see Fig. 2).

Furthermore, for the nonlinear conjugate gradient
proposed in Section 4.1, we obtain 100 steps and 301
gradients to find the minimum point (the Mamdani
model). As a result, we can simplify this in RGS-FIS
under the T-S model to output three linear membership
functions. Suppose that the inputs are Gaussian-shaped
rules, and the outputs are linear functions. Let the
membership function of INPUT 1 and INPUT 2 be
a Gaussian function, and the OUTPUT is composed
of three linear functions [33]. We have this RGS-FIS
system under the T-S model (see Fig. 3).

5. Concluding remarks and future works

This paper proposed a novel information structure
applicable to a Gaussian-shaped FIS. We developed the
RGS-FIS approach using the nonlinear conjugate gradi-
ent algorithm and a T-S model. However, there are two
problems with RGS-FIS: one is that new fusion operator

3 2 1 1 2 3

3

2

1

1

2

3

 
Fig. 2. T-S model’s two parts under IF-THEN fusion operators and
steps to minimum point using the nonlinear conjugate gradient.

parameters depend on a complex estimation process,
and the other is that all data variables are supposed to
be independent (r = 0). The model selection for sim-
ilarity computing under rule-based fuzzy implication
operations should also be improved.

Future work will focus on the pre-processing of
datasets as well as the estimation of model param-
eters. Pre-processing will tune the parameters of the
model to display a simpler mathematical presentation
and assure a robust inference process. Furthermore, the
fusion operator needs to be improved so that it does not
solely depend on fuzzy implications. Although simi-
larity computing is the key factor for calculating the
possibility of IF-THEN rules, it is not clear whether
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FIS Variables
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Fig. 3. RGS-FIS with two inputs and three linear output functions.

a feasible algorithm can be developed for this. Hence,
the possibility of the IF-THEN rules also needs to be
calculated and improved.
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