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for data with constraints
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Abstract. Microaggregation is an effective data-driven protection method that permits us to achieve a good trade-off between
disclosure risk and information loss.

In this work we propose a method for microaggregation based on fuzzy c-means, that is appropriate when there are
constraints (linear constraints) on the variables that describe the data. Our method leads to results that satisfy these constraints
even when the data to be masked do not satisfy them.
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1. Introduction

Microaggregation is an effective masking method
for statistical disclosure control. Given a dataset X

it permits to build a masked data set X′ = ρ(X)
with a good compromise between disclosure risk and
information loss. Roughly speaking, microaggrega-
tion builds small clusters and replaces the original
values by the centers of the clusters. In order to avoid
disclosure, all clusters must have at least a prede-
fined number of records. Then, in order to have an
acceptable information loss it is usual to define a
partition of the variables and microaggregate each
variable independently.

The literature on microaggregation is vast.
Microaggregation was proposed in [4]. Then, [5]
defined an heuristic method, and [30] defined an
approach for categorical data. Hansen and Mukher-
jee [9] defined a polynomial algorithm for univariate
microaggregation. [21] proved that the problem is NP
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for multivariate microaggregation. Since then, dif-
ferent methods have been proposed to improve the
effectiveness. See e.g. [13, 17, 18, 22, 24, 26]. The
problem of selecting a good partition of the variables
is discussed in [19]. Microaggregation to achieving
k-anonymity [27] is discussed in [7].

The transparency principle (see e.g., [35]) estab-
lishes that when data is published we need to include
information on all processes applied to the data. This
naturally includes how data has been protected. When
users know this information, they can use it to com-
pute statistics from the data with better accuracy.
Nevertheless, intruders can use this information to
attack the data. Transparency attacks for microag-
gregation have been studied in [20, 36, 37]. It has
been proven that very effective attacks can be built
for multivariate microaggregation.

In order to define a microaggregation method resis-
tant to transparency attacks, fuzzy microaggregation
was introduced in [6]. The method builds first a fuzzy
partition where all clusters had at least k-elements and
then data is replaced by cluster centers. As in fuzzy
clustering elements can belong to different clusters,
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assignment to a cluster center was done at random. In
this way, given a record intruders do not know for sure
which cluster has been used in the replacement. This
increases intruders uncertainty and decreases disclo-
sure risk. Another fuzzy clustering based approach
was proposed in [12] in terms of an optimization
problem in line with [8]. In recent papers [33, 34]
a simpler algorithm for fuzzy microaggregation was
introduced.

Edit constraints correspond to restrictions estab-
lished on the metadata, or the schema, of the database.
They establish how some variables relate to each
other. For example, we may have three variables
in the database net, tax, gross and a constraint that
specifies net + tax = gross. It is usual that data is
edited before publication so that it satisfies the edit
constraints. Nevertheless, when data is protected by
means of a masking method it is possible that the
resulting masked file violates the constraints. In this
case the file has to be edited again but it may be not
so easy this time. Note that if the masked file is such
that means are the same as in the original file, and
we have added random noise that has caused some
ages to be negative, replacing these negatives values
by zero would change the mean. The combination of
edit constraints and masking methods has been stud-
ied by Shlomo and De Waal [28, 29], by Torra et al. [2,
3, 31], and later by Kim et al. [10, 11].

In this paper we study the problem of defining a
method for microaggregation that, following [34] is
resitant to transparency attacks and at the same time
is able to deal with edit constraints. The approach is
based on fuzzy c-means. We introduce here two vari-
ations of this algorithm to deal with linear constraints.
The algorithms are able to build a masked data set that
satisfies the linear constraints even in the case that the
original data does not satisfy them. Note that this is
an important property, as we can then combine in a
single step effectively data edition and data masking.

The structure of the paper is as follows. In Sec-
tion 2 we review clustering and fuzzy c-means. In
Section 3, we introduce two methods for achieving
constrained fuzzy c-means and use them to define
constrained microaggregation. We study the prop-
erties of the approaches. In Section 4 we give an
example. The paper finishes with some conclusions
and lines for future research.

2. Preliminaries

This section is divided in three parts and describes
three topics that are needed later. We begin with

a review of fuzzy clustering, which is used in our
approach. Then we review how fuzzy clustering is
used in microaggregation. Finally, we make a short
summary of edit constraints and, more particularly,
on linear constraints.

