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Abstract. Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial
revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This
article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what
are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is
trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship
between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From
investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining
power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering
transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous
machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent
opportunity to bring the new capabilities of ubiquitous machine intelligence, and trustworthy AI principles, as well as digital
trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
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1. Introduction

The convergence of disruptive digital technologies, such as artificial intelligence (AI), Internet of
Things (IoT), cloud computing, high-speed wireless communication, and blockchain, among others,
has driven the world into a new wave of a technology revolution, known as the “fourth industrial revolu-
tion” (4IR) (Schwab, 2017), also known as the “digital revolution” for the central role of digitalization
in the 4IR. In 2011, Germany first launched their Industrie 4.0 initiative aiming at leveraging Cyber-
Physical-Systems (CPS) to build smart factories and strengthen their leadership in manufacturing.
The US launched a national Advanced Manufacturing program in 2014 and declared manufacturing
to be a national priority. Recent Five-year Plans of China since the 2010s actively promote critical
technologies towards 4IR. Industry 4.0 (I4.0) is a term frequently used as an interchangeable term
for 4IR; however, they have some subtle differences in their focuses. In this article, we use the 4IR
to address the revolutionary change in paradigms and tools, and we use Industry 4.0 to address the
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targeted industrial systems (with manufacturing in the core as the fundamental component) in the 4IR.
Briefly, Industry 4.0 is the target or goal, and the 4IR is the movement or process toward that goal.

A defining feature of the fourth industrial revolution is digitalization. Associated with this feature, a
pervasive and profound digital transformation is ongoing in almost every aspect of human society glob-
ally. Digital Engineering is the digital transformation in the field of engineering, and digital engineering
transformation is at the center of 4IR. In 2018, the US DoD launched their Digital Engineering Strategy
(US DoD, 2018; Zimmerman, Gilbert, & Salvatore, 2019). This strategy requires using and sharing
formal models and digital data across engineering lifecycle and organizational boundaries through a
trusted “authoritative source of truth”. This move will impact the US defense industry and propagate
to other industry sectors and change how engineering is conducted. Digital engineering transformation
is about engineering paradigm shifts in the 4IR, and AI is a critical enabling technology in the digital
engineering transformation.

AI has achieved remarkable progress in recent years. At the same time, the disruptive impacts and
fast growth of applications of AI systems (particularly ML) also raise broad concerns about an AI sys-
tem’s reliability, safety, security, privacy-preserving, fairness (or bias-free), explainability, traceability,
transparency, and accountability, among other qualities. Research on those concerns has been ongoing
under the umbrella of “Trustworthy AI” (AAAI Presidential Panel on Long-Term AI Future, 2009; EU
AI HLEG, 2019; Liu et al., 2021; NSF, 2019; Stone et al., 2016; Wing, 2020). Trustworthy AI has two
primary aspects: societal effects (ethics) and technical performance (dependability). The ethics of AI
concerns the long-term impacts of AI on humans and human society. The central principle is to use AI
for good or for purposes beneficial to humans. Dependability concerns the competency of AI systems
on technical matters. Given the critical role of AI in the 4IR, the recent concerns about trustworthy
AI also propagate into Industry 4.0 systems. The AI community has been striving for many decades
to push the boundary of machine intelligence. The engineering community will bring AI technologies
and ethical principles together to deliver trustworthy cyber-physical-social smart systems to human
society.

This article will discuss the following research questions:

(1) What are the fundamental changes brought by the fourth industrial revolution?
(2) More specifically, what are the fundamental changes in engineering? What is digital engineering?
(3) What are the main uncertainties associated with the 4IR? What is trustworthy AI?
(4) What are emerging engineering paradigm shifts in the 4IR?

The contents of this article are organized as follows. Section 2 discusses the answer to the first
question by investigating the patterns of the four industrial revolutions, focusing on the ongoing fourth
revolution. Section 3 continues with the second question to discuss digital engineering transformation
in the 4IR. Section 4 discusses the uncertainties in the 4IR and trustworthy AI. Section 5 discusses some
open issues and focuses on the emerging engineering paradigm shifts. Finally, section 6 concludes the
article.

2. The fourth industrial revolution

What are the fundamental changes (including paradigm shifts and their profound impacts) brought
by the fourth industrial revolution? Let us logically examine the patterns that emerged in industrial
revolutions historically from the perspectives of technological triggers, paradigm shifts, and profound
impacts. As illustrated in Fig. 1, the fundamental changes of both the first industrial revolution (1IR)
and the second industrial revolution (2IR) are the provision of energy (physical power) for industrial
production. The fundamental changes of the third industrial revolution (3IR) and the fourth indus-
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Fig. 1. Four waves of Industrial Revolutions and their profound impacts. Every wave was triggered by disruptive technologies
and followed by paradigm shifts in industrial operations.

trial revolution (4IR) are the provision of machine intelligence (brainpower) to explore and leverage
information power in industries and human society. Both 1IR and 3IR are fundamental for inventing
revolutionary new tools (the steam engine and the computer) to deliver physical and information power,
respectively. Both 2IR and 4IR scale up the delivery of new powers (energy and information power)
initiated in 1IR and 3IR, respectively.

The 1IR is characterized as “mechanization.” The invention of the steam engine triggered the 1IR.
Steam engines lead to the industrial operations paradigm shift from human manual labor to the broad
use of machines in production. A representative example is frequently referred to as the first mechanical
loom. The profound impact of the first industrial revolution is that the using steam-powered machines
to replace human hands in production activities significantly improved the efficiency of production
and released humans from heavy manual labor for more creative activities.

The 2IR is characterized as “electrification.” The invention and use of electric power, together with
the invention of assembly lines, triggered the second industrial revolution. The use of electricity makes
power (energy) usage easy, flexible, free from the space-constraints, and easy to scale up or down.
Without electricity, the idea of assembly lines could not have been realized. With easy access to electric
power, the invention of assembly lines leads to skill specialization-based mass production. This change
marks the industrial operations paradigm shift from early craft production and job production to much
more productive mass production and the associated product standardization. The profound impacts of
the second industrial revolution are mass production and flexible and scalable access to power (energy).

The 3IR can be characterized as “informatization.” The invention and development of programmable
general-purpose digital computers triggered the 3IR. The computer is the most powerful information
processing tool in human history. The availability of this critical tool allows humans to explore and
leverage the power of information, along with using matter and energy. The paradigm shift brought
by the 3IR can be viewed in three aspects. First, with the broad applications of computers in control,
such as the adoption of PLCs, DCS, and SCADA, many human-operated processes became automated
or computer-aided processes. Secondly, information media was digitized (or computerized). Research
reveals that 94% of information media became digital in 2007 (Hilbert & López, 2011). The digital
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forms of information allow information to be stored and read with computers. This machine-readable
(and later machine-processable) property makes information flow largely automated and fast. The
advantages of digital information make information a decisive success factor beyond other factors
during the time of the 3IR. This change leads to the third aspect of the paradigm shift - the business
process transition from material, energy, and product centered to information centered. The fundamen-
tal impact of 3IR is the beginning of using machine intelligence to explore and leverage the power of
information, which leads to new capabilities and significantly improved efficiency and effectiveness
in industrial production and other human activities.

