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Abstract. Collective intelligence is most often understood as group intelligence which arises on the basis of intelligences
of the group members. This paper presents an overview of application of collective intelligence methods in knowledge
engineering and in processing collective data. It also introduces papers included in this issue.
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Collective intelligence is most often understood
as group intelligence which arises on the basis of
intelligences of the group members. On the one
hand, Newell [19] defined an intelligent collective
as a social system, which is capable to act, even
approximately, as a single rational agent. On the
other hand, Lévy [11] understood collective intel-
ligence as an intelligence that emerges from the
collaboration and competition of many individuals;
an intelligence that seemingly has a mind of its
own. These definitions refer to cognitive systems.
From the computational and artificial intelligence
point of view, we can think about a collective as
a set of autonomous units working on some com-
mon task, for example, a multi-agent system. We can
say that the collective is intelligent if it can make
a use of the intelligences of its members for solv-
ing some problem, for example, a decision making
problem. Thus Computational Collective Intelligence
(CCI) should provide computational methods which
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are based on the collective intelligence aspects and
which use the computational techniques for solving
these problems. Regarding knowledge engineering,
computational collective intelligence provides meth-
ods and techniques for determining the knowledge
of a collective as a whole on the basis of collec-
tive members’ knowledge. The need for processing
collective knowledge is quickly increasing because
of the very fast development of Internet, social net-
works and distributed databases. It is obvious that
knowledge originating from autonomous sources for
the same subject is very often inconsistent. Therefore,
the aspects of inconsistency processing and integra-
tion computing are very important.

Knowledge engineering [9] plays a relevant role
in CCI since it is necessary to use its techniques
in order to represent individual information. In fact,
there are studies advocating that scientific knowl-
edge is essentially collective knowledge [23]. In
this line, recent studies state that it is very impor-
tant that different individuals provide orthogonal,
highly unrelated, and possible contradictory knowl-
edge to the collectivity. In other words, “the higher
the inconsistency, the better the quality of collec-
tive knowledge” [20]. Another relevant interaction
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with knowledge engineering is ontology matching
and integration [27], a fundamental activity in order
to collect and process information in CCI. Since
it is well known that this process is both time
and resource-consuming, it is necessary to provide
advanced architectures and platforms to reduce these
costs [15] and good algorithms and frameworks to
efficiently integrate ontologies [16, 21].

Although machine learning and data mining are
two independent fields of work, there are frequent
interactions between them [18]. Interestingly enough
CCI uses machine learning and data mining in its
solutions but there are also numerous applications
of CCI to improve machine learning and data mining
processes. A first issue concerns the representation of
data in machine learning, given the fact that efficient
algorithms strongly rely on a good structure of data.
Actually, the research community organizes contests
to compare existing approaches and to identify future
challenges [7] and, as a result, new highly efficient
methods, beating previous learning methods, are
developed to improve representation learning [30].
Given the huge amount of data generated by current
information systems, it is a must to use good machine
learning algorithms to discover knowledge in these
vast datasets. In order to reduce the amount of useful
data, new techniques take advantage of the improve-
ment in performance provided by parallel algorithms
to process distributed data [31].

Learning from data streams is an area of increasing
importance [14] and new approaches are needed to
perform data stream mining and, again due to the huge
amount of processed data, classify the received data,
according to similarity, with good performance [17,
22]. Data stream mining uses prediction models to
deal with historical data. However, these models lose
accuracy if they do not frequently update old data
with current data, so that it is necessary to deal with
concept drift and adapt to it [5]. In particular, in order
to cope with this problem when classifying streamed
data, new methods must take into account temporal
dependencies and splitting criteria based on misclas-
sifications [24, 33].

Another area of interest, highly related to the issue
of processing huge amounts of unstructured data,
is text processing and information retrieval. This
line of research is currently very active because of
the ubiquity of social networks, an obvious area of
interest for CCI. Information extraction in tweets is
specially challenging because traditional natural lan-
guage algorithms cannot be used to process them. In
particular, named entities recognition (NER) is dif-

ficult to perform because, due to their short nature,
single tweets do not provide enough information and
novel clustering techniques must be used [13]. Inter-
estingly enough, similar problems with NER appear
in other disciplines, most notably in Medicine where
active learning methods are successfully used [3]. In
fact, clustering methods are widely used to detect
communities in social networks, where members
involved in similar social objects are grouped [32],
although some researchers advocate that the exis-
tence of random factors needs to be taken into account
so that statistical fuzzy approaches are more suit-
able [12].