2.1. Fuzzy clustering

Clustering is an approach in statistics and machine
learning (more specifically, in unsupervised machine
learning) to extract relevant structures and patterns
from data. There is a large number of methods for
clustering that depend on different assumptions on
the underlying model of the data and the type of struc-
ture built from the data (i.e., dendrograms, partitions,
fuzzy partitions, ...). In this paper, following [34] we
will use a fuzzy clustering algorithm.

Fuzzy clustering algorithms [1, 14, 15] typically
build a fuzzy partition from the data. Recall that in a
fuzzy set, membership to the set is partial instead of
Boolean. This is usually represented by a membership
function over the reference set u : X → [0, 1] where
u(x) = 0 means no membership and u(x) = 1 means
total membership. Then, fuzzy clustering builds par-
titions in which elements may belong to more than
one cluster with non-null membership. We will use
fuzzy partitions in the sense of Ruspini [1, 25] which
can be interpreted in terms of probability distributions
because memberships of an element to all clusters add
to one (this is not necessarily the case in other types
of fuzzy partitions).

Fuzzy c-means [1] is one of the most well known
algorithms of this type. This method is defined in
terms of an objective function to be minimized. It
is a generalization of k-means resulting into a fuzzy
partition instead of a crisp (standard) one. This is
achieved by means of replacing the objective function
of k-means by another one where memberships are
involved, and including a parameter m that controls
the fuzziness of the solution. Entropy-based fuzzy c-
means is another fuzzy clustering method. Fuzziness
is achieved by means of requiring membership func-
tions to optimize the entropy. In this case, a parameter
λ is used to control the degree of fuzziness.

The formulation of fuzzy c-means [1] follows. In
this formulation xk for k = 1, . . . , N represent the
records to be clustered, uki the membership degree
of record k to the ith cluster, and vi represents the
cluster center of the ith cluster. Fuzzy c-means finds
uki and vi given xk and the parameter m solving the
following optimization problem.
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min J(u, v) = ∑c
i=1

∑N
k=1(uki)m||xk − vi||2

subject to
∑c

i=1 uki = 1 for all k = 1, . . . , N

uki ≥ 0 for all i = 1, . . . , c

and for all k = 1, . . . , N

In this definition, m is such that m ≥ 1. When
m = 1 the problem is equivalent to the one of k-
means and solutions are crisp (i.e., elements xk are
only assigned to one cluster and uki ∈ {0, 1} instead
of being in [0,1]). In contrast when m is large (e.g.
m > 2.5) solutions tend to be extremely fuzzy and
membership values uik tend to be equal to 1/c.

Fuzzy c-means is usually solved using an iterative
algorithm that interleaves two optimization problems.
One that optimizes u given cluster centers vi, and
another that optimizes v given memberships uki. That
is, the following algorithm is used to find the mem-
bership functions uki and the cluster centers v:

1. Generate c initial values for cluster centers v =
(v1, . . . , vc)

2. Calculate

û = arg min
u

J(u, V )

3. Calculate

v̂ = arg min
v

J(U, v)

4. Iterate the last two steps until convergence.

The expressions for computing û and v̂ in steps (2)
and (3) above are given in the next proposition. See
e.g. [1] for details.

Proposition 1. The alternate optimization algorithm
for the fuzzy c-means uses the following expressions
for computing the new uki and vis.

– The solution of û = arg minu J(u, v) given v is:

uki =
( c∑

i=1

( ||xk − vj||2
||xk − vi||2

) 1
m−1

)−1

– The solution of v̂ = arg minv J(u, v) given u is:

vis =
∑N

k=1(uki)mxks∑N
k=1(uki)m

(1)

This iterative approach converges to a local optima.
It can be proven that the local optima obtained when
m is large satisfies the following properties.

