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Abstract.
BACKGROUND: Hepatorenal index (HRI) has been an efficient and simple quantified measure in distinction between
normal and abnormalities of diagnosing fatty liver. However, considering the clinical significance, the diagnosis of severity
stage is more important and single HRI cutoff may not be enough. Also, the segmentation of Liver/Kidney area should be
automatic to get rid of operator subjectivity from ultrasonography analysis.
METHOD: Double-layered Fuzzy C-Means (DFCM) pixel clustering method is proposed to extract the target area of analysis
automatically. HRI and other shape related variables of Liver intensity distribution such as the skewness, the kurtosis, and
the coefficient of variance (CV) are automatically computed for the fatty liver severity stage classification.
RESULT: From fifty ultrasound images obtained from regular health checkup with 24 normal, 12 mild, 11 moderate, 3 severe
stage determined by three different radiologists, the proposed DFCM automatically extracts the region of interests(ROI) and
generates a set of statistically significant variables including HRI, the skewness, the kurtosis, the coefficient of variance of
liver intensity distribution as well as liver echogenicity. In severity stage classification, the echogenicity of the liver and
distribution shape variables such as the skewness and the kurtosis are better predictors than HRI based on our simple decision
tree learning analysis.
CONCLUSION: For better diagnosis of fatty liver severity stages, we need better set of features than the single HRI cutoff.
Better machine learning structures are necessary in this severity stage classification problem with automatic segmentation
method proposed in this paper.
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1. Introduction

The nonalcoholic fatty liver disease (NAFLD) is
the most common liver abnormality. NAFLD is now
the leading cause of chronic liver disease in the
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United States and Europe and increasing worldwide.
The prevalence of NAFLD in the general popula-
tion is estimated to be 20–30% in western countries
[1, 2], but the number is also rapidly approach-
ing to that ratio in Eastern Asian countries due to
the westernization of the diet, aging of society, and
reduced physical activity [3, 4]. In mild forms, fatty
liver can be a reversible condition that may improve
with lifestyle modifications such as diet changes,
weight loss, and increased physical activity. How-
ever, it is reported that as much as 23% of patients
with simple steatosis may still develop nonalcoholic
steatohepatitis (NASH) and fibrosis progression, as
demonstrated in a recent 3-year follow-up of NAFLD
patients [5]. NAFLD is closely associated with cen-
tral adiposity, type 2 diabetes mellitus, dyslipidemia,
and insulin resistance [6] such that NAFLD pre-
dicts the tendency to develop both diabetes mellitus
[7] and cardiovascular disease [8]. NAFLD is not
a rare disease in the non-obese population either.
NAFLD was found in 12.6% of non-obese sub-
jects and 50.1% of obese subjects from a routine
health evaluation checkup of 29,994 subjects thus
it should also be considered a meaningful predic-
tor of metabolic diseases in the non-obese population
[4].

The severity of NAFLD was divided into mild
(slight increase in liver echogenicity, mild attenu-
ation of the penetration of ultrasound signal, and
slight decreased lucidity of the borders of intrahep-
atic vessels walls and diaphragm), moderate (diffuse
increase of liver echogenicity, greater attenuation
of the penetration of ultrasound signal, decrease of
the visualization of intrahepatic vessels walls, par-
ticularly the peripheral branches), and severe (gross
increase of liver echogenicity, greater reduction of
penetration of ultrasound signal, and poor or no visu-
alization of intrahepatic vessels walls and diaphragm)
[9]. It is reported that patients with higher ultra-
sound grades of liver steatosis are under increased risk
of metabolic syndrome independently of age, gen-
der, body mass index (BMI), and impaired glucose
metabolism [10].

Liver biopsy is the gold standard for the quantifi-
cation of hepatic steatosis. However, it is difficult for
most patients to accept it due to its invasiveness and a
significant degree of sampling error [11]. In view of
the public health issue of the increasing prevalence
of NAFLD and its hepatic and extrahepatic conse-
quences, the development of simple cost-effective
screening methods has become extremely important
[12].

