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Abstract. The design of real-world industrial systems is subject to a natural tendency towards modularization in order to
manage complexity. In addition, this article considers that patterns of self-similarity in many problem domains have made
many such solutions naturally representable as holarchies. Likewise, the increasing need for autonomous local decision making
as well as the demand to produce solutions at scale has increased the relevance of the multi-agent paradigm to the creation of
modern software systems. A variety of software development patterns are explored for their compatibility with holonic multi-
agency. The current skill sets required by software development workers and concomitant training activities focus on instilling
computational thinking abilities, a set of related cognitive competencies useful in the development of such systems. Intelligent
systems play an increasingly important role in modern development and often benefit from computational intelligence
techniques for the purpose of parameter tuning. This position paper explores the intersections between holonic multi-agency,
modern information systems development, the computational intelligence which train them and the computational thinking
skills those developers should be trained in.
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1. Introduction

This position paper considers the inherent tendency of complex systems to approximate multi-
agent systems over time and the consequential need to augment the conventionally understood set
of computational thinking competencies to include reasoning about multi-agent designs. In addition,
the growing use of computational intelligence-based approaches to machine learning and data science
related problem domains, coupled with the recent growth in those domains, necessitates a reasoned
consideration of the intersection between those undoubtably complex systems. Many such problems
have a nested recurrence relationship embedded into their structure and while recursive reasoning is an
already well recognized computational thinking skill its intersection with multi-agent-based modelling
results in the concept of holonic multi-agency a powerful tool for the creation of robust designs for
complex systems.
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Fig. 1. Agent architectures (Coulter, 2014) / (Russell & Norvig, 2020).

This paper argues that multi-agent systems are a natural end point (or at least a strong attractor)
within the space of distributed systems development patterns. By this it is meant that complex system
design approached acquire the attributes of multi-agency over time. The multi-agent paradigm, a design
philosophy in which systems are composed of interacting sets of loosely coupled autonomous entities,
is first explained then cases argued for the aspects of multi-agency present within several classes of
real-world systems. This key concept is illustrated in Fig. 1. The independence of the agents increases
the modularisation of complex system development while the autonomy of each agent reduces the
vulnerabilities brought on my central command and control architectures. This is then continued
to consider computational intelligence systems which have become increasingly important over the
last few years. The emergence of multi-agency across a variety of related subdomains is discussed in
Section 3 while the key requirement of autonomy is increasingly implanted by way of the computational
intelligence techniques described in Section 5. Emergence in this context refers to the convergence of
design principles to this common end state across a variety of sub-disciplines.
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While the development of such systems will require increasing use of computational intelligence
techniques the developers of such systems will increasingly need to exhibit computational thinking
skills themselves.

2. Rational multi-agency

2.1. Bounded rational agency

Intelligent systems do not have infinite temporal or computational resources to devote to decision
making. Bounded rational agency deals with the decision making activities of autonomous entities
under such constraints.

The development of intelligent systems has had a troubled history moving through a very pronounced
series of booms and busts as the limits of their theoretical underpinnings, computational hardware,
and the availability of sufficient quantities of machine-tractable data were encountered placing devel-
opment at odds with the expectations and aspirations of both practitioners and the public at large. As
a result, long periods of so-called AI-winters of reduced funding and development followed periods
of overoptimistic hype. Consequently, the techniques for developing such systems have spanned a
considerable portion of the development of the discipline of software development itself and as such
a need for a unified approach to framing the development of such systems was needed.

The divergent approaches to the development of such systems were not only manifest at an archi-
tectural level but were also present in terms of the fundamental approaches used to represent both
knowledge and reasoning processes ranging from purely symbolic reasoning, logical inference, to
todays dominant data-driven approaches. As such a way to abstract over these differences was needed
in order to create an effective container for intelligent processes. The concept of rational agency
(Russell & Norvig, 2020) has emerged a useful tool for the containerization of intelligence.

The lack of a formal definition of intelligence has necessitated the adoption of more pragmatic
working definitions for the functional and non-functional requirements and other externally observ-
able properties of intelligent systems. These definitions are often very problem specific (for example
maximising accuracy, recall, and precision in classification systems or finding an acceptable set of local
minima / maxima in a constraint satisfaction problem). The lack of precise definition for intelligence,
while troubling on an existential level, is not unique to artificial intelligence research and is reflected
in the study of human psychology where the debate regarding the nature of multiple, task-specific,
intelligences versus a generalized intelligence (known as g) is ongoing (Visser, Ashton, & Vernon,
2006).

As such research tends to focus on developing systems which exhibit rationality in their decision-
making processes rather than true intelligence. Rationality being taken to mean making the best decision
(or at least an acceptable one) given the information available to at the time. This allows for task-specific
quality measurements to be defined for each problem domain.