Proposition 2. For large values of m, the iterative
algorithm for fuzzy c-means with the equations in
Proposition 1 leads to

– memberships uij = 1/c for all objects xj ∈ X

and clusters j, and
– cluster centers vi = vj = X̄ for all clusters j

There have been several extensions of this method
as well as alternative approaches for defining fuzzy
clustering. One of them is entropy-based fuzzy c-
means (EFCM) [16], which is defined in a way similar
to the one of fuzzy c-means. The function to be min-
imized is a regularized version of

∑ ∑
uki||xk −

vi||2. Instead of adding m as in fuzzy c-means, a term
based on the entropy is introduced in the optimization
problem. This term is combined using a parameter λ.
This parameter λ ≥ 0 is used to control the fuzziness
of the solution. Formally, the entropy-based fuzzy
c-means is defined in terms of the following opti-
mization problem.

JEFCM(u, v) =
n∑

k=1

c∑
i=1

{uki||xk − vi||2 + λ−1uki log uki}

(2)

This objective function is subject to the constraints
uki ∈ [0, 1] and

∑c
i=1 uki = 1 for all k, as in the case

of fuzzy c-means.
EFCM is also solved using an iterative algorithm.

The expressions for u and v are as follows (see [16]
for details):

uki = e−λ||xk−vi||2
∑c

j=1 e−λ||xk−vj ||2 (3)

vi =
∑n

k=1 ukixk∑n
k=1 uki

(4)

The parameter λ plays a role similar to m in fuzzy
c-means. Here, the smaller the λ, the fuzzier the solu-
tion.

Proposition 3. When λ tends to zero, the iterative
algorithm for EFCM using Equations 3 and 4 leads
to

– memberships uij = 1/c for all objects xj ∈ X

and clusters j, and
– cluster centers vi = vj = X̄ for all clusters j

When λ tends to infinity, the second term becomes
negligible and the algorithm yields to a crisp solution.

FCM and EFCM lead to different clusters for the
same data. An important difference is about the mem-
bership values. For example, the centroids have a
membership equal to one in the FCM while in the
EFCM a lower membership is possible.
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2.2. Fuzzy microaggregation for data privacy

Microaggregation is about building small clusters
(with at least k records) and replace each record in
the set by the cluster center. When the whole set
is microaggregated at once (considering all the vari-
ables at the same time), the resulting file is such that
there are sets of at least k indistinguishable records.
Note that all records that belong to the same cluster
are replaced by the same cluster center.

As processing the file in this way causes a high
information loss, it is usual to consider a partition
of the variables, and apply microaggregation to each
subset of variables. Proceeding in this way, records
that are indistinguishable with respect to one set of
variables (because they belong to the same cluster for
these variables) may be distinguishable with respect
to another set (because they belong to different clus-
ters for these other variables). This causes that the
protected file has no longer sets of k indistinguishable
records.

Nevertheless, this approach can be attacked effec-
tively (see e.g. [20]. Any intruder can exploit the fact
that records are usually masked replacing values by
cluster centers that are near. Attacks are specially
effective for optimal univariate microaggregation as
in this case we know with certainty which clusters
can be used for replacement.

To avoid this type of (transparency) attacks, we
proposed in [34] an approach for microaggrega-
tion based on fuzzy microaggregation. Algorithm 1
reproduces this method. The approach is based on
computing fuzzy clusters and then replacing values
by cluster centers using the membership values as a
probability distribution. In this way, intruders cannot
know which clusters have been used. The algorithm
uses two parameters m1 and m2 in relation to fuzzy c-
means. The first one is to compute the fuzzy clusters,
and the second one to build the probability distribu-
tion.

It can be proven that the larger the m1, the larger
the information loss. Similarly, the larger the m2, the
larger the information loss. In addition, we can also
prove that for large values of m2, and with c = |X|/k,
the expected size of all clusters is k. Therefore, for
large values of m2 when microaggregation is applied
to the whole file, we have probabilistic k-anonymity.

Algorithm 1. Fuzzy Microaggregation with parame-
ters c, m1, and m2

Step 1: Apply fuzzy c-means with a given c and a
given m := m1.

Step 2: For each xj in X, compute memberships u

to all clusters in i = 1, . . . , c for a given m2. Use:

uij =
( c∑

r=1

( ||xj − vi||2
||xj − vr||2

) 1
m2−1

)−1

Step 3: For each xj determine a random value χ in
[0, 1], and
assign xj to the ith cluster using the probability
distribution u1j, . . . , ucj

(i.e., the membership values computed in Step 2).