For this reason, the 3IR is also called the “information revolution,” and the period is called the
“information age.” Since the start of the 3IR, many digital technologies, such as artificial intelligence,
industrial robots, portable and then mobile computers, the Internet, wireless networks, mobile devices,
and others, were developed and profoundly changed human society regarding how we work and live
already. Those digital technologies prelude the next wave of technological revolution.

The 4IR can be characterized as “digitalization.” The convergence of transformative and disruptive
digital technologies, such as IoT, high-speed wireless communication, cloud computing, AI&ML, and
blockchain, among others, trigged the 4IR.

IoT, in a broader perspective, also named as “Internet of All Things” or “Internet of Everything,” has
four pillars: Internet of Things, Internet of Information, Internet of People, and Internet of Services
(Kirkpatrick et al., 2013). In the future internet infrastructure, the physical things of interest (such
as various machines, devices, buildings, roads, and other structures, even things of interest in the
natural world), the abstract things (things in the digital world, such as information contents), people,
organizations, and various processes of interest (examples include: service processes, or engineering
processes, even social or natural processes of interest, such as climate change, environmental change,
living things status change, pandemic monitoring, disease infection tracing, and others), anything
of interest are interconnected, through future internet, operating with supports from 5G/6G wireless
communication networks, cloud computing, and AI. In the rest of this paper, we refer term IoT in this
broader sense of the Future Internet or Internet of Everything.

IoT connects the physical world with the cyber world to form an integrated cyber-physical smart
environment. With IoT through sensors and actuators, smart things in the physical world can be
remotely located, monitored, and even controlled through the Internet. With mobile devices supported
with 5G/6G wireless networks, people will have ubiquitous access to the Internet, smart things in the
physical world, and the cloud services needed to handle those smart things. More importantly, people
themselves become nodes of this Internet. This interconnected world, facilitated by IoT, 5G/6G, cloud
computing, and AI&ML, is leading to numerous Cyber-Physical-Social Smart Systems (CPS3) (Huang,
Seck, & Gheorghe, 2016), such as autonomous vehicles, smart factories, smart stores, smart cities, and
others. A necessary condition to develop those smart systems is to digitalize things of interest to make
them uniquely identifiable and machine-understandable; then, we can leverage AI&ML to exploit the
unprecedented richness of information brought by the digital and connected world.

The 4IR with those disruptive digital technologies is “leading to unprecedented paradigm shifts in
the economy, business, society, and individually” (Schwab, 2017). The emerging paradigm shifts in
the 4IR can be viewed from several related perspectives as follows.

(1) Shift from digitizing information to digitalizing everything of interest, including artifacts (both
abstract and physical), natural things, people, organizations, and processes (such as production
and/or service processes, monitored natural processes, and others).

(2) Shift from centralized and distributed provisioning of computing services and machine intelli-
gence to pervasive provisioning of computing services and machine intelligence.
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(3) Shift from information-centered processes (developed in 3IR) to big data and machine
intelligence-centered processes.

About the first shift, different from the 3IR, where information was digitized, in the 4IR, not only
information (abstract artifacts) but also physical artifacts and natural living things of interest, as well
as processes of interest, could be digitalized. Everything of interest, even humans, could have their
digital counterparts (or “digital presence” as termed by (Schwab, 2017)). Such as, some devices or
products will have their digital twins, and some artifacts will have their digital augmentations (the
associated metadata, e.g., provenance). In addition to artifacts, some processes of interest (no matter
about production, service, or some natural processes such as climate change or regional ecosystem
change, among others) could also be digitalized. This pervasive digitalization could be enabled by
semantic web technology (a branch of AI) (Berners-Lee, Hall, Hendler, Shadbolt, & Weitzner, 2006;
Berners-Lee, Hendler, & Lassila, 2001), RFID, IoT, and blockchain.

The second shift can be seen from comparing how computing service was delivered before the 4IR.
From many people using a single large computer, each person using a computer and then a laptop, till
each computer was able to connect to the Internet with a wall jack, computing service was delivered
in a “centralized”, “decentralized”, and then “distributed” approach. In the 4IR, we can use computers
and interact with the world everywhere.

About thirty years ago, Mark Weiser and Nicholas Negroponte had a debate at MIT Media Lab.
Negroponte predicted that AI was going to be the leader for the next wave of computing, but Weiser
argued it would be Ubiquitous Computing, characterized as “invisible” and “connection” (Weiser,
1996). Weiser’s vision, which can be found in a vivid illustration in his essay “Open House” (Weiser,
1996), is one of the original ideas about the Internet of Things. Interestingly, IoT and AI together
become the major drivers for the 4IR. IoT extends the “nerves” of the Internet into the physical world,
and AI is the “brain” of smart things interacting with the digitalized connected world. In addition to IoT
and AI, wireless networks and cloud computing are critical contributors to the pervasive provisioning
of computing and machine intelligence.

First, of course, high-speed wireless communication is an essential infrastructure to facilitate the
mobility of communication, computing, sensing, and delivery of all types of digital services without or
significantly reducing the physical space constraints. Secondly, cloud computing enables ubiquitous
on-demand network access to a shared pool of computing resources, thus meeting scalable and elastic
computing needs (Armbrust et al., 2009; NIST, 2011). Cloud computing is essential for handling the
big data produced in the digital world and for the intensive computing required by AI applications, no
matter where we are.

This article uses the term “ubiquitous machine intelligence” (uMI) to refer to the integrated capabil-
ities enabled by the convergence of IoT, 5G/6G, AI&ML, and cloud computing. Interestingly, the role
ubiquitous machine intelligence plays in meeting the needs of computing and machine intelligence is
very similar to the role of electricity in 2IR, where electricity enables the mobility of power delivery
needed in assembly lines and mass production. Here, ubiquitous machine intelligence makes com-
puting services and machine intelligence pervasively accessible and provides the essential technology
for various smart systems. For this reason, ubiquitous machine intelligence is regarded as the most
fundamental change brought by the 4IR.

The third shift can be viewed through the following comparison. In the Industry 3.0, information
flows and material flows were still separated; thus, information is long-delayed. In the 4IR, the pervasive
digitalization and connectedness make the material and human flows associated with information flows;
thus, real-time information about the material and human flows can be used for decision-making. There
will be unprecedented rich information about the things of interest for decision making. Consequently,
a decisive success factor in the era of 4IR will be the capability of leveraging ubiquitous machine
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intelligence to collect and extract information, discover knowledge from big data, and make smart
decisions in the digital smart and connected environment (Huang, 2017).