As implied these systems are often modelled as decision making processes where the intelligence
of the system is captured in a so-called agent function which maps a sequence of observable precepts
together with the state of the environment and any knowledge the agent has embedded within it on an
a priori basis onto the selection of an action from a finite set of possibilities. Agent oriented systems
are considered to be embedded within an environment as opposed to being non-localized inference
engines common in the design of older expert-systems. This environmental embedding is a natural
extension of the need for modularity and complexity management as discussed later.

The exact mechanism for mapping a percept sequence onto action selection varies in complexity
from simple reflexive mappings up to and including complex goal-oriented behaviours incorporating
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Table 1

Agent architectures in a computational intelligence context (Coulter, 2014) / (Russell & Norvig, 2020)

Architecture Cognitive Components Description

Simple Reflex Condition Action Rules Direct deterministic mapping between the percept sequence
and selected action. The sohpistication of implementation is
not an issue in that the condition action rules need not take
the form of an explicit sequence of branching code. A
feedforward neural network which does not undergo
anyfurther training may also consitute a simple relfex agent.
Consider that reflexive responses to stimula in humans are
implemented neurologically.

Model-based Reflex Model of World Evolution Such agents consider the fact that the environment within
which they are embedded may not be static over time and
that actions have consequent impacts on the state of the
environment. The model of the enironment is not adaptive
however. A pre-trained feedforward neural network may
capture both aspects of the architecture in terms of world
evolution and condition action mapping.

Condition Action Rules
Model of Action Effect

Utility-based, Model-based Model of World Evolution By augmenting the world evolution functionality with a
metric that ennumerates the desirability of a given world
state the agent is able to select from a set of optimal (or
pareto optimal) actions i.e. those that lead to a more
desirable world-state. While finding a locally optimal or
globally optimal world-state could be considered as a goal
the lack of explicit representations of such end states and
intermediate states diffeerentiates these agents from true
goal-based agents

Condition Action Rules
Model of Action Effect
Utility Function
Utility Optimization

Goal-based Agents Model of World Evolution Goal-based agents are often implicitly an extention of
utility-agents which have been augmented with the ability
to label certain possibile world states as desiable end-states
as well as to identify the required intermediate states
(sub-goals) needed to reach those end-states along with the
sequence of action selections required to reach those states
(planning).

Condition Action Rules
Model of Action Effect
Goal-aligning Action

Learning Agents Critic Learning agents are made up of a set of highly coupled
sub-components which each play a role in increasing the
adaptability of the agents action selection behaviour in the
face of dynamic or initially unknown environments. The
performance element encapsulates the agent function but
takes input on the efficacy of its selections from the critic
according which are adjusted according to the learning
element. Balance between exploration and exploitation is
managed by the problem generator.

Learning Element
Problem Generator
Performance Element

an understanding of the environment within which they are embedded and its evolution over time and
in response to the selected actions themselves. Table 1 summarised the main agent architectures while
the accompanying Fig. 1 shows more details regarding those structures.

The exact nature of agent environments also varies considerably depending on the problem domain
which has profound impact on the design decisions involved in agent architecture selection, percept
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Table 2

Agent environments extended from both (Coulter, 2014) and (Russell & Norvig, 2020)

Environment Type Symbol Representation Description

Observability O {O ∈ R|0 < x ≤ 1.0} This is a measure of the degree to which each percept
includes the totatilty of the environment. Traditionally
defined as only partially or fully observable in terms of
whether some information is hidden from the agent. It
makes more sense to denote this using a continous value
indicating possible values from unobservable to fully
observable. Rational behaviour is not possible in a
completely unobservable environment

Agent Multiplicity M {M ∈ R|1 ≤ x < ∞} This is a measure of the number of agents within the
environment. The interval is closed on the left hand side
with a value of 1 (conventional single-agent system) and
open and unbound to the right. Practically there can only be
a finite number of agents.

Predictability P {P ∈ R|0 < x ≤ 1.0} This is a measure of the degree to which transitions from
one state to another in the world model can be followed in a
deterministic manner. A value of 1 indicates a truly
deterministic environment with lower values indicating
increasing amounts of uncertainty in the outcomes of
actions.

Dynamism D μ
(Aen)
D → [0, 1] This is a measure of the whether the environment changes

state independantly of the actions of the agent. This is
represented as a fuzzy set whose set membership function
ranges from static to dynamic. The reason for the use of
partial set membership across the domain of discourse of
the agent environment is the existence of semi-dynamic
environments which include some aspects of each.

Episodic E E ∈ {e, s} A measure of whether each interaction is self contained
(episodic) or if environmental changes propogate forward in
time (sequential).

Continuous C C ∈ {c, d} A measure of the granularity of the environment as being
either continuous or discrete.

representation, knowledge representation, and the details pertaining to the agent function implemen-
tation. The following describes the most common taxonomy of agent environments which may be
represent as environmental N-tuples according to Equation (1). Table 2 shows the composition of such
an N-tuple in detail.