2.3. Constraints and linear constraints

A problem so-far not much considered in the litera-
ture in data privacy is the one of data with constraints.
Up to our knowledge, only the three groups men-
tioned in the introduction (Shlomo and De Waal, Kim
et al., and ourselves) have considered this problem.

With data with constraints we refer to the fact
that some databases include metadata expressing that
some of the variables in the data sets should sat-
isfy some constraints. Some of these constraints are
enforced when data is introduced, and others are
checked once all the data are available.

When data are processed for ensuring privacy, data
is modified, and if such constraints are not taken into
consideration, incompatible data are generated. The
usual approach is to proceed in this way: (i) protect
the dataset ignoring the constraints, then (ii) check the
constraints, and finally (iii) if constraints are violated,
data is modified again so that it is compliant with the
constraints.

Such approach can lead to inconsistences or larger
information loss than necessary. Recall the exam-
ple in the introduction. Protection with random noise
is known to keep means. However, if variables are
required to be positive, just transforming to zero all
negative values can cause a rellevant positive bias
to the data. In addition, when data is first edited, and
then protected we modify the original data twice. This
adds extra noise to the data.

The results introduced in this paper are to edit and
protect in a single step. In this way, the noise intro-
duced into the data for data protection is used at the
same time to solve the inconsistencies of the data with
respect to the constraints.

Constraints on the variables are known by edit con-
straints in the field of data privacy (in particular, in
the subfield of statistical disclosure control). There
are different types of constraints. E.g., constraints on
the possible values, linear constraints, one variable
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that governs the values of another (e.g., sex=male,
implies number of pregnancies=0). See [23, 28, 31]
for details on the classification of the constraints. In
this paper, we will consider linear constraints. Note
that some other types of equality constraints can be
transformed into linear ones. Naturally, we have a
linear constraint when a variable can be expressed
as a linear combination of a set of other variables.
For example, the following relation between family
income, person income, and other persons income
should hold:

EC-LC: person income + other person income =
family income

In general, linear constraints can be expressed in
its more general form as V = ∑

s αiVi + A, for some
values αi, variables Vi, the dependent variable V and
a constant A. In this paper, we will rewrite them,
equivalently, as

∑
s αiVi = A, or, in a vector form

with v = (V1, . . . , Vt) and α = (α1, . . . , αt), as α ·
v = A. Here · represents the inner product.

3. Constrained fuzzy clustering for data
masking

As our goal is that the masked data satisfies the lin-
ear constraints (independently of whether the original
data satisfies them or not), we investigate in this sec-
tion clustering algorithms that lead to cluster centers
that satisfy linear constraints.

We use again xk for k = 1, . . . , N to represent
the set of elements to be clustered. Each element xk

belongs to a t dimensional space (i.e., xk ∈ R
t). Ele-

ments x will be clustered in c different clusters. Then,
we need to consider cluster centers vi for i = 1, . . . , c

with vi also represented in a t dimensional space. For
both xk and vi we will use here a second subindex to
express its sth component. In other words, xks rep-
resents the sth component of the kth object and vis

represents the sth component of the ith cluster center.
As stated above, linear constraints on the clus-

ter centers are represented in terms of a vector α =
(α1, . . . , αt) and the inner product ·, by means of the
equation α · vi = A for all clusters i = 1, . . . , c. Of
course, this means that,

∑t
s=1 αsvis = A.

3.1. Constrained FCM

We start considering the formalization of fuzzy
c-means when we require the cluster centers to sat-
isfy linear constraints. Therefore, using the notation
above, the constrained fuzzy c-means with linear con-
straints corresponds to the following problem.

min CF (u, v) = ∑c
i=1

∑N
k=1(uki)m||xk − vi||2

subject to
∑c

i=1 uki = 1 for all k = 1, . . . , N

α · vi = A for all i = 1, . . . , c

uki ≥ 0 for all i = 1, . . . , c

and for all k = 1, . . . , N

Note that this problem is the same we saw before
for the fuzzy c-means adding linear constraints for
each cluster center. To solve this optimization prob-
lem we can apply the alternative algorithm problem
using new expressions for u and v. The following
proposition gives these expressions.

Proposition 4. The alternate optimization algorithm
for the fuzzy c-means with linear constraints will use
the following expressions for computing uki and vis.