Intelligent information systems are very useful in
areas where vast amounts of heterogenous, and usu-
ally unstructured information, must be processed.
These systems are gaining popularity in Medicine,
in particular when used to evaluate the quality of
health care systems [1] and monitor the progress of
patients [29]. In the latter case, it is necessary to take
into account the special nature of vital signs so that
the best performance to predict patient conditions can
be obtained when using a fuzzy model.

Intelligent database systems play a role in many
different areas. In particular, they can be used in Com-
puter Science to improve existing methodologies.
This is the case of using databases to help in the repli-
cation of experiments in Software Engineering [2,
6]. This is an area where, again, statistic information
is frequently used to construct robust methods [10].
This is specially relevant if datasets are non-normal.

The next kind of systems that we consider within
the topics covered in this special issue are decision
support systems. They are particular relevant in the
context of CCI if we consider them in the scope of
decision making and knowledge engineering, most
notably, in the context of decisional DNA [25], a
structure suited to obtain knowledge in decision mak-
ing processes, and virtual engineering objects [26].

We finish this brief overview of the field with
the application of computer vision techniques to
video surveillance and object detection. This is a
line of work where huge amounts of data must be
adequately processes and analyzed. Since data are
observed and/or collected from distributed locations
and intelligent decisions must emerge, in particular
when an imminent danger is recognized, this field
is in the scope of CCI. The number of cameras
installed in public areas is steadily increasing with
the consequent increase of the amount of images
to be processed. One of the current concerns is
the detection of abandoned objects because of the
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threat that they can represent. Therefore, new robust
and efficient algorithms are being developed, taking
into account varying circumstances such as lighting
changes [28]. Similarly, the detection of pedestrians,
as well as the objects that they carry, is an active
line of work [4, 8] where probabilistic approaches
are widely used to decide whether the pedestrian is
carrying potentially dangerous artifacts.

The aim of this special issue is to present to
the research community a comprehensive collection
of articles including the most relevant and recent
achievements in the broad field of Collective Intel-
ligent Information and Database Systems. We have
been able to cover most methodological, theoreti-
cal and practical aspects of Collective Intelligence,
and its relation to databases, understood as the form
of intelligence that emerges from the collaboration
and competition of many individuals (artificial and/or
natural). This special issue includes, in particular,
extended and revised versions of papers selected from
the 2016 edition of the ACIIDS conference and the
2015 edition of the ICCCI conference. In addition, we
called for high quality, up-to-date contributions in the
broad field of Collective Intelligent Information and
Database Systems.

The topics of interest for the special issue are those
considered in the intersection between the ICCCI and
ACIIDS Conference series. The papers in this spe-
cial issue are distributed according to the following
specific categories:

– Knowledge engineering and semantic web.
– Text processing and information retrieval.
– Machine learning and data mining.
– Social networks and recommender systems.
– Agent and multi-agent systems.
– Intelligent information systems.
– Database systems and software engineering.
– Decision support and control systems.
– Computer vision techniques.

After a careful reviewing process, we have selected
40 papers to conform this special issue. All submitted
papers, including the extended versions of conference
papers, were peer-reviewed and selected on the basis
of quality and relevance to the special issue.

We would like to thank the authors of the sub-
mitted papers for their interest in the special issue
and the high quality of their contributions. They are
the most important piece to conform a relevant and
interesting scientific work. We would also like to
thank the members of the Guest Editorial Board,
and their subreviewers, because their careful work

and dedication have been fundamental for the suc-
cess of this special issue. The list of members can
be found at https://sites.google.com/site/sejifs2016/
guest-editorial-board. Finally, we would like to thank
Van Du Nguyen (Wroclaw University of Technology)
for his help with the web site.
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