Ultrasonography is an appealing technique com-
pared to computed tomography (CT) and magnetic
resonance imaging (MRI) in detecting the fatty
infiltration of the liver due to its simplicity, low
cost, noninvasive nature, and widespread availability.
Sonographic findings of fatty liver include increased
echogenicity of liver, blurring of vascular margins,
and increased acoustic attenuation [13]. However, the
use of ultrasound methodologies in diagnosis suffers
from several limitations including operator depen-
dency, subjective evaluation, and limited ability to
quantify the amount of fatty infiltration, and fre-
quently fails to provide an accurate measurement of
the liver fat content [14, 15].

Thus, there has been a growing need to have a
computer-aided tool to quantify liver steatosis by
using the liver echogenicity or the increased ultra-
sonographic attenuation in fatty liver tissue. The
automated fatty liver diagnosis system typically con-
sists of the detection of the fatty liver area, feature
extraction, and classification. The performance of
the classifier is highly dependent on the feature set
for the classifier algorithms used in the diagnosis.
Some of the recent efforts in this line of research
are the support vector machine (SVM) with wavelet
packet transform (WPT) [16] or gray-level run length
matrix (GLRLM) [1], simple neural network, and
self-organizing map (SOM) under texture analysis
[18] or pixel clustering in automatic segmentation
[19]. Other research efforts in this field include
extracting the salient features with the data mining
technique [20] or texture analysis [21]. For multior-
gan segmentation including liver and kidney, there
exist several interesting sparse representation based
automatic segmentation approaches applied to CT
images [22, 23]. Many other recent techniques related
with wider range of diagnosis of diffuse liver diseases
under different environments are well summarized in
[24].

Practically, experts consider other information
such as biomarkers, spleen and kidney appearance
along with liver images to draw conclusions. Sev-
eral studies report that the ultrasonographic findings
of the fatty liver are based on the brightness level of
the liver in comparison to the renal parenchyma [25–
27]. A bright liver pattern indicating that a closely
packed high amplitude echoes throughout the liver,
has been recognized as a diagnostic hallmark of the
fatty liver. While liver and renal cortexes have simi-
lar echogenicity in normal condition, the renal cortex
appears relatively hypoechoic as compared to the
liver parenchyma in fatty liver patients on ultrasonog-
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raphy. Thus, the liver-to-kidney contrast has been
used as a diagnostic parameter for the fatty liver in
many articles as summarized in [28].

HRI is based on the comparison of the liver
echogenicity to that of the right kidney cortex. Since
the liver tissue brightness is higher than the kidney
brightness in the presence of steatosis, HRI has shown
high correlation with biopsy result [29] and further
developed to be used as a reliable quantitative tool for
evaluating and screening patients with steatosis [19,
30–33].

While relatively operator independent, HRI cut
point was reported differently due to different subject
selection, different ROI measurement by different
software they use. Automatic segmentation by the
unsupervised clustering self-organizing map algo-
rithm (SOM) [19] computes HRI by collecting pixels
of similar intensity values to form a steatosis area
from the kidney and liver by using effective fuzzy
stretching method to enhance the intensity contrast of
the ultrasound image. However, SOM algorithm has
drawbacks such as increasing the number of parame-
ters exponentially with the dimensions of input space
and having difficulty in deciding the number of clus-
ters to begin with [22].

Furthermore, most existing HRI-related researches
have shown reliable result on the classification of nor-
mal and cirrhotic liver, or normal and fatty liver but
not on the progression of diffuse liver disease and
the severity of stage. For example, the relationship
between mild NAFLD and gallstone disease looked
like insignificant. However, a positive association was
found between moderate to severe NAFLD and gall-
stone disease while such association does not hold
for mild NAFLD [34]. Other studies report that the
severity of NAFLD is associated with cardiovascular
diseases [35–36]. Thus, it is desirable to find a set of
reliable predictors for the severity levels of NAFLD.

In this paper, we investigate the feasibility of HRI
and other related variables in classifying the sever-
ity of fatty liver under automatic segmentation of
liver/kidney area from ultrasonography. In most pre-
vious HRI quantification studies, they try to provide
a single HRI cutoff value for detecting abnormal sta-
tus of the liver for simplicity. However, as shown in
[19], there is no clear way to discriminate the severity
of the abnormalities only by HRI. Thus, we investi-
gate the feasibility of other HRI related variables for
the fatty liver severity classification. Since we take
pixel clustering approach in target liver/kidney object
extraction, we test variables related to the shape of
pixel intensity distribution such as skewness, kur-

tosis, and coefficient of variation (CV) if they can
contribute to classify severity of HRI stage.