• The solution of û = arg minu CF (u, v) given v

is:

uki =
(( c∑

i=1

||xk − vj||2
||xk − vi||2

) 1
m−1

)−1

• The solution of v̂ = arg minv CF (u, v) given u
is:

vis =

∑N

k=1
(uki)mxks − αs

∑N

k=1
(uki )m

[∑t

r=1
αrxkr−A

]
∑t

r=1
αrαr∑N

k=1
(uki)m

(5)

We now present the proof of this proposition. We
considered a simpler version of this problem in [32].

Proof. The solution of this problem is based on
the Lagrange multipliers. We consider two sets of
Lagrange multipliers. One set are for the constraints∑c

i=1 uki = 1 and the other set for the constraints
α · vi = A. These multipliers are called, respectively,
λk and νi. Then, we have that the expression to be
minimized is:

L =
c∑

i=1

N∑
k=1

(uki)
m||xk − vi||2

+
N∑

k=1

λk

( c∑
i=1

uki − 1
)

+
c∑

i=1

νi

(
αvi − A

)
.

In order to compute an expression for uki, let us
now consider the derivative of L with respect to uki.
We obtain
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∂L

∂uki

= m(uki)
m−1||xk − vi||2 + λk.

Making this expression equal to zero, and assum-
ing that there is no xk = vi, we can obtain the
following expression for ukj (for convenience we use
j instead of i).

ukj =
( −λk

m||xk − vj||2
) 1

m−1
. (6)

In order to eliminate λk in this expression, let us
consider the constraint

∑c
i=1 uki = 1. Replacing ukj

by Equation 6 we obtain:

1 =
c∑

i=1

uki =
c∑

i=1

( −λk

m||xk − vi||2
) 1

m−1

= (−λk)
1

m−1

c∑
i=1

( 1

m||xk − vi||2
) 1

m−1
. (7)

Now, if we compute the quotient between Equa-
tion 6 and 7 we obtain the following:

ukj =
(

−λk

m||xk−vj ||2

) 1
m−1

(−λk)
1

m−1
∑c

i=1

(
1

m||xk−vi||2

) 1
m−1

( ∑c
i=1

( ||xk−vj ||2
||xk−vi||2

) 1
m−1

)−1
. (8)

This solution is a valid solution because it satisfies
uki ≥ 0. As the objective function is convex, this is
the unique solution of the problem.

We now consider the derivative of L with respect to
vk in order to compute an expression for the later. As
vk is a vector, we consider one of its components: vis.
We decompose L above in L1 + L2 + L3 and make
explicit vis in these components:

L1 =
c∑

i=1

N∑
k=1

(uki)
m||xk − vi||2

=
c∑

i=1

N∑
k=1

t∑
s=1

(uki)
m(xks − vis)

2

L2 =
N∑

k=1

λk

( c∑
i=1

uki − 1
)

and

L3 =
c∑

i=1

νi

(
αvi − A

) =
c∑

i=1

νi

t∑
s=1

αsvis −
c∑

i=1

νiA

It is easy to see that the derivative of L1 with respect
to vis is

∑N
k=1(uki)m2(xks − vis)(−1), the derivative

of L2 with respect to vis is zero, and the one of L3
with respect to vis is νiαs. Therefore, it follows that

∂L

∂vis

=
N∑

k=1

(uki)
m2(xks − vis)(−1) + 0 + νiαs.

If we assign this expression to zero we obtain,

0 =
N∑

k=1

(uki)
m2(xks − vis)(−1) + νiαs.

Therefore, we can say that vis should be as follows.

vis =
∑N

k=1(uki)m2xks − νiαs∑N
k=1(uki)m2

. (9)

We study the case of αs /= 0 (otherwise the variable
s is not in the linear constraint). In this case, let us
consider the equation A = α · vi, which corresponds
to

A =
t∑

s=1

αsvis =
t∑

s=1

αs

∑N
k=1(uki)m2xks − νiαs∑N

k=1(uki)m2

If the ith cluster contains at least one element with
some non null membership, we can obtain by alge-
braic transformation the following expression for νi:

νi =
∑t

s=1 αs

( ∑N
k=1(uki)m2xks

) − 2
∑N

k=1(uki)mA∑t
s=1 αsαs

We use this expression for νi in Expression 9, and
then with further algebraic manipulation we obtain
Equation 5 in the proposition. �

Note that for variables vs not involved in the lin-
ear constraint (i.e., variables vs such that αs = 0), vis

will be computed in the same way as for the standard
fuzzy c-means. This is so because Equation 5 reduces
to vis = ∑

(um
kixks)/

∑
(um

ki) (Equation 1). Because
of this result, we do not need to consider separately
those variables in a database that satisfy linear con-
straints and those that do not take part of such type
of constraint.