Finally, regarding the profound impact of the 4IR, similar to the 2IR that makes power (energy) easily
accessible and leads to mass production, the 4IR makes information power (computing and machine
intelligence) pervasively accessible and leads to various CPS3 with innovative applications. More
specifically, in the 4IR, the pervasive digitalization and pervasive connectedness make data (minerals
of information) available in an unprecedented scale and make computing services and machine intelli-
gence (brainpower or information power) ubiquitously accessible and scale up. Furthermore, they are
triggering and accommodating numerous innovative applications. Those disruptive technologies and
their innovative applications are “fundamentally changing the way we live, work, and relate to one
another.” They lead to “the transformation of entire systems, across (and within) countries, companies,
industries and society as a whole” (Schwab, 2017).

3. Digital engineering transformation

As discussed in the last section, digitalization is the central theme of the 4IR. As such, pervasive
digital transformations are ongoing in almost every aspect of human society. Given the essential role of
engineering in industries, the digitalization of engineering is at the core of 4IR. Digital engineering is
the digitalized engineering, or the targeted digital form of engineering to be realized by the digitalization
of engineering towards Industry 4.0.

The US Department of Defense (DoD) defines “digital engineering” as “an integrated digital
approach that uses the authoritative source of system data and models as a continuum across dis-
ciplines to support lifecycle activities from concept through disposal” in their “Digital Engineering
Strategy” (US DoD, 2018; Zimmerman et al., 2019). As illustrated in Fig. 2, the strategy targets five
goals: (1) formalize the development, integration, and use of models, leading to a continuous end-
to-end digital representation of the system of interest; (2) provide an enduring authoritative source
of truth to share and exchange digital models, data, and other digital artifacts across boundaries of
organizations and the engineering lifecycle; (3) incorporate technological innovation to improve the
engineering practice; (4) establish a supporting infrastructure and environments; (5) transform culture
and workforce to adopt and support digital engineering. Paper (Zimmerman et al., 2019) provides a
comprehensive view of the US DoD’s efforts for digital engineering transformation. The implemen-
tation of this strategy will significantly change how engineering practice is conducted in the US DoD
enterprise and propagate to industries in a broader range.

From the perspective of engineering processes, the transformation from conventional engineering to
digital engineering is illustrated in Fig. 3. In the picture, from a general view, an engineering process
is illustrated as a process model with inputs (left), outputs (right), enablers (bottom), and control (top).
Digitalizing engineering artifacts, engineering processes, and engineering enterprises is the founda-
tion for digital engineering transformation. Without digitalized artifacts, the applications of emerging
digital technologies will be very limited, maybe in an ad hoc manner, or may need human or ad hoc
devices as intermediate agents. As a result, the level of automation and autonomous functioning will
stay at a slightly higher level than in Industry 3.0. On the other hand, with digitalized engineering
artifacts and processes, we can broadly leverage machine intelligence and other digital technolo-
gies to conduct engineering in a digital, smart, and connected environment; thus achieving a new
level of engineering, which is more effective and efficient as well as more trustworthy. Some advan-
tages of digital engineering include: sharable knowledge and data across the engineering life cycle,
increased explainability and transparency of engineering processes and products, fast integration of dis-
tributed engineering resources for a given mission, increased traceability and accountability, increased
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Fig. 2. The US DoD Digital Engineering Strategy. Picture from (US DoD, 2018) (Figs. 3, 4).

Fig. 3. Digital engineering transformation from a process perspective.

product traceability along supply chains, and quick adaption to the changing environment, among
others.

In digital engineering as shown in Fig. 3, the inputs, outputs, enablers, and control are different
from the conventional ones; correspondingly, the digital engineering operations will also signifi-
cantly differ from the conventional ones. In the digital engineering transformation, along with the
fast-paced digital technologies, “computational thinking” (Wing, 2006, 2012) is critical to the new
engineering paradigms. Knowledge and skills in applied computing and relevant digital technologies
have become necessary components in workforce development towards digital engineering. Figure 4
briefly describes operations in the digital engineering lifecycle from a model perspective. Some further
discussion of digital engineering can be found in (Huang et al., 2020).

Finally, AI is a critical enabling technology to advance digital engineering (Huang, Beling, Free-
man, & Zeng, 2021). In addition to the broad applications of Machine Learning for modelling and
prediction in engineering, another AI branch, knowledge representation and reasoning, particularly
semantics technology, is a fundamental technology to support digitalization. For example, ontologies
are used in MBSE (Madni & Sievers, 2018). AI also plays a critical role in the logical formalization
in building and operating digital trust & security systems (Huang, 2018). We will discuss further in
subsection 5.3.
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Fig. 4. Model perspective: operations in the digital engineering lifecycle (Huang et al., 2020).

4. Harness uncertainties in the 4IR – A key: Trustworthy AI systems

The disruptive digital technologies in the 4IR not only offer transformative opportunities but also
bring in uncertainties and have triggered broad concerns and research on systems trustworthiness. The
focused concerns of trustworthiness have been shifting and expanding to cover new issues that pop
up in the new technologies used in each generation of engineering systems. This section discusses the
trustworthiness concerns of Industry 4.0 systems, starting from examining the evolution of the trust-
worthiness of engineering systems, then focusing on trustworthy AI systems – the pivotal component
of Industry 4.0 systems.

Before we move to these topics, let us discuss the elementary concepts of trust first. We use trust
explicitly or implicitly, even unaware of using it, in our daily life and work. However, what is trust
exactly? There are many definitions of trust (Walterbusch, Gräuler, & Teuteberg, 2014). Our working
definition of trust used in this article is as follows (Huang & Fox, 2006) - Trust is a mental state
comprising (1) expectancy: the trustor expects a specific behaviour of the trustee, such as providing
true information or effectively performing cooperative actions; (2) belief: the trustor believes that the
expected behaviour will occur, based on the evidence of the trustee’s competence, good intention, and
integrity; (3) willingness to take the risk: the trustor is willing to take the risk for (or be vulnerable to)
that belief.

In brief,

Trust = Expectation +
Belief in that expectation +
Willingness to take the risk for that belief.

Trust can be regarded as a relation between a “trustor” (trusting party) and a “trustee” (trusted party)
with respect to the properties of something provided/offered/conducted by the trustee. For example,
a passenger (trustor) trusts an autonomous car (trustee) regarding the safety of driving on the streets.
What is to be trusted is out of the control of the trustor. From the studies of trust, the factors leading to
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trust include the trustee’s ability, good intention (or benevolence, as some researchers called it) towards
the trustor, and integrity (reflected by the principles and values guiding behaviours)(Mayer, Davis, &
Schoorman, 1995). The roles of ability and good intention in the concept of trust are apparent. Integrity
is the need for trust judgment with respect to the predictable behaviours of the trustee in situations that
are out of watching by the trustor.