In automatic liver/kidney object segmentation, we
develop a double-layered Fuzzy C-means algorithm
(DFCM) to extract the bright steatosis area automat-
ically and to compute the associated HRI. The basic
idea of FCM clustering is to separate the data into
fuzzy partitions that overlap with one another. There-
fore, the inclusion of data in a cluster is defined by
a membership grade in [0, 1] interval [37, 38]. Typi-
cally, the principles of the least squares and iterative
gradient descent methods are used in the classic FCM.
FCM is chosen over previous SOM based segmenta-
tion in this problem because it can mitigate SOM’s
winner-takes-all node selection in clustering with its
fuzziness control mechanism.

However, frequently, FCM runs effectively only
with spherical or ellipsoidal clustering and is
extremely sensitive to noise and outliers [39]. While
having shown promising results in several medical
image analysis domain [40–43], there are numerous
modified versions of FCM to meet the requirements
of the given problem as having weighted features
[38, 44], alternative distance measure [45], outlier
rejection [46] and semi-dynamic control of cluster
initializations [47]. Our DFCM is aimed to escape
local minimum in searching for the optimal cluster
centers by having multiple layers of learning patterns.
Our goal in this paper is to automatically quantify
HRI that has enough contrast between developing
stages of steatosis levels over the set of intensity
distribution shape variables and HRI.

Thus, we will explain the automatic segmentation
strategy first in Section 2 and the utility of quantized
variables are empirically analyzed through experi-
ment in Section 3 followed by the conclusion of this
paper.

2. Fatty liver area extraction with
double-layered fuzzy C means clustering

2.1. Preprocessing

A typical ultrasound image containing the liver and
the right kidney areas has relatively low intensity.
There exists a limiting membrane with a high inten-
sity as the border of our two ROIs—the liver and the
right kidney. The first major step of image prepro-
cessing for this analysis is to enhance the brightness
contrast. The ultrasound image contains a relatively
bright area such as abdomen muscles, fascia, fat
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area in the kidney, and the border lines between the
liver and the kidney. We apply the dynamic fuzzy
stretching technique [19] to enhance the contrast by
dynamically controlling the maximum and the min-
imum range of the stretching with a triangle-type
fuzzy membership function. Then, the average bina-
rization technique is applied to extract fat area of
the kidney part. Then the 8-directional contour track-
ing algorithm [48] is applied for object formation as
explained in [19]. Knowing that relatively brighter
muscles of abdomen and fascia exist at upper part of
the image, our search is confined to the lower part of
the image. Since such edge tracking may have small
disconnections during the object labeling process, we
apply monotone cubic spline [49] to reconnect the
related objects to complete the boundary lines. The
details of such interpolation process can be found in
[50].

Figure 1 summarizes our preprocessing steps. The
edge tracking algorithm tracks pixels having the same
object label. Cubic spline interpolation forms the
boundary lines between the liver and kidney and then
the object formation algorithms are applied to the left
(liver) and right (kidney) of the splined line as shown
in Fig. 1(e) and (h) respectively.

2.2. DFCM algorithm

FCM clustering [37] is an unsupervised clustering
technique applied to segmenting images into clus-
ters with similar spectral properties. It utilizes the
distance between pixels and cluster centers in the
spectral domain to compute the membership. The cost
function is minimized when pixels close to the cen-
troid of their clusters are assigned higher membership
values, and the farther the data point is from the cen-
troid, the lower the assigned membership values are.
The membership function represents the probability
that a pixel belongs to a specific cluster. In the FCM
algorithm, the probability is dependent solely on the
distance between the pixel and each individual cluster
center in the feature domain.

FCM usually could not minimize the intra-cluster
variance and could not maximize the inter-cluster
variance due to the overlapping of regions and/or the
sensitivity to the outlier. Also, because of using the
gradient descent method, it can be easily fallen into
local optimal solutions and cannot gain the global
optimal solution. In this paper, we try to avoid such
local maxima problem by applying double-layered
learning for FCM. By doing so, our DFCM can
pursuit the global optimization of the cost function

Fig. 1. Image preprocessing for target object extractions.

Clustering layer

Input Layer

Fig. 2. Double-layered learning structure.

effectively. The concept of DFCM can be shown in
Fig. 2.