This algorithm will produce a set of clusters that
satisfy the linear constraints. We can also prove that
when the data satisfies these constraints, the expres-
sions for vis above reduce to the ones of standard
fuzzy c-means (Equation 1).
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These two properties are established in the follow-
ing proposition.

Proposition 5. The solution of Proposition 4 is such
that

1. When αs = 0 (i.e., variable vs is not involved
in the linear constraint), Equation 5 reduces to
Equation 1 for all i = 1, . . . , c.

2. When data satisfy linear constraints, Equation 5
reduces to Equation 1 for all i = 1, . . . , c and
all s = 1, . . . , t.

Proof. To prove 1 it is enough to replace αs by zero
in Equation 5. To prove 2 observe that when data sat-
isfy the linear constraints, then for all k = 1, . . . , N

it holds
t∑

r=1

αrxkr − A,

so, Equation 5 reduces to Equation 1. �

3.2. Constrained EFCM

We focus now on entropy-based fuzzy c-means.
We will obtain similar results. Considering the lin-
ear constraints for all cluster centers, we define the
following optimization problem.

min CE(u, v) = ∑c
i=1

∑N
k=1 uki||xk − vi||2 +

λ−1 ∑c
i=1

∑N
k=1 uki log uki

subject to
∑c

i=1 uki = 1 for all k = 1, . . . , N

α · vi = A for all i = 1, . . . , c

uki ≥ 0 for all i = 1, . . . , c

and for all k = 1, . . . , N

For this problem, the following result is obtained.

Proposition 6. The alternate optimization algorithm
for this optimization problem leads to the following
two expressions.

uki = e−λ||xk−vi||2
∑c

j=1 e−λ||xk−vj ||2 (10)

vis =
∑N

k=1 ukixks − αs

(∑N

k=1
uki

(∑t

r=1
αrxkr−A

)
∑c

r=1
αrαr

)
∑N

k=1 uki

(11)

Proof. The proof of this proposition follows the same
schema as the case of the fuzzy c-means. That is,

we use the Lagrange multipliers to define an objec-
tive function that includes subexpressions for each
constraint.

L =
c∑

i=1

N∑
k=1

uki||xk − vi||2

+ λ−1
c∑

i=1

N∑
k=1

uki log uki

+
N∑

k=1

λk

( c∑
i=1

uki − 1
)

+
c∑

i=1

νi

(
α · vi − A

)
.

Derivating L with respect to uki and making it
equal to zero, we can later obtain the following
expression for uki:

uki = e−1−λλk−λ||xk−vi||2 .

Then, as
∑

j ukj = 1, we can compute

uki = uki∑
j ukj

= e−1−λλk−λ||xk−vi||2
∑c

j=1 e−1−λλk−λ||xk−vj ||2

= e−λ||xk−vi||2
∑c

j=1 e−λ||xk−vj ||2

which corresponds to the expression for uki.
The proof of the expression for vis starts derivating

L with respect to vis. Then, when this derivative is
zero we can obtain the following expression for vis:

vis = 2
∑

k ukixks − νiαs

2
∑

k uki

.

On the other hand, replacing this expression for vis

in the equation
∑t

s=1 αsvis = A we obtain:

t∑
s=1

αs

2
∑

k ukixks − νiαs

2
∑

k uki

= A

from which we get the following expression for νi:

νi = 2
∑t

r=1 αr

∑
k ukixkr − 2A

∑
k uki∑t

r=1 αrαr

= 2
∑

k uki

( ∑t
r=1 αrxkr − 2A

)
∑t

r=1 αrαr

. (12)

Replacing this expression for νi in vis we have proven
Equation 11. �
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Note that the expression for uki is the same we had
before when no linear constraints were considered.
In contrast, the expression for vis is different as it
includes terms corresponding to the constraints.

