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THE RELATIVISTIC OBSERVER  
Consequences of a Linear Expansion of Spacetime 
“One now has to remember that by our knowledge “matter” is not to be perceived as something primitively 
given or physically plain. There even are those, and not just a few, who hope to reduce matter to purely 
electrodynamic processes, which of course would have to be done in a theory more completed than 
Maxwell’s electrodynamics.” Albert Einstein, to the Prussian Academy of Science, November 15, 1915. 
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Abstract Communication Dynamics Theory, defined in a companion paper, offers a new approach to understanding 
Spacetime.  In Communication Dynamics Theory, physical reality is assumed to arise from an anisotropic expansion 
of a one-dimensional communication network.  In this paper, we perform a first approximation mathematical 
transformation of the theory into hyperbolic geometry.  The resulting model provides a potential basis for developing 
insight pertaining to previously poorly understood fundamental constants of physics.  As a demonstration, we define 
a proton, neutron, and electron, demonstrate the emergence of observable space and time, and generate heuristic 
estimates of Euler’s number, the fine structure constant, and π, as well as geometric descriptions of fundamental forces 
of nature, occurring as natural consequences of the linear dynamic expansion of Spacetime. 

Keywords: Communication dynamics theory, theory of matter and energy, communication theory, physics, general 
and special relativity 

Introduction 
More than 100 years after the emergence of the notion of quantum effects, fundamental challenges 

remain in understanding and modelling the relationship between particles and waves (particle-wave duality).  
After the “miracle year” of 1905 (Einstein, 1905a, 1905b, 1905c, 1905d) Einstein focused on expanding 
electromagnetic theory to incorporate and generate photons (waves to particles).  Concentrated efforts 
between 1908 and 1911 did not generate results to his satisfaction.  He subsequently approached the 
problem from a different direction, expanding the notion of particles on the large scale to wave behaviour 
(particles to waves). After several years Einstein in arguably a second “miracle year” introduced his general 
theory of relativity through four submissions presented to the Prussian Academy in 1915 (Einstein, 1915a, 
1915b, 1915c, 1915d).   

In ensuing years, Einstein continued to strive to extend General Relativity to electromagnetic theory, or 
alternatively derive the theory of General Relativity from electromagnetic theory, but a statistical-
mechanical interpretation of the quantum, powerfully embodied by 1925 by Earnest Schrödinger 
(Schrödinger, 1925) increasingly became dominant.  However, clues supporting the existence of a more 
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coherent, unified interpretation of physics that might integrate general relativity and quantum physics have 
long been available in the works of Max Planck, Hermann Minkowsi, and Werner Heisenberg.  First, the 
absolute linkage between Space and Time was recognized by Minkowsi (Minkowski 1908, 1909, 1915).  
Minkowskian Spacetime, fully adopted by Albert Einstein in his general theory of relativity, embeds time 
in 3D space using an imaginary number to generate complex vectors. Minkowski diagrams present points 
of simultaneous observation in a Spacetime manifold, considering only one dimension of space, and one of 
time.  If we consider each point in a Minkowsi diagram to be an observer, each point in a Minkowski 
diagram can be considered to show an instance of an observer dependent spacetime location map – a 
network of location information.  Multiple instances of this map (a dynamic Minkowsi diagram) could 
consequently be represented as an evolving communication network transmitting location information 
between observers.  The Planck postulate, a reluctant innovation presented by Max Planck to the German 
Physical Society in 1900, provided a potential bound or constraint on the point observers of Minkowski.  
Planck postulated that energy can only be emitted in certain quanta (Planck, 1900).  Einstein, notably, later 
leveraged the work of Planck for his Nobel-prize winning papers on the photoelectric effect (Einstein 
1905a). Heisenberg subsequently formalized the concept of measurement uncertainty in 1925 (Heisenberg 
1925), sparking a sparring match between Heisenberg and Schrödinger over disparate but ultimate 
equivalent formulations of quantum theory and leading to an explosion of innovation, and a dominant 
interpretation of small scale interactions (quantum physics).  As the new field moved forward, Einstein’s 
General Theory of Relativity was left dangling behind almost as a curiosity, an isolated theory representing 
only the behaviours and properties of large-scale phenomena.   