Then the DFCM quantization is done as following;

Step 1: Initialize c (2 ≤ c<n) as the number of clus-
ters, and exponential weight m (1 ≤ m<∞). Also
initialize the error threshold (�) for terminating con-
dition of the first layer learning and the membership
degree U(0).
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Step 2: Compute the value of central vector Vij as
shown in Equation (1) for vi | i = 1, 2, . . . , c.

Vij =
∑n

k=1 (Uik)m Xkj∑n
k=1 (Uik)m

(1)

where X is the input pattern, i is the cluster index,
j is the pattern node index. k is the pattern index, n
is the number of patterns, and U is the membership
function.

Step 3: Define the FCM cost function J as Equation
(2).

J (uik, vi) =
c∑

i=1

n∑
k=1

(uik)m (dik)2 (2)

where the distance dik is defined as the Euclidean
distance between the k-th pattern xk and vi, the central
vector of the i-th cluster, and uik is the membership
degree of xk among patterns in the i-th cluster.

In order to minimize J, dik and membership
function U are defined as Equation (3) and (4), respec-
tively.

dik =
√√√√ l∑

i=1

(
xkj − vij

)2 (3)

Uik = 1

∑c
i=1

(
dik

djk

) 2
m−1

(4)

where l denotes the number of pattern nodes and c
denotes the number of clusters.

Step 4: Compute the difference (Uik(r + 1)-Uik(r))
between the new membership and the previous mem-
bership degree at the time of r. If the difference is less
than the error threshold (�), then the algorithm goes
to Step 5, otherwise go to Step 2.

Step 5: With output of the first layer as the input of
the second layer, compute the value of central vector
wsi as shown in Equation (5) for ws | s = 1, 2, . . . ,
cc where cc is the number of clusters for the second
layer.

wsi =
∑n

i=1 (qsk)m uki∑n
i=1 (qsk)m

(5)

Step 6: Compute the membership degree of the clus-
ters qsk in the second layer with distance function dsk

as Equation (6) and (7) respectively.

dsk =
√√√√

c∑
i=1

(uki − wsi)2 (6)

qsk = 1

∑cc
s=1

(
dsk

dik

) 2
m−1

(7)

Step 7: Compute the difference between the new
membership and the previous membership degree.
If the difference is less than the final error threshold
(�’), then the algorithm terminates otherwise go to
Step 5.

This process can be summarized as Fig. 3.

Fig. 3. Double-layered FCM algorithm.
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Fig. 4. Final area extractions.
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Fig. 5. Visual representation of echogenicity.

2.3. HRI computation and visual representation

The effect of DFCM for the final liver/kidney area
extraction can be shown as Fig. 4.

The HRI is computed as the rate of liver echogenic-
ity to that of the right kidney cortex. Since we
use pixel clustering strategy, the distribution of
echogenicity can be shown in Fig. 5(a) but the kid-
ney part can be magnified as shown in Fig. 5(b) in
order to compare the distribution visually only for
the radiologists’ convenience. The X-axis represents
the echogenicity and the y-axis represents the fre-
quency of pixels in the extracted object area. The
average of liver echogenicity is divided by the aver-
age echogenicity of kidney area to determine the HRI.

3. The utility of HRI and distribution shape
variables: Experiment and analysis

The proposed method is implemented in Visual
Studio 2017 C# with AMD Ryzen 5 1400 Quad-
core processor of 3.20 GHz and 8.00GB RAM
PC. 50 subjects aged 18 or more who finished a

Table 1
Severity of NAFLD stage in this experiment: the ground truths

Stage Unanimous Split Total

Normal 21 3 24
Mild 8 4 12
Moderate 3 8 11
Severe 3 0 3
Total 35 15 50

health checkup with abdominal ultrasonography as a
screening examination at Pusan National University
Hospital in Korea in 2017 participated in this exper-
iment. Images were obtained by the right subcostal
scan including the lower pole of the liver and the
right kidney. Obtained ultrasonographic images are of
the 1024×768 bitmap format with 5 MHz in probing
and the machine was produced by Phillips with soft-
ware version PMS5.1 Ultrasound iU22 5.2.0.289. No
subject participated in this experiment reported prior
surgical experience of liver or kidney.