The next proposition establishes that the solution
given in Proposition 6 corresponds to the standard
solution in EFCM when data already satisfies the
constraints.

Proposition 7. When the original data satisfy the lin-
ear constraints α · vi = A, the alternate optimization
algorithm for entropy-based FCM reduces to the one
of standard fuzzy c-means.

3.3. Constrained microaggregation

The application of these algorithms to microaggre-
gation consists in replacing in Algorithm 1 the fuzzy
c-means in Step 1 by one of the two clustering meth-
ods discussed in this paper (constrained FCM and
constrained EFCM). They will lead to solutions that
satisfy the linear constraints. Algorithm 1 will have
two parameters m1 and m2 for the constrained FCM,
and two parameters λ1 and λ2 for the constrained
EFCM.

Proposition 8. Contrained FCM applied according
to Algorithm 1 satisfies the following properties:

– The larger them1, the larger the information loss.
This follows from Proposition 2. Clusters will
collide, cluster centers will be vi = X̄, and all
protected data will be vi.

– The larger them2, the larger the information loss.
Proposition 2 shows that in this case all mem-
berships tend to be 1/c. Therefore, any cluster
center can be used to replace a given value.

– The smaller the number of clusters c, the larger
the information loss. Naturally, when c = 1, all
data are replaced by a single cluster center. Min-
imum loss can be achieved when c = |X| and
each data has its own cluster (and with m1 and
m2 near to one).

– For large m2, and c = |X|/k for a given k,
the expected size of all clusters is k. I.e., we
have probabilistic k-anonymity. This follows
from the uniform distribution with member-
ship/probability 1/c, and the number of clusters.

These properties show that with an appropriate
selection of m1 and m2 information loss ranges from
no information loss (i.e., c = |X|, m1 = m2 = 1 with
the masked data being equal to the original one)
to maximum loss (i.e., c = 1). We can also obtain

data that probabilistically satisfies k-anonymity (i.e.,
c = |X|/k and m2 large). In addition to these proper-
ties, the resulting file satisfies given linear constrains
(edit linear constraints) even in the case that the orig-
inal file does not satisfy them.

We have detailed the properties for the case of
the constrained FCM. These properties can also be
inferred for constrained EFCM. In that case, values
of λ1 and λ2 near to zero play the role of large m1
and m2.

4. Experiments

For illustration, we have applied our approach
to a small data set. We have considered the exam-
ple in [31] where a linear constraint involving three
variables was considered. The data is reproduced in
Tables 1 and 2. Variables v1, v2 and v3 stand for
Expenditure at 16%, Expenditure at 7%, and Total
Expenditure. Then, variables v1, v2 and v3 define the
following linear constraint: V3 = α1V1 + α2V2. That
is, v3 = 1.16v1 + 1.07v2.

Table 1
Original data set

Exp 16% Exp 7% Total
v1 v2 v3

15 23 42.01
12 43 59.93
64 229 319.27
12 45 62.07
28 39 74.21
71 102 191.50
23 64 95.16
25 102 138.14
48 230 301.78
32 50 90.62
90 200 318.40
13 100 125.56

Table 2
Original data set with noise following N(0, 1.5)

Exp 16% Exp 7% Total
v1 v2 v3

16.91695 26.67021 41.37696
15.48220 42.61481 60.60212
65.86964 228.47892 318.70371
12.97750 45.84617 60.80475
25.93508 38.55444 75.96227
72.14286 103.34332 191.54478
24.43550 65.84895 96.49401
24.56774 101.54299 137.49281
47.97780 226.75840 302.78913
28.43727 48.02995 89.97244
91.86226 197.98087 318.96431
11.64466 100.13359 127.12980
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Table 3
Centroids obtained for the original and noisy data

Data Cluster Center

Original data v1 13.44075 37.16236 55.35500
v2 67.32890 219.64071 313.11708
v3 27.59963 52.64698 88.34783
v4 37.11288 101.71213 151.88292