According to Simon (Simon, 1997), a decision-making process in the real world is limited by
“bounded rationality,” i.e., the “rational choice that takes into account the cognitive limitations of
the decision maker - limitations of both knowledge and computational capacity.” In the real world,
because we only have limited information/knowledge, limited computing capacity, and limited time
available for decision-making, a decision has to be made partly based on bounded rational calculation
and partly based on trust. As Luhmann addressed (Luhmann, 1979), trust, as “a basic fact of social life,”
functions as a “reduction of complexity.” Without trust, social interactions, including the applications
of technologies in engineering and business, will be extremely difficult. Because of trust, we do not
need to verify everything before a decision making or action. Trust mechanisms (Huang & Nicol, 2013)
play a critical role in harnessing the disruptive digital technologies toward trustworthy utilizations of
them.

4.1. Trustworthiness of systems

Trustworthiness of a system is defined in (Schneider, 1999) as “assurance that a system deserves to
be trusted—that it will perform as expected despite environmental disruptions, human and operator
error, hostile attacks, and design and implementation errors.” In short (Avizienis, Laprie, Randell, &
Landwehr, 2004), systems trustworthiness is the “assurance that a system will perform as expected.”
Trustworthiness is a relative concept and is dependent on what is expected. Trustworthiness is often
characterized as a collection of the expected properties of a system to be trusted, as illustrated in Fig. 5.
The “assurance” can be achieved by various trust mechanisms implemented in engineering systems
and in societal systems such as audits, certifications, regulations, and law enforcement.

In the following, we discuss the expected properties of trustworthiness of different generations of
engineering systems and the sources of the concerns or threats to trustworthiness. Traditional systems
are typically stand-alone systems (a physical system, a computer system, or a system embedded with
computer systems) or just connected logically and internally within an organization rather than the
Internet. As shown in the bottom part of Fig. 5, the trustworthiness properties concerned with those
traditional systems are mainly reliability, maintainability, availability, integrity, robustness, safety, and
usability. Those properties together are referred to as dependability. The sources of concerns or the
threats to the trustworthiness properties are mainly non-malicious faults caused by (1) errors intro-
duced in systems design and development; (2) errors introduced in manufacturing and maintenance;
(3) errors happened in system operations; (4) environmental disruptions, including natural disasters,
environmental pollution, and gradual but irreversible environment change associated with climate
change.

In the middle part of Fig. 5, enabled by Internet and wireless mobile communication, the networked
industrial systems evolve to cyber-physical systems (CPS) (Lee, 2008; NSF, 2008; Rajkumar, Lee, Sha,
& Stankovic, 2010), which use networked computing components to monitor, coordinate, control,
and integrate physical systems and processes. The connectedness of systems naturally led to great
challenges with respect to security and privacy, and correspondingly they become the central theme of
systems trustworthiness (Avizienis et al., 2004; Schneider, 1999). The threats to security and privacy
are obviously from various malicious attacks and incompetent security defence.

As illustrated in the upper part of Fig. 5, trustworthiness for the systems in the 4IR involves concerns
with trustworthy AI, pervasive security, and technical dependability. The issues in an AI system could
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Fig. 5. The evolving trustworthiness properties as the evolution of systems with technologies and the sources of concerns.

trigger security issues and systems dependability issues; of course, security issues could also trigger
systems dependability issues. The sources causing the systems trustworthiness issues are in three folds:

(1) The pervasive security issues caused by the pervasive connectedness facilitated by IoT: the
pervasive connectedness facilitated by IoT pervasively extends the security and privacy concerns
to every corner of the world where humans work and live. Without assured technologies and
societal mechanisms, the Internet of Things can turn into “the Internet of Risky Things” (S.
Smith, 2017), even the Internet of dangerous things. The threats to security and privacy in
4IR include malicious attacks and incompetent security defence as before but with a much
larger attack/exposure surface. Additionally, the threats also include certain relevant societal
mechanisms. For example, as Smith pointed out (S. Smith, 2017), some smart devices will last
longer than their manufacturers and suppliers, and who will keep updating the systems or their
embedded computing components? Without updates, a digital system will be vulnerable in the
complex digital operating environment.

(2) The uncertainties caused by AI systems: the fast growth and broad applications of AI systems
or embedded AI components in various systems have triggered much concern in two aspects:
technical competence (such as reliability and security) and ethical concern (such as transparency,
bias towards groups of people, human-machine relations, and others). The next subsection will
discuss this aspect.

(3) Systems complexity & emergence - the aforementioned two primary two factors together bring
in high uncertainties and complexities into the systems in the 4IR. Complex systems typically
exhibit strong emergence (unexpected emergent system behaviour and properties that were
not anticipated in design and development, e.g., the US-Canada Northeast Blackout of 2003)
(Adcock, Jackson, Fairley, Singer, & Hybertson, 2021).
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4.2. Trustworthy AI

In the last decade, AI achieved remarkable advances. Just to name a few, AlphaGo (Silver et al.,
2016, 2018), using deep neural networks-based reinforcement learning, won the world number one
player of Go game, which is regarded as the most challenging board game for computers to win.
AlphaGo’s achievement marks a new milestone of machine intelligence towards superhuman intelli-
gence on specific tasks. Although it is still a pilot project and has no broader adoption yet, Waymo
One, the commercial taxi service operating with level 4 autonomous vehicles, has been offered on the
streets in a city (Waymo One, 2020). This service marks a new level of integrated intelligent capabil-
ities of an AI system on a type of complex tasks which previously only humans could do. Another
remarkable advance is Generative Adversarial Networks (GANs) (Creswell et al., 2018; Goodfellow
et al., 2014, 2020). A GAN consists of a pair of deep neural networks, a generator, and a discrimi-
nator; together, they can generate realistic images and other contents as requested (see examples at
https://thispersondoesnotexist.com/). GANs lead to many potential applications but also open the door
for deepfake.

For many decades, the AI community’s focus has been on extending machine intelligence capabil-
ities. Although the advances of AI today are still domain-specific (or narrow AI) rather than general
AI, the remarkable achievements, the disruptive impacts, and the fast growth of applications of AI sys-
tems triggered concerns and research on trustworthy AI systems. The concerns are mainly from two
perspectives. (1) Ethical AI, focusing on social effects, mainly ethical considerations, essentially, the
profound effects AI systems bring to humans, human groups, and human society, and advocating using
AI to benefit humans as a central principle. (2) Reliable AI, focusing on the technical performance, or
dependability, concerning the competency of AI systems on technical matters. There is a broad range
of expected properties of trustworthiness in AI systems.