Three radiologists are participated in reviewing
and evaluating the severity stage of NAFLD of those
50 ultrasonographic images without any information
from the proposed software thus the ground truth of
severity stage of this experiment is decided by the
majority voting of three radiologists. Table 1 sum-
marizes the severity stage of 50 subjects evaluated by
three radiologists.

As represented in Table 1, the rate of unanimous
decisions of three participated radiologists are only
70% and the intra-class correlation coefficient of their
decision is computed as 0.673 that is “good” by the
standard of [51].

Intra class correlation coefficient (ICC) is defined
as Equation (8).

var (β)

var (α) + var (β) + var (ε)
(8)

where var(�): variability due to differences in the
subjects, var(�): variability due to differences in the
evaluations of the subjects by the radiologists, and
var(�): variability due to differences in the rating
levels/scale used by the radiologists.

For the evaluation of the severity stage of NAFLD
from ultrasound images, the proposed software pro-
vides HRI rate and three other useful statistics of
characterizing the echogenicity distribution – skew-
ness, kurtosis, and CV of the liver echogenicity.
Skewness is a measure of the asymmetry of the dis-
tribution of a variable. The skew value of a normal
distribution is zero, usually implying symmetric dis-
tribution. A positive skew value indicates that the tail
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on the right side of the distribution is longer than the
left side and the bulk of the values lie to the left of
the mean. In contrast, a negative skew value indicates
that the tail on the left side of the distribution is longer
than the right side and the bulk of the values lie to the
right of the mean. Kurtosis is a measure of the peak
of a distribution [52]. Distributions with negative
kurtosis is called as platykurtic such that the distri-
bution produces fewer and less extreme outliers than
does the normal distribution. Distributions with pos-
itive kurtosis is called as leptokurtic, which has tails
that asymptotically approach zero more slowly than
normal distribution. CV, known as relative standard
deviation, is a standardized measure of dispersion
of a probability distribution or frequency distribu-
tion. It is often expressed as a percentage, and is
defined as the ratio of the standard deviation to the
mean. These three distribution statistics can explain
the echogenicity distribution of the subject’s image as
shown in Fig. 5 and may contribute to discriminate
the severity stage of NAFLD. In fact, a recent research
reported a decent accuracy of detecting and grading
fatty liver disease by kurtosis based scanning method
[53]. Table 2 summarizes the echogenicity values
and distribution statistics generated by the proposed
method.

For each cell of Table 2, the first number is the
mean and the second number is the standard devi-
ation of each statistics of the same stage. We take
t-test to each adjacent stages and double asterisk (**)
denotes p < 0.01 and the single asterisk (*) denotes
p < 0.05 otherwise two adjacent stages have no statis-
tical difference. The bottom row ‘Abnormal’ means
all stages other than normal. Two t-test results are

shown in Table 2 in that the first t-test is to see if any
variable is statistically different in any of 4 severity
stage level (first 4 rows) and the second one is the
t-test for normal/abnormal distinctions(bottom two
rows). In this regard, all statistics by DFCM based
segmentation are significant in discriminating normal
stage from abnormal stage. However, in discriminat-
ing mild stage from moderate stage, the kurtosis is
stronger variable than HRI. Liver echogenicity and
the skewness are also significant in normal-mild stage
discrimination. There exists no significant variable in
discriminating moderate and severe stage. This might
be due to the limited number of data for severe stage
of NAFLD in this experiment.

In reviewing the data, the normal-abnormal cut-
off value of HRI would be 1.30 that contains all
normal cases under the cutoff. However, there is no
single standard cutoff value of a variable appeared
in Table 2. Interesting point is that the correlation of
the kurtosis and HRI is extremely low (-0.02) thus
it suggests that some combination of these two vari-
ables may be better decision making standard than
depending on any one variable.

In order to see if the proposed DFCM itself pro-
duces better statistical measurements; we compare
this result with SOM based pixel clustering [19] as
a referendum since both have similar mechanisms
in extracting liver/kidney area extractions automati-
cally. Table 3 summarizes the echogenicity values and
distribution statistics generated by the SOM based
method.