N(0, 0.5) v1 14.77033 37.46462 55.53745
no const. v2 67.66607 219.68178 313.78662

v3 28.25678 52.81140 88.66240
v4 37.37631 101.05854 153.25147

N(0, 0.5) v1 14.21093 36.94862 56.01970
w/t const. v2 67.74399 219.75366 313.71945

v3 28.04952 52.62022 88.84108
v4 37.96198 101.59877 152.74659

N(0, 1.0) v1 13.35356 37.43389 55.51220
no const. v2 68.10518 219.87425 313.35174

v3 28.32082 52.62483 87.69683
v4 36.05573 102.03179 152.27787

N(0, 1.0) v1 13.34286 37.42402 55.52142
w/t const. v2 67.80086 219.59354 313.61408

v3 27.83433 52.17608 88.11623
v4 36.48085 102.42393 151.91139

N(0, 1.5) v1 15.38410 38.46154 54.85374
no const. v2 68.56108 217.71406 313.44706

v3 26.27168 52.15607 88.81411
v4 36.43006 101.70231 152.30233

N(0, 1.5) v1 14.00637 37.19070 56.04144
w/t const. v2 68.88084 218.00900 313.17140

v3 27.11313 52.93224 88.08872
v4 36.83617 102.07690 151.95224

Table 4
Distance between original centroids and centroids of noisy data.

For each noisy data, first row corresponds to distances with
cluster centers using standard fuzzy c-means and second row to
distances with cluster centers obtained using constrained fuzzy

c-means

Noise d1 d2 d3 d4

N(0, 0.5) 1.3756566 0.75078064 0.7468825 1.5393139
N(0, 0.5) 1.0395613 0.74021727 0.6681398 1.2164527
N(0, 1.0) 0.3256416 0.8439299 0.97180617 1.1729174
N(0, 1.0) 0.3251812 0.6870117 0.57486784 0.95232975
N(0, 1.5) 2.3907604 2.3106573 1.4905896 0.8013973
N(0, 1.5) 0.8899032 2.25254 0.6206389 0.4630664

Table 1 contains the original data. In addition, we
have also considered the same data set with gaussian
noise (Table 2). We have considered three cases with
noise following N(0, 0.5), N(0, 1.0) and N(0, 1.5)
and we have microaggregated the files and computed
the cluster centers. We used c = 4 that corresponds
to a parameter k, as understood in microaggrega-
tion, equal to k = |X|/4 = 12/4 = 3. In the table we
include the data with noise N(0, 1.5).

The centroids using standard fuzzy c-means
applied to the original data set satisfy the constraints,
but this is not so when the data set with noise is
considered. In this case, however, the alternative

expressions developed in this paper lead to appro-
priate cluster centers (i.e., cluster centers satisfying
the constraints).

Table 3 display the cluster centers we have obtained
for the original data set without noise, and the ones
obtained with noise. For these three last data sets
we include both the cluster centers obtained by the
standard fuzzy c-means and by the new method.

Comparison between the cluster centers of the
noisy data with the ones of the original data show
that the cluster centers are more similar to the original
ones when constraints are considered. This is shown
in Table 4. This table shows the differences, measured
using the Euclidean distance, between the 4 cluster
centers obtained using a particular data set and the
clustering algorithm with respect to the cluster cen-
ter using fuzzy c-means with the original (no-noise)
data. It can be seen that for each of the noisy data,
the nearest cluster is the one where constraints are
considered (second row for each of the noisy data).

These results permits us to show on the one hand
the suitability of the method for combining in the
same step the edit constraints and the data protection
method, and on the other hand, that our approach
leads to protected data with less information loss.
This is so because the cluster centers with constrained
FCM are more similar to the original cluster centers
than the cluster centers using standard FCM.

5. Conclusions and future work

We have presented two variations of fuzzy c-means
to deal with linear constraints and shown their use
for data masking. We have given the solution of
the optimization problem when linear constraints are
considered on the data. The solution leads to clus-
ter centers that satisfy the constraints even when the
data does not. This permits to combine in the same
step data editing and data masking. This approach is
one of the first to combine these two steps. We have
also given an example that shows how the method can
be applied and that for noisy data we obtain cluster
centers that are nearer to the ones without noise.

We have also discussed the effects of the param-
eters in information loss. Further work is about the
appropriate selection of the parameters of the method,
and comparison with other approaches as e.g. [10,
11]. That is, m1 and m2 for constrained FCM and λ1
and λ2 in constrained EFCM. We have seen however,
that with an appropriate selection we can range from
no information loss (and, thus, maximum disclosure
risk) to maximum loss (and, thus, no risk).
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