We introduced Communication Dynamics Theory in a companion paper (Pan, 2022).  We claim that 
Communication Dynamics Theory can in a single model bridge quantum theory and General Relativity by 
representing particles and waves as relativistic, observer dependent manifestations of continuous energy.  
This continuous energy is observed and experienced in the context of a Universe with four simple, 
fundamental properties: 

1) The existence of momentum 

2) The presence of a perturbation of momentum, resulting in the emergence of energy 

3) A defined minimum observation distance 

4) A defined speed of communication 

 
Applying an axiomatic approach, we can expand on these simple properties to generate a visualization 

of the Communications Dynamic Model in hyperbolic geometry.  We show below that the resulting 
visualization can replicate and calculate properties of protons, electrons, neutrons, space, the perception of 
time, and the experience of mass, electromagnetism, and strong and weak interactions.  Our geometrical 
model is set in a coordinate space we will refer to as Planck-Space (units J*s).  Anisotropic motion through 
Planck-Space yields trajectories and rotations with unit J (energy). Thermodynamics implicitly results from 
Spacetime trajectories within this model.   

We accomplish five primary results from this approach.  First, changes in the energy state of objects 
moving through this space can model space, time, frequency, and forces of nature.  This establishes a 
justification for our model while tying this paper to our companion work. Second, general axioms and 
definitions are introduced.  Third, the concept of the “Relativistic Observer” is introduced, whereby we 
generate a conceptual model of a single neutron, proton, and electron, and describe a hydrogen atom. 
Fourth, from our models of a neutron, and hydrogen atom, we embed the perspective of the "Relativistic 
Observer" to estimate, from first principles, Euler’s constant 𝑒, the fine structure constant 𝛼, and the value 
of the Euclidean rotation constant 𝜋  as natural consequences of linear expansion of one-dimensional 
Spacetime.  Finally, we will relate our geometrical model formally to the Communication Dynamics Theory 
and compare with Quantum Theory. 
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Model Justification 
In a prior work, we introduced Communication Dynamics Theory as a general model to describe 

physical reality (Pan, 2022). We used the Communication Dynamics model to calculate the orbital radius 
of 118 atoms in the periodic table, using the known radius of Hydrogen to calibrate predicted radii of other 
elements.  Inherent in our approach is the use of the U-Matrix Equation. 
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Where n represents the principal quantum number, ℓ the Azimuthal quantum number or angular momentum, 
mℓ the Magnetic quantum number (projection of angular momentum), A the atomic number, and y the 
period number.  Simplifying the equation to only treat the valence shell (e.g. ℓ = 𝑛 − 1), we have equation: 

The resultant computations define cross-sectional “slices” of spacetime that illustrate a repetitive theme of 
object-specific, internal communication.  This internal communication structure can be calibrated to 
provide an estimate of the relative cross-sectional area of the valence shell, allowing an estimate of atomic 
diameter and volume.  Figure 1 shows some examples of structures calculated using U-matrix equation 2. 

 
Hydrogen Carbon Tin Gold 

    

The outer valence shell for Hydrogen, Carbon, Tin and Gold are calculated using Equation 2. 

The shapes projected by the U-Matrix in Figure 1 use a wave-equation to predict  a static, 3-dimensional 
structure, but what we have not described in this description is the nature of the coordinate space we are 
working in, and how this space relates to observed space, time, and forces of nature.  The current paper 
describes the underlying structure of Spacetime described by Communication Dynamics Theory. 

1. Defining Planck-Space 
Defining the Point Trajectory Model (Summary): We propose that Communication Dynamics describes 
interactions occurring between locations in Spacetime.  In this model, interactions, or communication, 
between spacetime locations are observed as energy.  We can therefore visualize Spacetime, as described 
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Figure. 1. Simplified Atomic Structure (as generated by U-Matrix) 
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by Communication Dynamics, as a latent energy space.1  When communication occurs, it occurs at a 
specific universal speed “c”, over a specific complex vector.  The act of communication transforms latent 
energy embedded in the space to observable energy.  We note that this complex vector is specifically not 
“time” as we observe time.  Further, while we use the word “space”, we must understand the word is used 
in a mathematical sense; observable space, observable time, and forces of nature are emergent properties 
of the Communication Dynamics model.  In this paper, we reference Axioms, Definitions, Assertions, and 
Hypotheses.  Each has a specific meaning: 

Axiom:  A first principle or foundational element of the model 

Definition:  A description of how Axioms are represented in a spatial form 

Assertion:  Assertions are assumed to flow logically from Axioms and Definitions 

Hypothesis:  A hypothesis is presented, initially, as an extra-logical argument, which we will work to 
support, or refute as the paper progresses.  Over the course of the paper, assertions, as well as 
mathematical modelling, should support hypotheses.   