Aen = (O, M, P, D̃, E, C) (1)

Regardless of the nature of environment or the selected agent architecture decision making is subject
to constraints both in terms of the time available for computation of the agent function as well as access
to required data and communication resources. The end result of decision making under such constraints
is the concept of bounded relationality which accounts for the cognitive limits of the agents as well
as the consequent opportunity costs of deliberation in a real-time environment (Byrant, 2021). Such
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opportunity costs arise as a result of actions not being taken due to incomplete / ongoing evaluation of
possible action selections.

2.2. The principal-agent problem

Real world systems are both complex and multi-faceted and often require the interaction between
human-driven and software-oriented processes. As automation becomes increasingly prevalent and
the amount of time available for deliberation is reduced human beings will less able to meaningfully
participate in the modern economy unless assisted to do so by artificially intelligent systems (Tegmark,
2017). This gives rise to the principle-agent problem wherein the agent must represent the interests of
its principal (the human) while maintaining some degree of autonomy in the execution of its duties
(Alon, Dütting, & Talgam-Cohen, 2021) as the mismatch in terms of temporal scales operated within
by both agent and principal does not allow for real-time human participation.

Unfortunately, the nature of bounded rationality and the inability to completely specify human
interests in a formal manner leads inevitably to the emergence of the alignment problem (Hadfield-
Menell & Hadfield, 2019). The alignment problem is considered a wicked problem in terms of its
multi-faceted nature. Weaker versions of the problems are often addressed for example by focussing
on confirming that an agent has been authorized to act on behalf its principle rather than the degree to
which those actions will necessarily benefit the principle.

3. The Emergence of Multi-agency

E pluribus unum -tr Out of many, one”
Traditional motto of the United States of America
The following section considers the emergence of multi-agency in a variety of complex systems

with a particular emphasis on software engineering considerations. The recursive self-similarity (i.e.
nested structural patterns repeated at different levels) exhibited in many such problems is used as a
motivation for a holonic approach to considering such systems.

Environments with an agent multiplicity greater than one are considered to be multi-agent in nature.
The addition of multiple agents dramatically increases the complexity of developing such systems as
any internal model must account for the actions of other agents and their impact on the environment.
Such systems are typically classified as either cooperative or competitive in nature based on the degree
of goal alignment shared between agents. As with other such classifications it is not truly a binary
one due to the emergent nature of such systems. Cooperation may emerge in ostensibly competitive
systems if such cooperation yields a greater utility even if only in the short term. Likewise, selfishness
may emerge in otherwise cooperative multi-agent systems due to the restrictions of bounded rationality
preventing comprehensive evaluations of all possible agent plans within the collective (Coulter, 2014).

3.1. Biological emergence

The definitions of life are numerous and often imprecise ranging from broadly information theoretical
approaches centring around replicative patterns through to thermodynamical based definitions focused
on the local minimization of entropy. Such definitions are often framed as the importation of negative
entropy, through to more conventional biological definitions based (Macklem & Seely, 2010).

Early proto-biological systems took the form self-replicative chains of nucleic acids in the form of
either Ribonucleic acid (RNA) or Deoxyribonucleic acid (DNA) in either shallow bodies of water or
deep oceanic vents. These replicators were subject to damage due to the varying conditions within
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these bodies of water. A common theory regarding the transition from prebiotic to cellular life centres
around phospholipids suspended within these primordial bodies of water have a marginally hydrophilic
head and marginally hydrophobic tail i.e. they exhibit an attractive force to water at one end and a
repulsive force at another. As a result, membranes which are formed out of these will find a spherical
least energy configuration trapping a small amount of water in their centre. Replicators which through
chance and replicative drift happened to code for the production of these compounds therefore enjoyed
a survival advantage due to the protection offered by these membranes and become the progenitors
of cellular life. Over time these membranes developed to become more selectively permeable with
chemically regulated gated channels allowing for control over the passage of chemicals to and from
the external environment.

Cooperation between these early cells, mediated by way of chemical signalling, leads to a distinct
survival advantage for participating cell lines in terms of risk mitigation and function specialisation.
Multi-cellular life is thus an instance of the emergence of cooperative multi-agency.

It is important to note that similarities and differences do exist between natural properties and
similar properties in engineered systems. Such distinctions have been considered in the context of
natural adaptability in contrast with adaptability in systems (Horváth, Rivero, & Castellano, 2019).

3.2. Early software modularization

Software systems were originally written using very low-level flow control primitives in order to
create branching and iterative logic. These goto statements allowed the programmer to directly modify
the program counter register used by the CPU to determine which byte in memory would be subject to
the fetch-decode-execute cycle. While this directly matched the operation of the underlying hardware
and provided the programmers with maximal freedom regarding how to sequence the logical steps in
their algorithms the lack of defined boundaries between each logical component in the system meant
that the logical intent was exposed to a high degree of entropy both during the initial development and
subsequent maintenance.