Ethical AI is an emerging interdisciplinary research field, gathering together researchers from a
wide range of areas, including computer science, philosophy, sociology, anthropology, public policy,
law, and others. Some thought leaders and researchers conducted pioneering work in the field. The
Association for the Advancement of Artificial Intelligence (AAAI) organized a panel of leading AI
researchers that conducted “Asilomar Study of Long-Term AI Futures” in 2008. The study explored
a wide range of topics on societal impacts and guidance of AI research (AAAI Presidential Panel on
Long-Term AI Future, 2009). The study assessed concerns and perspectives about disruptive outcomes
of superhuman intelligence, explored ethical and legal issues associated with autonomous systems, and
identified near-term AI research challenges and opportunities, including enhancing people’s privacy,
enhancing human-AI collaboration and interaction, making ML and reasoning transparent to people,
and preventing using AI for malevolent purpose. Continuing the effort to guide AI research for good,
the AI100 2016 report (Stone et al., 2016) addressed that AI research is “shifting from simply building
systems that are intelligent to building intelligent systems that are human-aware and trustworthy.”
The report collectively presents the view and prospects of a panel of experts on the opportunities
and challenges of AI and policy recommendations in eight selected AI application domains targeting
people’s lives in a typical North American city in 2030. They addressed challenges regarding how
to build safe and reliable systems, gain public trust concerning safety, security, and privacy, make AI
systems behave ethically and overcome bias, and how AI systems smoothly interact with humans. In
the long term, ethical AI concerns the fundamental relations between AI systems and humans. There
are concerns about “technological singularity” or “intelligence explosion,” partially reflected by the
dystopia depicted in fiction. Experts in the AI field believe those radical outcomes remain fictional and
are not immediate threats; well, some thought leaders suggest “avoid strong assumptions regarding
upper limits on future AI capabilities” (Future of Life Institute, 2017). Given AI’s profound impacts
on human society, it is necessary to review AI systems’ purposes, usages, and impacts and create

https://thispersondoesnotexist.com/
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principles and regulations for guiding AI research and development to avoid harming humans and
human society. The 23 Asilomar principles (Future of Life Institute, 2017) and the EU HELG ethical
AI guide (EU AI HLEG, 2019) reflect a broad range of concerns about ethical issues of AI systems.
EU AI HELG defined trustworthy AI as three components: lawful AI, ethical AI, and robust AI. The
guide proposed four ethical principles: (1) Respect for human autonomy; (2) Prevention of harm; (3)
Fairness; (4) Explicability, covering transparency, auditability, traceability, and explainability. On the
ground of these four principles, the guide further proposed a list of seven requirements: (1) Human
agency and oversight; (2) Technical robustness and safety, including security, accuracy, reliability, and
reproducibility; (3) Privacy and data governance; (4) Transparency, including traceability, explainabil-
ity, and communication; (5) Diversity, non-discrimination and fairness; (6) Societal and environmental
wellbeing; (7) Accountability. The EU guide also discussed technical and non-technical methods to
implement the requirements and proposed a list of questions used to assess the trustworthiness of AI
systems.

The ethics of AI studies what is right/wrong regarding the purpose and usages of AI, based on the
profound effects AI systems bring to humans and human society. The central principle of ethical AI
is about using AI to benefit humans and human society. In the upper part of Fig. 5, ethicality is about
the extent to which an AI system complies with this principle.

As addressed by the AI100 2021 report (Littman et al., 2021), “AI systems and humans have com-
plementary strengths;” thus, “combined, they can accomplish more than either alone.” Technically,
it remains a challenge regarding how to team up humans and AI systems effectively. For the fun-
damental ethical principles of trustworthy AI (EU AI HLEG, 2019), no doubt human-AI teaming
is the right direction to go, not only for maximizing capability and performance but also for ethi-
cal consideration. Cooperability is about the extent to which an AI system facilitates and supports
human-machine teaming for complex problem-solving, including the channels or methods to enhance
interactions and collaborations between humans and machines. Cooperability covers controllability;
the latter is about the ability of an AI system that allows humans to monitor and control the
system.

Fairness is about whether an AI system fairly treats people of different groups regarding race,
gender, age, cultural background, and others. Fairness received much attention in recent years when
AI systems started being used for some life-changing scenarios, such as hiring decisions, financial
credit evaluation, and judicial decisions (Mehrabi, et al., 2021). Fairness is a highly challenging topic
for complex human societal reasons. Technically, fairness can be treated as bias-free. The recent deep
learning progress reflected by GANs can be used to create real-like samples for balanced data in ML.

Accountability is the availability and integrity of the identity of an entity that performed an operation
in the AI system of concern. In simple, it is who (human operators or autonomous components in an
AI system) did what and when and the responsibility for that. In the scenarios of a security incident, an
accident, an error, or a system failure, accountability helps to identify the causes, make responsibility
clear, and avoid future mistakes.

Transparency is about the extent to which how the AI system operates is transparent to various
stakeholders, such as operators, business partners, auditors, and users. Transparency is a basis for
ensuring ethicality, fairness, and privacy and facilitating controllability and cooperability.

Explainability is the ability to explain the outcomes and processes of an AI system to humans. The
major challenge is that in ML, neural networks have low-level coding for feature representation which
is inherently hard to be explained in high-level knowledge. A very large number of parameters and
complex structures of deep neural networks make the interpretability further harder.

Traceability is about the ability to collect and document the provenance of the data used and produced,
the models used and trained, and the operating processes of an AI system. Traceability is the basis for
transparency and supports explainability.
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Reproducibility is about whether a model instance can be rebuilt with the same AI algorithm and data
and whether an experiment or, more generally, a process running with an AI model can be reproduced.
Reproducibility is essential to science and engineering.

Reliable AI reflects people’s concern about systems’ technical performance when more and more AI
systems are used or embedded in a large engineering system in the 4IR. Naturally, this aspect of concern
brings the focused attention partially back to more classical trustworthiness properties of engineering
systems but with a focus on AI systems or AI components and their impact on the larger systems.
This article uses the term “dependability” to cover all expected properties (for trustworthiness) on the
technical performance aspect. The concept of dependability here is broader than what was defined
in (Avizienis et al., 2004). Reliability is the probability of a system functioning without failure for a
given period of time. Maintainability is about how easy to make a system maintain healthy, updatable,
and upgradeable. Resilience is about the ability of a system to restore it to a working state when it
is damaged in situations such as natural disaster events or cyber-attacks. Safety is about how safe to
humans a system is. The broad use of AI components in engineering systems makes safety a significant
concern. Accuracy is the measure of errors made by a model or system; in the context of ML, it is
critical to have high accuracy for new data beyond the data used for training the model. In Systems
Engineering, robustness is defined as “the degree to which a system or component can function correctly
in the presence of invalid inputs or stressful environmental conditions”(ISO/IEC/IEEE, 2010). In ML,
robustness is about the stable outcomes in the presence of perturbations in inputs and could be measured
with sensitivity. In deep learning, lack of robustness is a critical cause for the possible deepfake by
GANs. The general meaning of robustness is similar to resilience. In robustness, the perturbations are
on a small scale. Usability is how easy a system is to be used, and usability is beyond human-machine
interaction. Poor usability can lead to failures in many other properties in modern systems, including
security and safety.

Security is defined as the well-known definition of the CIA triad: Confidentiality (Prevention of
unauthorized access to the protected resources or disclosure of the protected information), Integrity
(absence of unauthorized alterations), and Availability (Readiness for correct services for authorized
users). Some other interesting security properties can be defined on top of the CIA triad. For example,
authenticity is the integrity of information content and its provenance (origin). Obviously, in the
digital and connected environment, failures in security have broad impacts and can compromise other
trustworthiness properties. Privacy is another big concern in AI. Since data is the fuel for AI systems,
privacy concerns about whether the data gathering, holding, processing, usage, sharing, and governance
respect people’s privacy.