Throughout the paper, we describe objects moving on hyperbolic trajectories.  Unless otherwise noted, 
figures are not designed as mathematically precise illustrations.  More specifically, figures and illustrations 
are often flattened with simplified dimensionality, and are provided either to illustrate projected dynamic 
Euclidean or Hyperbolic space, or to improve intuition.  We will not be able to fully prove our hypotheses 
in one paper.  We propose, rather, to fully support or reject principal hypotheses over a series of papers. 

 
 

1 The concept of a latent energy space:  Latent energy in our model differs in substance from the concept of potential 
energy.  A latent energy space is a space that is assumed to have the capability to carry energy.  As a brief analogy of 
the concept, consider a spring (Figure 1).  A spring is an object that be at rest (carry no energy) or can be in a state of 
vibration.  In Figure 2 below we assume a mean (or reference) state, about which a vibration occurs. Fluctuations 
below a minimal observable distance “h” can exist but cannot be observed.  If a process occurs whereby a fluctuation 
above the measurement threshold “h” occurs, a location can be observed.  In this analogy, the spring is the “latent 
energy space” that can have a series of energy configurations above or below observability.   

 
Latent energy exists and permeates continuous Spacetime, but occurs below the level of observation 
(e.g., 𝐸! < ℎ (left)).  Observed energy occurs at an observable scales (𝐸" > ℎ (right)).  R is placed 
to locate a measurement reference frame compared to a horizontal Trajectory (eg right to left). 

Figure. 2. Latent Energy 
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1.1. The Point-Trajectory Model (Axioms)  

 To introduce the model, we can start by considering a solitary, dimensionless point (Ρ) as the most 
parsimonious communicating object.  We now define some Axioms regarding Ρ. 

Axiom 1:  𝛲 exists in the absence of any external space and can only reference and communicate with 
itself. 

Axiom 2:  In the absence of motion, 𝛲 is unique.  When 𝛲 moves to, or through an initial position, a 
second instance of 𝛲 is generated.  This new point 𝛲 is also unique.  We can model the generation of a 
𝑃#  from a unique 𝑃. as a movement around a circle of circumference ℎ. 

Axiom 3:  𝑃.and 𝑃# are now a communicating system 𝑃.𝑃#. In order for a movement to be “observed” 
by 𝑃.𝑃#, additional movement can be represented as the generation of additional points 𝑃! , in integer 
multiples of a minimum distance ℎ. 

Axiom 4:  While there is a minimal observation distance (Axiom 3), the structure of Spacetime is 
continuous, including at unobserved and unobservable distances < ℎ. 

Axiom 5:  For systems 𝑃.𝑃! > ℎ, axiom 4 admits the existence of a set of additional communicating 
systems 𝑃0𝑃)'0, where 𝑥 < ℎ, and 𝑚 is an integer in multiples of minimum distance h. 

Axiom 6:  All communication occurs at a universal communication speed c. 

Axiom 7:  All points 𝑃 derived from Axioms #1-6 communicate at all scales only with other points 𝛲 
(external, out of set communication is forbidden). 

Axiom 8:  In the absence of interaction, momentum of any given system 𝑃!-.𝑃! is conserved. 

We will term our point P, and its possible observed positions in accordance with Axioms 1-8, as an 
object which we will call a Spacetime Moment (Figure 3).  A single Spacetime Moment in the absence of  

 
Flattened illustration of a Virtual Spacetime Moment, the smallest possible instance of spacetime. 

other observable moments is the smallest possible instance of Spacetime.  Provided the movement distance 
is less than ℎ, observed motion has not occurred, and we term this dimensionless entity an Ideal Virtual 
Spacetime Moment (𝑴𝒊).   We now define the following pertaining to 𝑴𝒊: 

Definition 1 (𝑴𝒊):  𝑴𝒊 is self-contained and incorporates all possible positions of Ρ < ℎ. 