Such spaghetti-code systems were replaced by more structured flow control and procedural constructs
after urging from well known computer scientists such as Edsger Dijkstra (Dijkstra, 1968). Eventually
these components were grouped into modules such as software libraries with well defined interfaces
of programmer exposed functionality. Since each of these components now had distinct boundaries
between themselves and their environments, they were able to lower their exposure to high degrees of
entropy as were systems constructed therefrom. By considering each of these as units of functionality
the overall cyclomatic complexity of systems developed from these building blocks was significantly
lowered (Sommerville, 2018). While not yet able to be considered multi-agent systems the initial stages
of the separation between the system and their external environment had begun.

3.3. Object modelling

The process started by the early modularisation of software systems continued with the emergence
of object-orientation in the late 1990s and its widespread adoption in the development of mainstream
systems in the 2000s. Object orientation (i.e. the encapsulation of related data and the operations legal
upon those data into a single entity together with other related techniques) was built upon further
enhancing the boundary between system components and the internal environment of the system itself
in addition to the external environment the system as a whole operates in.

While there are several principals underpinning the object-oriented design of systems the fundamen-
tal one is the concept of encapsulation which unifies the data relating to a single problem domain entity
along with the operations legal on those data into a single unit. Additional relationships are possible
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Table 3

A selection of UML relationship types (The Object Modelling Group, 2017)

Relationship Symbol Description

Association A set of messages passed with a common purpose may be summarized as
an association between the classes

has-a (composition) A containment relationship representing a whole-part relationship with
the implication that the container and contained do not have a meaningful
independant existence.

has-a (aggregation) A containment relationship where container and contained may have
meaningful existence independantly of each other.

is-a Realisation One object implements the interface defined by another, more abstract
class.

is-a Inheritance A more general base class is specialized into a more concrete derived
class.

between objects and between classes (the design-time analogue of an object prior to its instantiation).
These well-defined relationships are standardised by the Object Modelling Group in the Unified Mod-
elling Language (The Object Modelling Group, 2017), key examples of which are shown in Table 3, and
further enforce the boundary between objects and the internal system environment as object-oriented
systems accomplish their goals by way of message passing between objects in the system. Direct access
to the internal state of an object is not possible and such values may only be accessed or modified by
way of such message passing.

While object orientation represented a firm step in the direction of realising multi-agent system design
the key contribution the methodology is the encapsulation of entity attributes and related operations.
In order for true agent-orientation to be possible autonomy regarding the selection of those operations
(i.e., the implementation of an agent-function) needs to be included.

It is worth noting that there is evidence that imperative approaches to programming such as exist in
conventional object oriented programming may not be ideal for comprehension and skill acquisition
and that those oriented around pure immutable mathematical functions may be preferable (Mirolo
& Izu, 2019). Approaches and dedicated development languages exist which attempt to unify both
paradigms (Richard-Foy & Doeraene, 2021).

3.4. Microkernels

The trend of defining boundaries between systems and the environment within which they are
embedded coupled with imbuing them with a certain degree of autonomy has manifested across many
categories of software system. This section and the subsequent one will continue two such impor-
tant cases where this has emerged in the form of operating system design and web stack backend
frameworks.

Operating Systems serve to fulfil a variety of complex needs, but their primary purpose is to serve as
unified abstraction layer separating the application developers from the complexities and differences
found in the underlying hardware as well as to provide fair access to those application programs to the
limited resources available.

As such a distinction is drawn between code running in the core kernel of the operating system,
which is able to execute a selection of privileged instructions unavailable to conventional application
software, and user-mode code. This distinction, while necessary to allow the operating system to play
its management role, does come at a cost in terms of context switching as values are transferred between
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user and kernel space and the traps necessary to switch into a mode necessary for the execution of
privileged instructions. In a sense this can be seen as the boundary between the operating system kernel
and the environment within which it is embedded. Operating systems differ in terms of the modularity
of their internal architectures and the degree to which those modules may operate autonomously of
each other. These approaches range from the monolithic architecture followed by the Linux ker-
nel, microservice-oriented approaches followed by kernels such as the Mach kernel used within
OSX and the hybrid approaches used by the Windows NT family of operating systems (Tanenbaum,
2016).

Monolithic kernels may be internally modular as is the case with the Linux kernel but still be con-
sidered monolithic due to the lack of internal autonomy of those components as well as their existing
in a shared address space (Novikov & Zakharov, 2018). Truly microkernel-based approaches have
independent modules for each functional area within the system while hybrid systems exist a com-
promise between the two. It is worth noting that the microkernels are themselves often connected via
message passing systems in a manner analogous to the object-oriented approach discussed previously,
the microservice approach discussed subsequently, and the actor and agent-frameworks discussed
thereafter.

Although there are numerous advantages to the microkernel-based approach in terms of increased
fault tolerance and scalability operating systems are very performance critical pieces of software and
as such the advantages of a monolithic approach in terms of minimizing transitions to and from kernel
space outweigh the advantages of loose coupling.