As illustrated by Fig. 5, the trustworthiness of AI systems is the new collection of concerns when the
systems evolve into Industry 4.0 systems. Interestingly, on the other hand, the digitalization of engineer-
ing artifacts, processes, and enterprises in the 4IR could support achieving the expected trustworthiness
properties of AI systems.

In digital engineering transformation, it is an excellent opportunity for the engineering design com-
munity at large to bring the new capabilities of AI and the trustworthy AI principles together in various
engineering systems design for human society to leverage the power of AI and at the same time to
avoid or minimize the potential negative impacts.

5. Open issues and discussion

In previous sections, we have discussed the characteristics of 4IR and their fundamental impacts,
digital engineering transformation - the manifestation of 4IR in engineering, and trustworthy AI - the
leading technology in the digital transformation for I4.0. This section continues the discussion on some
open issues in the direction of 4IR.
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Fig. 6. A view of paradigm shifts, based on Kuhn’s structure of scientific revolutions (Kuhn, 1962).

5.1. What is the pattern of paradigm shifts?

As discussed in section 2, digitalization in the 4IR is leading to paradigm shifts in almost every
aspect of our society. What are the emerging new engineering paradigms? Engineering uses scientific
principles to design, build, and operate engineering systems for solving real-world problems or meeting
humans’ needs in a specific field, thus essentially sharing the paradigms in scientific research. A general
pattern of scientific paradigm shifts can be illustrated as the following Fig. 6.

According to Kuhn’s structure of scientific revolutions (Kuhn, 1962), in the period of “normal
research” or “normal science,” a scientific community uses a dominant paradigm to conduct research
and produce the main body of knowledge in that field. Then, the dominant paradigm may have crises
for its deficiencies or limitations facing the new observations and/or new problems coming from the
changing environment. To battle the crises and meet the new need(s), the disciple enters a period of
“extraordinary research” (as named by Kuhn). In this period, new concepts, models, tools, methods,
among others, will be created. If the new disciplinary components are incremental and can be integrated
into the current paradigm, the paradigm will be updated, thus being a scientific evolution. Otherwise, the
new components developed in “extraordinary research,” possibly together with the components from
other disciplines, will contribute to the development of a new paradigm in a period of “pre-paradigm”
(again, named by Kohn). In the “pre-paradigm” period, one or multiple paradigms will be formed
and compete. Finally, the most accepted paradigm(s) will become the discipline’s new dominant
paradigm(s). This “paradigm shift” (Kohn) is a scientific revolution. After the transformation, the
discipline enters again “normal research” period and starts a new life cycle.

The above discussed pattern is revealed in the context of scientific research. It appears to be general,
as we treat a scientific paradigm as a knowledge system that evolves in the environment.

5.2. What is the fourth paradigm of scientific research?

Jim Gray had a vision that scientific research is shifting to the fourth paradigm (data-intensive
paradigm) after the empirical, theoretical, and computational paradigms (Gray, 2007; Hey, Tansley, &
Tolle, 2009), as illustrated in Fig. 7. The empirical paradigm is characterized as finding and describing
patterns based on the observations of real-world phenomena, and the theoretical paradigm is char-
acterized as building theories on mathematical models. The computational paradigm uses computer
simulations to tackle the difficulty when the theoretical models become too complex to derive and
prove propositions.
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Fig. 7. Four Paradigms in Scientific Research, Slide from (Gray, 2007; Hey et al., 2009).

The fourth paradigm reflects the scientific research in the new research environment with the big
data produced from instruments and simulations, high demands of computing for knowledge discovery
from big data, and emerging demands of data publishing and research work reproducibility. In the
fourth paradigm, scientific research significantly focuses on knowledge discovery from big data and
reproducible models and datasets sharing.

It is essential to point out that a new paradigm does not mean entirely replacing existing paradigms.
Instead, a new paradigm is established on the ground of existing paradigms. A new paradigm represents
the focus shift and the new approach to address new problems in a new environment. Theoretical models
are built on the ground of observations, and computational simulations are based on theoretical models.
The fourth paradigm enhances and unifies the empirical, theoretical, and computational paradigms, on
the ground of an unprecedented big data environment and the new technology for knowledge discovery
from big data.

Inspired by Jim Gray’s fourth paradigm, with the fast growth of big data in the last decade, data
science has emerged as a new discipline. A NIST publication (NIST Big Data Public Working Group,
2019) pointed out that “data science is the fourth paradigm of science.” However, it has been heavily
focused on knowledge discovery from data. From the library and information science perspective, data
curation and knowledge curation are among data science topics. Still, the needs emerging from the
fourth paradigm are beyond just traditional curation and go much further into knowledge and data
sharing with traceability, explainability, accountability, reproducibility, and interoperability.

By the fourth paradigm, data-intensive science/engineering will emerge in various disciplines of
science/engineering. (Data-intensive engineering is the manifestation of data science in the engineering
field.) In this paradigm shift, data science is the common core, shared by many domain-specific
science/engineering disciplines that need knowledge discovery from big data and knowledge sharing.
The combination of data science (the fourth paradigm) with each specific discipline will form many
domain-specific data-intensive science/engineering disciplines.

5.3. What are the emerging new engineering paradigms?

“Science is the systematic description of phenomena” (Richards, 1928). Science focuses on discov-
ering the essential laws of nature. Engineering is “the application of science to the optimum conversion
of the resources of nature to the uses of humankind” (R J. Smith, 2022). On the one hand, there is an
intersection between science and engineering, as engineering includes scientific research for discov-
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ering applied knowledge for engineering purposes. From this perspective, data-intensive engineering
is the manifestation of the data-intensive paradigm of science in the digital and connected operating
environment of the 4IR.

On the other hand, engineering activities are beyond discovering new knowledge and focus more
on the design, manufacturing (or construction), operating, and support of useful systems for human
society, thus having much more complex interactions and relations with other systems in the operating
environment, including human stakeholders. Given this complexity of engineering, the disruptive
digital technologies, and the associated digital, connected, and smart environment in the 4IR, how
should we conduct engineering? What are the new engineering paradigms in the 4IR?

No doubt, the data-intensive paradigm of scientific research is a crucial one. It includes both aspects
of knowledge discovery from data and knowledge sharing (including data). The current “data science”
central theme has focused more on knowledge discovery from data. While “digital engineering” in the
US DoD’s vision is more from the perspectives of model-based engineering and sharing of models and
data. Interestingly, model-based engineering is an effort, like the development of theoretical and com-
putational paradigms in science, to introduce models in engineering workflows, including traditionally
informal activities such as requirement elicitation, requirement representation, system concept mod-
elling, system design, among others. Certainly, modelling needs to be based on scientific knowledge
as much as possible. Also, the availability and richness of data in the engineering environment and
the fast progress of machine learning make it a powerful way to build models from data, leading to
data-intensive engineering.

