
2001 Society for Design and Process Science
Printed in the United States of America

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, pp. 1-3

SOFTWARE ENGINEERING
EDITORIAL

 Bernd J. Krämer

Department of Electrical and Information Engineering
FernUniversität, Hagen, Germany

This special issue is dedicated to the memory of Herbert A, Simon, in recognition of his research,
his mentoring of a generation of junior researchers, his leadership of the Society for Design and
Process Sciences and Software Engineering Society.

It is now 35 years that the “software crisis” was declared and the term „Software Engineering“ was
coined by a Nato study group. The claim of this group was that the design, implementation, and evolution
of software can be organized as an engineering-like activity (Naur, Randell, 1969). Since then the field
never lost its attraction to researchers and funding agencies but rather grew to an extremely broad
discipline including many aspects from computer science, mathematics, management, economics, and
even psychology. It has nearly taken that time to establish software engineering as an accredited engineering
discipline, a licensed profession, and an academic degree, which can be earned now at more than 70
universities in Australia, Europe, and North America. The body of knowledge in this field, which has
accumulated over the past, is currently documented by the international SWEBOK1 project group initiated
by the IEEE.

In the early days, research and development in this area focused on pragmatic techniques and software
engineering environments aimed at a coherent set of tools that supported all technical and managerial
aspects of software development processes. At that time “process” designated a vague concept, while
the software product was the topic of concern. The importance of the emerging focus on process was
first documented in the theme of the 9th International Conference on Software Engineering held in
Monterey 1987. This event stimulated a rapidly growing sub-discipline, which generated its own conference
series, journals, and monographs.

Software design was a theme of continuous interest and progress in software engineering, which
ultimately culminated in a rich set of theories and practices for designing and evolving software
architectures. Design issues at this abstraction level address the gross organization of complex software
systems as consisting of high level computational building blocks, called components, and their
interconnections. This birds-eye view of software applications provided the footing for a new, component-

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 2

based approach to software engineering. Building software with reusable components promises to provide
many advantages. Whether they can really be achieved like in other engineering disciplines is still to be
seen. Research and development are still at an early stage and the long-term consequences of the new
engineering approach on software development practice are still unclear. Key questions emerging from
this subfield include the design and maintenance of components for reuse, the flexible and impact-free
exchange of components in existing systems, and the targeted adaptation and evolution of components.

This special issue is opened with Herbert A. Simon’s visionary view on the “Role of Software Engi-
neering in Systems for Design and Process Control,” which he communicated in the form of a video
speech at the Fifth World Conference on Integrated Design and Process. Starting with a reflection of an
earlier message to the SDPS community, Simon strongly argues in favor of designing understandable and
evolvable systems. Software evolution is a recent development paradigm that recognizes the economic
extent of companies’ and organizations’ software investments and the long-life of commercial software
applications. It views the initial software development activities, which are often confused with the
overall process, just as the beginning of a possibly unlimited process of continuous change, where each
step in this process must not invalidate the qualities of the actual software system. The core objectives
each software engineer should bare in mind includes usability of both the application system and the
engineering methods and tools, learning and reflection of software tools, and a component view of software.

You will be surprised to see to what extent the next six contributions address different facets of the
claims raised in Simon‘s message communicated at a time when these papers weren’t even written. A
common thread is the emerging paradigm of component software engineering but each paper addresses
a different facet including evolutionary development of software architecture, design-by-contract enriched
by a notion of trust, requirements elicitation, software internationalization, simulation of distributed real-
time applications, and visual support of component developers.

The paper by Sünbül, Weber, and Padberg emphasizes the need for continuous software change
driven by evolving business processes. Their approach relies on a component-based software architecture.
This architectural framework includes both computational components, which provide services to their
users, and business process components, which represents parts of business processes and are linked to
service components. Hence any change in organizational behavior that is documented in a revision of
corresponding business process components may automatically trigger a change in the service components
affected. This approach contributes to Simon’s claims of understandability and evolution.

Schmidt, Poernomo, and Reussner, in their article “Trust-By-Contract: ..”, develop novel architectural
mechanisms that allow designers of distributed, component-based architectures to enrich the contractual
specifications at component interfaces for the sake of compatible component replacement while maintaining
architectural stability. Their notion of protocol rules bares many similarities with the business process
components of the previous paper. Besides supporting evolution control, their focus is on enhancing trust
in components for third-party users.

Understanding and observing the needs of the contractors and users of a software system is a core
research issue in software engineering for about a decade now. A major challenge to this research is the
gap between largely informal and visual techniques that are used to capture requirements and communicate
initial system designs to stakeholders and rigorous modeling and specification techniques preferred by
software developers. The paper “Automatic Synthesis of Behavioral Object Specifications from Scenarios“
by Khriss et al. tries to bridge this gap by using a technique for requirements elicitation and specification
building that is popular in practice but lacks some rigor necessary for technical development steps. They
propose to document scenarios, which capture only partial descriptions of system behavior, with use case
and collaboration diagrams of the Unified Modeling Language (UML). They suggest a four-step process
for synthesizing behavioral specifications from such scenario descriptions. This contribution addresses

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 3

Simon’s quest for understandability and usability of development methods and tools. Their algorithms are
ready to enhance the functionality and use of commercial CASE tools supporting the UML.

In his criticism of the current state of software development, Simon raised the issue of increased
international communication. His concern is picked up and treated in much detail in “A Practical Look at
Software Internationalization” authored by Purvis et al. This contribution tackles cultural, linguistic, and
technical problems of software to be used in different parts of the world. The authors illustrate their
findings and their cure with a practical example of a Java-based tool supporting discussion and decision-
making in geographically dispersed teams. They conclude with a decent analysis of the impact of
internationalization on the entire software development process.

Alfert’s and Fronk’s paper on “Experiences in 3-Dimensional Visualization of Java Class Relations”
dive even deeper into the software development process and present a new tool that helps software
developers to maintain a better survey of the plethora of interconnections between software components,
made precise with the example of Java class relationships. They have implemented a novel class browser
that supports 3-dimensional representations of class structures for Java applications. Color, geometry,
and shape are exploited to visualize different semantic concepts and thus enhance understandability and
usability of software design tools.

Kim’s paper on “Multi-Level Distributed Real-Time Simulation Based on TMO Modeling” introduces
two new perspectives on software: real-time requirements and behavioral simulation. Simulation is an
important technique to obtain a proof-of-concept prior to investing a lot of money and man-power in
coding activities or to enable cost-effective testing of software systems outside their operational
environment. Major advantages of the new simulation scheme proposed in this paper include improved
capabilities for real-time software evolution and component-orientation.

I encourage you to read these illuminating articles and start a lively debate with the authors.

References
Naur, P., and B. Randell (eds.): Software Engineering: Report on a Conference Sponsored by the

NATO Science Commission, Garmisch-Partenkirchen, Germany, 7–11 October 1968.