3.5. Microservices

The development of web-based systems has echoed similar trends towards adopting aspects of agent
orientation as shown previously. Initially web-based systems were largely monolithic and although
being externally facing systems that are therefore de facto embedded within an environment their high
degree of internal coupling coupled with their lack of autonomy left them far from the agent-oriented
ideal. Recent trends in the development of such systems have favoured the creation of systems as
bundles of independently invokable web-services echoing the development of library-based modularity
in conventional application development (The Open Group, 2014).

The latter part of the last decade has seen an increase in the implementation of service-oriented
software systems by way of microservices architectures (Bravetti, Giallorenzo, Mauro, Talevi, & Zavat-
taro, 2020). In such approaches each service in the bundle is implemented by way of a microservice.
Microservices themselves are implemented as cohesive independent processes which communicate
with each other by way of message passing and have their own distinct data storage. There are numerous
advantages to implementing service-oriented architectures in this manner.

Each microservice is its own unique process or sufficiently isolated thread of control which means
they may be implemented in different programming languages and distributed across multiple compute
nodes in cloud environments. Such isolation has security advantages in that their address spaces are
disjoint as well as advantages in terms of parallel development in addition to parallel deployment.
Scalability is also more naturally archived as more instances may be spun up and down as needed.
Microservice based systems are often deployed in cloud contexts using containerisation technologies
adding a further layer of modular abstraction. With a sufficient degree of abstraction, and the sequence
of messages taking the place of a percept sequence microservices may be considered as multi-agent
systems.

Figure 2 shows an example of a microservice oriented architecture with distinct data storage on a
per problem domain entity basis (Song, Chauvel, & Nguyen, 2020).
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Fig. 2. A microservice architecture (Song, Chauvel, & Nguyen, 2020).

3.6. Agent development platforms

Due to their nature as critical information infrastructure (Presente, Rolim, & Moreto, 2015), telecom-
munication systems have many of the same needs in terms of robustness, distribution, fault tolerance
as are offered by multi-agent architectures (Dorri, Kanhere, & Jurdak, 2018). This is evidenced by the
contributions to multi-agent technologies made by service provides in the telecommunication space
as is discussed in the section and the following one.

Explicitly agent-oriented standards and software development frameworks have been developed
in the past two decades and successfully deployed. The most important standard for the develop-
ment of software-based agents is ironically the communication standard defined by the Institute
for Electrical and Electronic Engineering Computer Society’s (IEEE-CS) Foundation for Intelli-
gent Physical Agents (FIPA). While the degree to which this standard is used in the development
of physical agents may not align with the name of the foundation however the standards they defined
have formed the backbone for the development of software-based agents where the need for inter-
operation is a concern as they have defined an implementation-neutral standard in the form of the
Agent Communication Language (ACL) specification (Foundation for Intelligent Physical Agents,
2002).

The ACL is based around Searle’s Speech Act Theory (Searle, Kiefer, & Bierwisch, 1980) in which
each message is strongly typed with a performative meaning allowing for both information to be
conveyed as well as instructions to be issued within the same construct. A layer-based decomposition
of the agent communication problem is made in a manner analogously to the decomposition used by
the International Standards Organisation (ISO) in their model of internet communication (Coulter,
2014) such a decomposition is shown in Table 4.

The Java Agent Development Environment (JADE) is the most mature and well-established imple-
mentation of the FIPA standard and was developed by Telecom Italia under an open-source licence
(Telecom Italia, 2021). The portability of the system due to its implementation on the Java Virtual
Machine (JVM) has made it easy to deploy across heterogenous hardware configurations common in
real world infrastructure environments. Development of agent-oriented systems using the framework
is accomplished by specializing the abstract base classes provided by the framework and specifying
the logic of each of a set of behaviours of which an agent is considered to always be running one.
Agent behaviour logic consists of the sending and receiving of ACL messages and occasional switching
between running behaviours selected from a pool of possible behaviours.

Figure 3 shows the static structure of such a specialisation for the purpose of creating a collaborative
multi-agent system while Fig. 4 illustrates the dynamic behaviour of such a running system.
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Table 4

FIPA ACL Modular Layered Decomposition (Coulter, 2014)

SL1: Trans port

SL2: Encoding

SL3: Mes s ag ing

SL4: Ontology

SL5: Content
Expres s ion

SL6:
Communicative

Act

SL7: Interaction
Protocol

 

 Messages typically exhibit locality of reference in that the messages exchanged are 

often part of overarching conversations. This layer establishes the rules fo llowed in 

such conversations , for example the contract -net  protocol.  

 

 This layer classifies the message into one of the predefined performative classes used 

by speech act theory.  

 

 

 While the message contents may be of any form , FIPA does provide guidel ines 

regarding the format of logical formulae and predicates. An example  of a language 

conforming to these guidelines is the FIPA semantic language or  FIPA-SL. 