However, given the complex interactions and relations between engineering, human society, and
the operating environment, the data-intensive paradigm (that focuses on scientific discovery) alone is
insufficient for tackling the complexity of engineering. The need for engineering paradigm shifts in the
4IR is driven by the engineering environment, the disruptive digital technologies, the associated higher
social-economic needs, and the new challenging problems, such as the trust issues of AI systems (as
discussed in Section 4). In the landscape of the 4IR, the digital engineering transformation needs new
concepts, models, tools, methods, theories, methodologies, technologies, and standards.

As discussed in section 2, the 4IR has three aspects of paradigm shifts: digitalizing everything of
interest, provisioning ubiquitous machine intelligence, and big data and machine intelligence-centred
business processes. On the other hand, digitalization and ubiquitous machine intelligence also triggered
broad concerns and potential issues of trustworthiness, as discussed in section 4. To put the above-
discussed pieces together, we could have a relatively clear big picture in the direction of Industry 4.0,
as illustrated in Fig. 8, in which we need three interdependent essential building blocks for the digital
transformation of engineering and industries:

• Digitalization of engineering
• Leveraging ubiquitous machine intelligence
• Building digital trust and security

Digitalization is a foundation to realize ubiquitous machine intelligence and needs to support digital
trust. For this consideration, to digitalize a thing of interest (which could be an object or a process),
we need the following four essential components:

(1) Digital representation of the thing of interest in a standard form with well-defined semantics to
make it universally accessible by different types of machines on different platforms.

(2) A unique identifier of the thing of interest, which is a necessary component for traceability,
verifiability, accountability, and explainability.

(3) Associated metadata, such as provenance, in a standard form with well-defined semantics to
enable the use of digital technologies to manipulate and operate the thing automatically.
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Fig. 8. Three essential building blocks for digital engineering towards Industry 4.0: digitalization of engineering, leveraging
ubiquitous machine intelligence, and building digital trust & security.

(4) Verifiable association of the unique identifier, the digital representation, and the metadata with
the thing of interest. This association ensures the authenticity and integrity of the digital artifact.

For the digitalization of engineering, basically, we need (i) to digitalize engineering artifacts, engi-
neering processes, and enterprises; (ii) enable the sharing and interoperability of digitalized artifacts
across the engineering lifecycle; (iii) to develop digital model-based engineering. Virtualization is a
view from the perspective of operating with digitalized artifacts and processes.

Digitalization needs to be realized with digital trust in design and supported by ubiquitous machine
intelligence among digital technologies. Naturally, in this direction, what are enabling technologies
for digitally modelling engineering artifacts, processes, and enterprises? Semantic web technology (a
branch of AI) (Berners-Lee et al., 2006, 2001), RFID, IoT, and blockchain are essential. Also, directly
related, intensive research on enterprise modeling and enterprise integration has been conducted since
the 1990s and can be used to support model sharing across boundaries (Chen, Doumeingts, & Vernadat,
2008; Fox & Gruninger, 1998; Fox & Huang, 2005; Goranson, 2002; Vernadat, 2020). Enterprise
modelling combined with digital identity management could form a basis for digitalizing engineering
artifacts. Ontologies play an essential role in the digitalization of engineering with respect to artifacts,
entities, organizations, activities and processes, among others (Ahmed, Kim, & Wallace, 2006; Demoly,
Kim, & Horváth, 2019; Dimassi et al., 2021; Fox, Barbuceanu, Gruninger, & Lin, 1998; Gruninger &
Fox, 1995; H. M. Kim, Fox, & Grüninger, 1999; K.-Y. Kim, Manley, & Yang, 2006; Sirin, Coatanéa,
Yannou, & Landel, 2013).

The realization of ubiquitous machine intelligence, the second aspect of paradigm shifts in the 4IR,
is on the ground of digitalization. With digitalized engineering artifacts and processes, we can apply
ubiquitous machine intelligence in engineering to design, build, and support smart products, pro-
vide smart services, build trustworthy supply chains, and conduct engineering intelligently. Consider
the following examples. Machine learning has been broadly applied in additive manufacturing (Jin,
Zhang, Demir, & Gu, 2020; Meng et al., 2020; Wang, Tan, Tor, & Lim, 2020). In the digital, smart,
and connected environment, unprecedented big data provide rich information for using AI in engineer-
ing operations. Condition-based maintenance or predictive maintenance are typical scenarios where
AI&ML can be leveraged (Black, Richmond, & Kolios, 2021; Carvalho et al., 2019). Engineering
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involves many sequential decision making; with rich information about engineering systems’ status,
reinforcement learning can be used to learn from simulations, experiments, routine operations, and
generally experience for optimization, such as in mesh generation (Pan, Huang, Cheng, & Zeng, 2022),
in manufacturing (Su, Huang, Adams, Chang, & Beling, 2022), for engineering design (Dworschak,
Dietze, Wittmann, Schleich, & Wartzack, 2022). Machine learning can also be applied to even tradi-
tionally labour-intensive and time-consuming requirement elicitation process (Cheligeer et al., 2022;
Mokammel et al., 2018). Essentially, engineering systems design starts with the environment (Zeng,
2004, 2015, 2020).  In the new engineering environment of the 4IR, many engineering systems become
cyber-physical-social smart systems, and it is a challenging issue regarding how to design such systems
(Horváth, 2022; Tavčar & Horvath, 2018).

Digitalization brings to us not only advantages but also new issues, most significantly, trust and secu-
rity issues with digital artifacts and those digital technologies. Some examples of those issues include
how do we ensure the authenticity and integrity of digital artifacts, what are policies regarding who
can access what, when to access and where to access, and how do we ensure traceability, transparency,
accountability, and reproducibility, among others. We must develop proper digital mechanisms to
address those issues. How could we achieve secure information sharing in digital engineering? As
an example, a security policy integrating role-based access control and attribute-based access con-
trol (including security classification-based mandatory access control) (Huang, Nicol, Bobba, & Huh,
2012; Jin, Sandhu, & Krishnan, 2012; Servos & Osborn, 2017) can help. Digital identity management
and digital trust mechanisms (Huang & Nicol, 2013), particularly blockchain (Liu et al., 2020; Zheng
et al., 2020), can support trust management of digital artifacts. Digital archives are critical to ensure
data integrity and proof of existence (Vigil, Cabarcas, Buchmann, & Huang, 2013), and blockchain
facilitates a new approach to distributed digital archives. Scientific computing integrity (Huang, 2018;
Peisert, Cybenko, & Jajodia, 2015) can be further developed to support trusted engineering workflows.