SOM based method is successful on HRI for
normal-abnormal discrimination. However, for sever-
ity stage classification, there is no statistically

Table 2
Echogenicity and Distribution Statistics by proposed DFCM. (∗p<0.05, *∗p<0.01)

Stage HRI Kurtosis Skew ness CV-Liver Liver Echo Kidney Echo

Normal 1.06 ± 0.13 –0.53 ± 0.67 0.44 ± 0.39 4.56 ± 0.82 50.32 ± 7.26 48.04 ± 7.06
Mild 1.32 ± 0.18∗∗ –0.69 ± 0.30 –0.01 ± 0.47∗∗ 6.96 ± 2.67 69.49 ± 16.28∗∗ 52.72 ± 10.53
Moderate 1.54 ± 0.30∗ –0.98 ± 0.27∗∗ 0.08 ± 0.14 9.63 ± 4.62 82.57 ± 19.18 53.60 ± 8.87
Severe 1.57 ± 0.30 –0.91 ± 0.31 0.00 ± 0.12 13.79 ± 5.77 125.17 ± 31.33 79.67 ± 14.91
Normal 1.06 ± 0.13 –0.53 ± 0.67 0.44 ± 0.39 4.56 ± 0.82 50.32 ± 7.26 48.04 ± 7.06
Abnormal 1.44 ± 0.27∗∗ –0.84 ± 0.28∗∗ 0.03 ± 0.33∗∗ 7.56 ± 3.72∗∗ 81.45 ± 25.32∗∗ 56.20 ± 13.15∗

Table 3
Echogenicity and Distribution Statistics by SOM [19]. (* p < 0.05, ** p < 0.01)

Stage HRI Kurtosis Skew ness CV-Liver Liver Echo Kidney Echo

Normal 1.03 ± 0.24 –0.89 ± 0.31 0.18 ± 0.29 7.29 ± 2.56 45.72 ± 8.31 45.98 ± 9.94
Mild 1.41 ± 0.72 –0.94 ± 0.20 –0.08 ± 0.27 10.20 ± 5.41 63.85 ± 19.31∗∗ 51.19 ± 18.27
moderate 1.50 ± 0.44 –0.89 ± 0.33 0.08 ± 0.32 6.51 ± 2.51 79.06 ± 21.87 54.97 ± 16.64
Severe 1.92 ± 0.31∗ –1.00 ± 0.04 –0.05 ± 0.02∗ 25.97 ± 4.46 129.09 ± 21.47 69.53 ± 23.23
Normal 1.03 ± 0.24 –0.89 ± 0.31 0.18 ± 0.29 4.56 ± 0.82 45.72 ± 8.31 45.98 ± 9.94
Abnormal 1.51 ± 0.58∗∗ –0.93 ± 0.25 0.02 ± 0.29 11.78 ± 7.10∗∗ 77.81 ± 28.73∗∗ 54.91 ± 18.25∗
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Fig. 6. Typical examples of echogenicity distribution with respect
to the severity stage.

significant variable to discriminate mild and mod-
erate stage. Thus, the proposed DFCM is better
clustering algorithm to produce meaningful statistics
for NAFLD severity stage classification.

Pixel echogenicity distribution and its charac-
teristic attributes (skewness, kurtosis, CV) may be

valuable statistics for stage classification although no
single variable is as powerful as HRI. In Fig. 6, we
demonstrate typical liver-kidney echogenicity.

While radiologists make decisions of fatty liver
severity level with quantified value (HRI) and qual-
itative measurement like graphs shown in Fig. 6, it
is still very subjective as we have seen that the gold
standard measured by multiple radiologists have only
70% of unanimous decisions on severity stage iden-
tification as shown in Table 1. Furthermore, although
shape variables of the intensity distribution have sta-
tistically significant contributions in severity stage
determination as shown in Table 2, there is no clear
way to explain it in our post-hoc analysis. Thus, we
try to find a set of decision rules for stage classifi-
cation that can explain at least our limited 50 cases.
Since we have only 3 ‘severe’ cases in our data set,
it is not reliable to test any set of rules in standard
machine learning paradigm. Rather, we want to see
if there exists a good simple intuitive set of rules that
may explain the stage classifications.