 

 This layer allows for the message contents to be mapped against a domain -specific 

ontology/mo del . FIPA-ACL does not mandate the use of any particular ontology 

representation.  

 This layer exists in order to maintain the structure of an ACL message in a manner 

which is independent from the markup used in the layer below . 

 This layer exists in orde r to avoid the problems inherent with simple byte -encode d 

streams . ACL messages are intended to  be  represented in high level markup such as 

XML. 

 The lowest lay er in the ACL is the transport layer , which represents the protocol over 

which ACL messages wil l actually be delivered such as HTTP, IIOP and WAP . 

3.7. The actor model

The Actor Model is a system for the modelling of concurrent systems which has converged on
a set of features making it well suited to the creation of multi-agent systems. The Actor Model was
defined in 1973 by Hewitt et al to express a modular, concurrent, message-oriented model of distributed
compotation (Hewitt, Bishop, & Steiger, 1973). The Actor Model has been applied successfully in the
telecommunication industry for similar reasons that lead to the applicability of standard multi-agency
discussed previously. As an example of this consider that the Actor Model is deeply integrated into
the Erlang programming language developed by Ericsson (Chechina, et al., 2017)

Actors, together agents within multi-agent systems, can be viewed as a realization of the object-
oriented paradigm in that each actor encapsulates a single processing unit together with a set of data and
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Fig. 3. Static structure of class specialisation in JADE (Coulter, 2014).

communicate by way of message passing. Interestingly enough, the Actor Model has been successfully
implemented using non imperative languages, as was the case with Erlang, hybrid object-oriented /
functional languages such as Scala along with more conventional object-oriented languages such as
Java. The canonical implementation of the Actor Model on the Java Virtual machine is the Akka
library (Typesafe Inc, 2021) which is officially supported by both the Scala and Java languages (in fact
it supplanted Scala’s original actor implementation of the model) although the framework should be
usable by any JVM language that supports Java interoperability.

Actors, like objects and agents, communicate through a set of messages and do not have direct access
to each other’s internal states. Within the context of the Akka framework actors are grouped within
actor systems and form nested hierarchies of actors Each actor is represented by an actor reference
which encapsulates the actor’s state and behaviour, its mailbox, references to each of its immediate
child actors.

When an actor receives a message, it may react by either sending further messages to other actors
to which it has access and/or by changing its internal behaviour. This behaviour switching approach is
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Fig. 4. Dynamic behaviour selection in JADE (Coulter, 2014).

Fig. 5. Akka actor system hierarchies (Typesafe Inc, 2021).

analogous to how agent behaviours are modified in the JADE framework supporting multi-agency as a
natural endpoint for the development of distributed complex systems. An actor may also create a set of
child actors over which it assumes an oversight role with errors being propagated up to parent actors
in order for them to handle by way of their supervision strategy. These actors and their children form
a hierarchy of nested actors akin to a process hierarchy or file system in operating systems. Actors
may additionally be located by way of their ActorPath which represents their location within the actor
system hierarchy. Figure 5 shows the actor hierarchy within an actor system.

3.8. Holonic multi-agency and holarchies

As the previous section shows actor-oriented systems where individual actors are invested with a
degree of autonomy are equivalent to software based multi-agent systems whose percept sequences
are implemented as a series of messages.

Many problem domains have self-similar properties reflecting the fact that examples of these prob-
lems may be recursively defined as smaller instances of the same problem in their own right. The
philosophical concept of a Holon represents an entity which is simultaneously a part of something and
a whole in and of itself. A nested hierarchy of holons is referred to as a holarchy. Ongoing work involv-
ing the implementation of holonic multi-agent systems which build upon these ideas using the Akka
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Fig. 6. A holonic multi-agent implementation of Map Reduce (Cullinan & Coulter, 2021).
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Fig. 7. Multi-agent artificial immune algorithms (Coulter & Ehlers, 2012).

framework’s actor systems to realize holarchies of multi-agent systems has been explored (Cullinan
& Coulter, 2021). Although complete details of the work can only be made fully known following the
publication of the work the basic concept is that the self-similar nature of the widely used Map Reduce
approach to structuring Big Data solutions is exploited to create a holonic multi-agent system on the
Akka platform. Figure 7 illustrates this concept in abstract.

4. Computational thinking

4.1. Core competencies

The cognitive competencies required for effective software development have been discussed under
many names since the inception of the discipline itself. The modern cycle of the required competencies
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debate was rekindled by an article in the Communications of the Association for Computing Machinery
(Wing, 2006), furthered across a number of important and influential venues such as the Royal Society
(Wing, 2008), and continues to this day (Bradshaw & Milne, 2021).