Digital Engineering is an emerging form of engineering in the digital revolution. Many issues and
questions there need to be researched. Just name a few, in digitalization, should the standard forms
for digital representation and augmentation be supported by a centralized standardization (such as
creating international standards) or a distributed evolutionary standardization (such as many ontologies
competing to be standards at a fine-grained level and evolving gradually and naturally)? How do we
achieve trustworthy AI systems in 4IR? What are digital trust mechanisms for digital engineering?
Many trust mechanisms used in cloud service (Huang & Nicol, 2013) are applicable to digitalized
products, systems, and services, while still, what new mechanisms should be introduced? Should be
the sharing of digital engineering models and data in a centralized way or distributed way? There are
many issues and challenges ahead as we conduct engineering in a very different new digital environment
(Coatanéa, Nagarajan, Panicker, & Mokhtarian, 2022; Horváth, 2022; Huang et al., 2020)

5.4. What is next?

Earlier in section 2, we discussed the journey of four industrial revolutions in human history. Poten-
tially, what is next? Given the broad and profound impacts of digital engineering transformation on
human society, a farther vision will help us to develop long-lasting engineering paradigm(s) and to
better design and develop digital engineering systems.

Figure 9 illustrates the journey of industrial revolutions from passively following nature to actively
exploiting nature and possibly achieving harmony between human society and nature. Let us start
the discussion with the physical limits of computing. Computational power is the core of ubiquitous
machine intelligence, the defining power we gain from the 4IR. However, with Moore’s law reaching
its limit, the chips for CPUs have hit the ceilings of size and performance, particularly power con-
sumption. The High-Performance Computing (HPC) community has been striking hard to achieve an
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Fig. 9. The journey of human society through the industrial revolutions.

exascale computing system with power consumption within 20 MW (Lucas et al., 2014). In the most
recent Top500 List issued in June 2022, the current fastest supercomputer frontier is the first exascale
machine with 1.1 ExaFlop/s at 21 MW. What we hope to beat Moore’s law are new computational
technologies emerging in the horizon, such as new semiconductor materials, Quantum Computing,
and DNA computing.

Data centres are the most significant contributors to today’s computational power, and data centres
also consume a tremendous amount of energy and have significant environmental footprints. For
example, in the US, data centres consumed 1.8% of electricity in 2014 and were responsible for 0.5%
of greenhouse emissions in 2018 (Siddik, Shehabi, & Marston, 2021). It has become more significant
regarding how to improve data centres’ sustainability. Microsoft’s Project Natick conducted a two
years experiment and found that subsea data centres are feasible, reliable, more energy-efficient, and
environmentally sound (Microsoft Research, 2020).

In a global context, since the first industrial revolution, economic growth has been associated with
high environmental costs, including environmental pollution, overexploitation of natural resources,
deterioration of ecosystems, loss of biodiversity, and global climate change. The problem is challeng-
ing because entities individually lack the motivation to behave environmental-friendly in the market
economic mechanism due to environmental externalities. “Sustainable development is development
that meets the needs of the present without compromising the ability of future generations to meet their
own needs.” (UN WCED, 1987) It has become a consensus of the international community (IPCC,
2022; United Nations, 1992). According to the IPCC AR6 report (IPCC, 2022), global warming is
speeding up - The increase in global surface temperature in 2011–2020 is 1.09 [0.95 to 1.20] ◦C higher
than in 1850–1900, compared to the increase of 0.19 [0.16 to 0.22] ◦C in 2003–2012. The trend of
increase will reach or exceed 1.5◦C in the near term, even for the very low greenhouse gas emissions
scenario. Climate change has led to some irreversible impacts on the earth and is approaching a tipping
point. This cross-century challenge has become urgent and needs the whole world to act collectively
and immediately before it is too late. This global campaign appears geared towards the next indus-
trial revolution for renewable natural resources, particularly renewable energy, reusable materials, and
eco-environmental sound economies to achieve harmony between human activities and nature.

In this direction, science, such as disciplines in biological and environmental sciences, energy sci-
ence, and material science, among others, will be a scientific foundation to reveal facts and provide
knowledge about sustainability. Engineering will bring scientific knowledge into the real world by
developing technologies and designing innovative solutions for sustainability. Sustainability is a highly
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complex problem because it is across disciplinary domains, across industry sectors, across regional
economies, across cultures, across human groups, across human generations, and across human soci-
ety and natural systems. The solutions for sustainability need to be coordinated, comprehensive, and
systematic. Systems science and engineering will play a unique role in applying systems thinking and
designing systematic mechanisms and solutions to address the complex problem of sustainability.

With sustainability in mind, in today’s efforts for digital engineering transformation, we should take
into account the need for sustainability in digital engineering systems design and development. For
example, product provenance can help reuse and recycle after retirement. Particularly, it is critical
to consider the sustainability of new digital technologies (Colorado, Velásquez, & Monteiro, 2020;
Kellens et al., 2017; Paris, Mokhtarian, Coatanéa, Museau, & Ituarte, 2016). The consideration of
sustainability in digitalization will give the emerging digital engineering paradigm(s) a long vision
and better address future needs.

6. Concluding remarks

This article investigated the opportunities and uncertainties in digital engineering transformation
and discussed the open issues about the emerging engineering paradigm shifts.

• From investigating the pattern appeared in industrial revolutions, this article revealed that ubiq-
uitous machine intelligence is the defining power brought by the fourth industrial revolution.
Digitalization is commonly recognized as the main theme of the 4IR and is also the foundation
and necessary condition for the realization of ubiquitous machine intelligence.

• Digital engineering, the digitalization of engineering, is at the core of the fourth industrial
revolution. With the broad applications of ubiquitous machine intelligence, many innovative cyber-
physical-social smart systems will appear, and traditional engineering systems are also becoming
digital smart and connected. The promising opportunities are also accompanied with uncertainties
represented by trustworthiness concerns. Given AI as a critical enabling technology in the 4IR,
trustworthy AI is a crucial field to ensure systems’ trustworthiness in Industry 4.0.

• In the digital smart and connected environment, Digital Engineering needs new concepts, models,
tools, methods, theories, methodologies, technologies, and standards. The emerging engineering
paradigm shifts include but is beyond the data-intensive paradigm (or data-intensive engineering,
the counterpart of data science). Digital engineering transformation towards Industry 4.0 has three
essential building blocks: (1) digitalization, (2) leveraging ubiquitous machine intelligence, and
(3) building digital trust and security.

• Digitalization is much beyond digitization. Digitization aims to make artifacts machine-readable;
digitalization aims to make the things of interest machine-understandable and virtually operatable.
Digitalization of a thing of interest should include: (1) digital representation, (2) a unique identifier,
(3) metadata including provenance, and (4) a verifiable association of the thing with the above
three components.

• The remarkable progress, disruptive impacts, and fast growth of real-world AI applications in the
digital and connected environment have triggered concerns and research about the trustworthiness
of AI systems. The engineering design community at large is facing an excellent opportunity to
bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as
well as digital trust, together in various engineering systems design to ensure the trustworthiness
of systems in Industry 4.0.

Digital engineering transformation is a crucial process for engineering paradigm shifts in the 4IR.
Digital engineering, at the core of the 4IR, is an exciting and broad field to explore and will further
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lead to “the transformation of entire systems, across (and within) countries, companies, industries and
society as a whole” (Schwab, 2017).
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