Thus, we use a standard decision tree open source
written in Python that ‘fits’ all of our data set meaning
that the set of rules we found is only effective over our
data. We choose decision tree algorithm since there
is a simple way to construct a set of rules from the
tree structure by tracking every leaf node [54]. The

Fig. 7. Decision tree to decide fatty liver severity classification.
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Table 4
Decision rules for fatty liver severity stage from decision tree of Fig. 7

Stage Data Liver-Echo Skewness Kurtosis Kidney-Echo HRI CV-Liver

Normal 20 � 65.708 > 0.18 � -1.222 > 41.533
Normal 4 � 39.97 > 0.18 � -1.222 � 41.533
Mild 5 [65.708, 120.216] > 0.742
Mild 4 � 65.708 � -0.18
Mild 1 [39.97, 65.708] > 0.18 � -1.222 � 41.533 > 1.15
Mild 1 [65.708, 69.634] � -0.742 � 12.266
Mild 1 [65.708, 79.912] � -0.742 > 12.266
Moderate 9 > 69.634 � -0.742 � 12.266
Moderate 1 � 65.708 > 0.18 � -1.222
Moderate 1 [39.97, 65.708] > 0.18 � -1.222 � 41.533 � 1.15
Severe 2 > 79.912 � -0.742 > 12.266
Severe 1 > 120.216 > 0.742
Total 50

tree that fits all 50 data is shown in Fig. 7 and the set
of decision rules are formed as in Table 4.

In Fig. 7, one can follow how the decision tree is
formed. There are 24 normal, 12 mild, 11 moderate,
and 3 severe stage people in our data set. A node
represents four types of information in that the first
row specifies the branching condition, the second row
denotes current size of the set and the third row repre-
sents the distribution of data in this node as the order
of [mild, moderate, normal, severe] (e.g. value = [3,
11, 12, 24] in the root node of Fig. 7) and the bottom
row represents the majority class of the node. The
classification is done at each leaf node in that all data
in that node have the same class.

In Table 4, each row represents a rule that decides
the stage (first column) with at most 6 possible
independent variables satisfy the tests. Blank in the
condition field (from 3rd to 8th column) means ‘don’t
care’. The second column in each row denotes the
number of data classified by that rule in our data set.
Some examples of constructed rules are read as the
following;

Rule 3: If the Liver-Echo is in interval [65.708,
120.216] and Kurtosis > 0.742, then the stage
class would be ‘mild’ and 5 cases of our data
belong to this rule.

. . . .

Rule 8: If the Liver-Echo>69.634 and Kurto-
sis<=0.742 and CV of the Liver<=12.266 then
the stage class would be ‘moderate’ and 9 cases
of our data belong to this rule.

Surprisingly, we find that HRI is not the most deci-
sive variable in severity stage classification while it
was effective in normal/abnormal decision making.
The Liver-Echo value and the Kurtosis of Liver inten-

sity distribution play more important role instead.
However, numbers given as branching conditions are
not intuitive.

Thus, we verify that the severity classification is a
challenging task and we need better set of features
that can decide the stage classification as well as
better, more reliable classification algorithm in this
multi-class learning problem. Recent deep-learning
based architectures [55–57] might have better clas-
sification power but they do not have sufficient
explanative power of their decision making thus more
researches are needed in this domain.

4. Conclusion

In this paper, we develop a new automatic segmen-
tation algorithm for Liver/Kidney area segmentation
based on fuzzy C-means principle. Our DFCM quan-
tization method overcomes the fixed initialization
problem of the original FCM which frequently falls
into local minimum in the processing and DFCM
produces statistically better set of variables for fatty
liver abnormality classification than previously pro-
posed SOM based method. The distinction between
normal and abnormalities is important in diagnosing
fatty liver, but considering the clinical significance,
the diagnosis of severity stage is more important. For
this 4-class classification problem, simple single HRI
cutoff does not work properly. We show that variables
related with the shape of the intensity distribution
of the ultrasonography are also as statistically sig-
nificant as HRI in discriminating normal/abnormal
fatty liver classification problem. In the severity stage
classification, we show that these distribution shape
related variables such as the kurtosis and the skew-
ness of the liver intensity are more discriminative than
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HRI in this severity stage classification based on our
rule construction result from decision tree principle.

The proposed DFCM method for segmentation
and automatic quantification of HRI generate more
statistically distinctive shape variables of intensity
distribution in diagnosing severity stages of mild,
moderate and severe classes of fatty liver than single
HRI cutoff strategy. However, the limitation of this
research is that the sample data size is only 50 in this
4-class classification and there were only 3 ‘severe’
stage data due to the data collection method (regu-
lar health checkup data) thus the result of this paper
needs proof of the possibility of actual application
through clinical research in the future.
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