Computational competencies in this discussion have focussed on algorithmic thinking, abstrac-
tion, and automation. These competencies are often kept at a fairly high level as many mechanisms
exist for realizing abstraction and over specifying these details is dangerous in a field as rapidly
evolving as information technology. The position adopted here is that previously important aspects
of developing complex systems should have been explicitly included as an aspect of computational
thinking and that its omission has proven harmful. Likewise thinking in terms of multi-agent sys-
tems has become increasingly important and as discussed previously is a natural progression across
multiple disparate branches of software development. The nested natures of holonic multi-agent sys-
tems necessitates the development of referential thinking capabilities as discussed in the following
subsection.

For the purposes of this discussion the core competencies considered are referential thinking, parallel
problem solving, and multi-agent problem decomposition.

4.2. Referential thinking, parallel problem solving, and multi-agency

A particular competency required in the development of complex information systems is the ability
to reason about systems with high degrees of indirection i.e., those whose architecture makes use
of multiple layers of references. Such thinking is particularly important in lower-level programming
languages which directly expose the underlying memory model of the underlying hardware in the form
of explicit pointer variables to store and modify memory addresses. This holds true in principle even
if the actual physical addresses are abstracted behind virtual memory addresses. Errors in reasoning
about such matters has resulted in a significant number of logical errors and security vulnerabilities
across the years.

For this reason many attempts to solve the issue have focussed on removing direct access to pointers
in favour of system managed references and while this is commendable in that it does reduce the total
number of errors produced it does not negate the need for developing competency in this manner of
thinking. Many problems require referential thinking (the ability to follow and correctly reason about
layers of indirection) that do not involve pointers such as reasoning about deeply abstracted generic type
systems (such as those involving templated code) and highly relational databases. Previous attempts
to offload aspects of computational thinking onto the programming languages themselves in the form
of garbage collected memory management has had similar issues in that they only considered the
management of one type of resource which follows the acquire-use-release pattern namely dynamically
allocated memory. There are many resources which follow such usage patterns such as file handles,
both database and network connections, mutexes and semaphores all of which need well-developed
computational thinking skills to be managed correctly. For this reason resource exhaustion remains an
issue in long running systems even in the face of garbage collected memory.

Parallel problem solving is qualitatively different from conventional sequential algorithmic thinking.
A large number of error classes such as deadlocks and livelocks are only possible in environments
which consist of concurrently executing components. Due to the physical limits of expected future
improvements regarding computational power as well as the growing volumes of data being processed
means that most systems going forward will tend to be distributed in some form or another. The methods
for reasoning about concurrently executing processes and the management of shared resources between
those processes is well studied but often presented in a manner focussed on the development of multi-
threaded applications in a shared memory environment. As argued throughout this paper multi-agency
is a commonly reoccurring pattern in the development of distributed systems indeed if not the natural
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Fig. 8. A T-Cell based agent function (Coulter & Ehlers, 2012).

end point for such development. Therefore, we should consider including multi-agent reasoning as
one of the core competencies of computational thinking.

5. Computational Intelligence

5.1. Immunological computation

Complex natural and biological systems exhibit properties of recursive self-similarity and multi-
agency and therefore require the computational thinking core competencies as described in order to
be meaningfully reasoned about.

Due to the global COVID-19 pandemic appreciation has grown regarding the ability of the vertebrate
adaptive immune system to respond to previously unknown pathogens and, in general, for the quality
of its response to improve over time. This learning process has served as the inspiration for numerous
learning algorithms over time however, in practice, most do not capture the truly multi-agent nature
of the underlying process. The immune system comprises of several layers which have evolved over
millions of years. The system is incredibly complex and, as is common in biological systems, both
highly coupled and highly redundant with functionality duplicated as well as the same system elements
playing very different context specific roles depending in circumstances.

It is therefore natural that any tractable algorithms derived from the immune system must be highly
abstracted and simplified, seeking to capture the essence of the learning process without the unnecessary
complexity.

Unfortunately, the vast majority of implementations ignore the inherently multi-agent nature of the
immune system. The immune system can be viewed as consisting of actors in the form of lymphocytes
(most algorithms incorrectly focus on the antibody as the fundamental representation of the algorithms
when they are more correctly viewed as effectors), whose percept sequences are made up of the antigens
presented to them coupled with the degree of affinity exhibited to those antigens by receptors on their
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cell membranes (the boundary between the agent and its environment is easily defined by way of the
cell membranes of the lymphocytes), and as stated previously the effectors are the various immune
responses such as the antibodies produced.

In addition to not using a multi-agent approach most algorithms derived from the immune system
are not implemented in a parallel manner (i.e. do make use of concurrent threads of execution) which
loses the major reason for the efficacy of the biological systems upon which they are ostensibly based.
The chemical and replicative processes which govern the adaptive response are in fact terribly slow
it is only the fact that they are carried out in a massively parallel manner which allows the system to
function reasonably at all.

The exact implementation of the agent function depends on the aspect of the immune system under
consideration. Figure 7 shows both B-Cell and T-Cell mediated immunity implemented in a parallel
manner while Fig. 8 shows the agent function architecture of a single T-Cell based agent.

5.2. Swarm intelligence

ALGORITHM: Multi-Agent Particle Swarm Optimization

particle behavior : waiting
if(receives message of type receiving) : return behavior receiving

particle behavior : receiving
if(receives message of type particle listing)

onListing : tell all particles found by receptionist of my properties
return same behavior

if(receives message of type request to calculate fitness)
calculate fitness :

calculate force of attraction :
if(fitness < currentFitness || fitness !=0)

pbest = compared particle
fitness = force of attraction

if(total comparisons==threshold) : return behavior startAdjusting;
Particle behavior : startAdjusting

if(this particle and pBest are on the same point in dimensional space) : set velocity = 0
calculate x direction & calculate y direction &calculate euclidean distance
if(euclidean distance < velocity) : set velocity = euclidean distance
update particle values
tell the system you are complete with iteration
return behavior waiting

A similar issue occurs in particle swarm optimisation in which each potential solution to a problem
is mapped onto a position in a high-dimensional problem space. Effectively each candidate solu-
tion can be viewed as an agent encapsulating a utility function and a set of vectors representing its
position and velocity within that space. Agents then communicate the values of that utility function,
using their current location as input, to a limited subset of the population of agents. Their velocity
and hence position is updated by calculating a resultant vector of their local neighbourhoods’ best
positions as well as the best position encountered by the agent itself. Because the neighbourhood def-
initions for each agent overlap incompletely information is transmitted between different subsections
of the population reducing the likelihood of prematurely converging on a local, rather than global,
optimum.
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While the narrative descriptions of such algorithms use the language of multi-agency the actual
algorithms themselves do not exhibit multi-agency or indeed even concurrency in most cases. The
following listing presents a truly multi-agent implementation of a particle swarm system (Thomas &
Coulter, 2021).

5.3. Reinforcement learning

As a counterpoint let us consider reinforcement learning which is an explicitly agent-oriented learn-
ing paradigm in which an agent embedded within an environment selects actions from a set of possible
actions given their environment state. They then receive feedback in the form of an immediate reward
percept (which may be either positive or negative) and must then develop a policy mapping future
percept sequences onto action selections which are expected to maximize its total cumulative reward
over time. Once such family of algorithms is known as Q-Learning (Clifton & Laber, 2020).

Unlike other branches of computational intelligence reinforcement learning adheres to the agent-
oriented paradigm in both the terminology used as well as the fundamental approach to realising the
paradigm. Multi-agent reinforcement learning incorporate game theoretic underpinnings in addition
to the Markov chains of the single agent version of the approach.

5.4. Connectionist learning

The one subdomain of artificial intelligence which has experienced the greatest surge in both interest,
funding, and expectations are those based around connectionist learning approaches such as neural
networks. The improvement in utilisation and applicability of these techniques is a result of simulta-
neous cost-effective access to computational processing power (both locally in the form of cheaper
microprocessors and remotely in the form of cloud computing) as well as access to large amounts of
data with which to train such models.

The most natural intersection between artificial neural networks is in the implementation of the
agent function. This would typically take the form of percepts being mapped onto the first layer of
such a network and each node in the output layer representing a different possible action. The most
strongly activated node after a feed-forward pass through a trained network would represent the action
to be selected. Training of the network would be conducted using either conventional backpropagation
based supervised approaches or a hybrid computational training approach using evolutionary or particle
swarm algorithms (assuming a dataset of correct action selection training examples were available).

Such approaches are of course limited in that they assume that people’s interests lie in the creation
of multi-agent systems in and of themselves rather than simply their being the most appropriate
tool for implementing distributed intelligent systems. For this reason, research has been undertaken in
implementing neural network architectures themselves in a multi-agent manner akin to how intelligence
is an emergent property arising from the interaction of inherently non-intelligent components (Cullinan
& Coulter, 2018). Figure 9 demonstrates such a multi-agent-oriented implementation of a convolutional
neural network.

6. Conclusion

In conclusion this paper presents the position that multi-agency is an increasingly important tool
within the development of complex systems. Computational intelligence techniques are increasingly
used to embed such systems with the autonomy required by the paradigm. In addition, the development
of such systems increasingly requires the skills of computational thinking.
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Fig. 9. An actor/agent-oriented implementation of a convolutional neural network (Cullinan & Coulter, 2018).

The tendency for complex distributed systems to acquire attributes of multi-agency has been explored
and occurs with such regularity that it may be possible to view multi-agent systems as the natural end
point of distributed complex system evolution.

The need for multi-agent-oriented thinking to be considered as part of the core competencies of
computational thinking was elaborated upon. This point was reinforced by considering how an emerg-
ing class of economically important complex systems (namely computational intelligence systems)
may be better framed in terms of multi-agency and discusses some of the work done to that effect over
recent years.
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