Definition 2 (𝑴𝒊):  There is no “outside” of the space defined by 𝑴𝒊 (i.e. 𝑴𝒊 is a causally complete set  
of locations of Ρ). 

Figure. 3. Virtual Spacetime Moment 
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Definition 3 (𝑴𝒊):  We define the units of our Virtual Spacetime Moment in “Plancks” (J*s).  We can 
also define a Planck as a unit of Point Momentum (intuitively, we may conceptualize “kg*m/s” or our 
standard momentum metric) that occupies a specific observation length (intuitively, we may use the 
metric “m” or meters).  Note we use conventional units for intuitive purposes to correlate with current 
concepts of physical measurement.  However, kilograms, meters, seconds, Joules, and all current metrics 
become emergent properties according to our model. Planck-Space can be defined as a latent energy 
space that we have described previously.  Note latent energy differs from potential energy.  

Definition 4 (𝑴𝒊):  Imprecision in position of a dimensionless point (Figure 4, red point) implies virtual 
motion, which can be modelled as a virtual acceleration (Α𝓅 ).  The unit of acceleration can be 
represented in Joules (J). 

  
A Spacetime Locus is a minimum observation distance that obeys conservation of 
momentum.  When a spacetime locus has completed an observable trajectory, it 
becomes a Spacetime Moment.  

Definition 5 (𝑴𝒊):  The presence of acceleration admits a second (virtual) reference point Ο3 (Figure 4, 
black point), representing an average position.  Note we add the extra-logical constant 𝜋 at this point; 
we will justify this value as an emergent property of the linear expansion of Spacetime later in this paper. 

Definition 6 (𝑴𝒊):  In the presence of an acceleration, Ο3 can be modelled to experience an orthogonal 
virtual trajectory Τ (unit, J).  To correlate with our observable reference frame, we impute the right- 
hand rule. 

Definition 7 (𝑴𝒊):  According with Special and General Relativity, Τ is assumed to proceed through 
hyperbolic space. 

1.2. Observed Spacetime 

Having defined a virtual Spacetime Moment, we now generate observed Spacetime: 

Definition 8 (𝑴𝒐):  Observed Spacetime occurs when point 𝑃 achieves a movement of  ℎ. 

We have made precisely one Jump-Step of length ℎ  for 𝑃  and a trajectory step (< ℎ , below our 
observation limit) for virtual point 𝑂5. 𝑃 accordingly observes itself at two locations, and we must now 
develop a coordinate system that involves only 𝑃 and 𝑂5. We define the line connecting these three points 
as a “dynamic perpendicular”. 

 

Figure. 4.  Spacetime Locus 
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Definition 9 (𝑴𝒐 ):  A dynamic perpendicular is a line perpendicular to the net trajectory of the 
Spacetime Moment (Figure 4).  

In the absence of interaction with other points, we assume  𝑃  and 𝑂5  expand through hyperbolic 
Spacetime along a specific trajectory, and observe a uniform, dynamically generated perpendicular to this 
trajectory. A given Spacetime Moment can further be assumed to observe and receive communications 
from previous Spacetime Moments allowing it to define its current position (Figure 5).  Note the placement 
of 𝑃  is arbitrary.  Therefore, in the act of acceleration 𝑂5  must similarly be defined through internal 
coordinates of rotation, trajectory, and distance, in the context of a minimum observation distance ℎ.  Figure 
5 shows conceptually how 𝑂5  over 2 jump-steps (2ℎ) can dynamically generate new Spacetime Moments.   

 
The number of Spacetime Moments that can be arbitrary defined expands as 𝑃 makes successive 
jump-steps.  This expansion also expands the number of potential precedent locations of of 𝑃 
and 𝑂# in hyperbolic space.  Partial, flattened representation is presented for intuition.   

1.3. Summary of the Point-Trajectory Model, and Consequent Assertions 

An observed Spacetime Moment (𝑴𝒐) consists of two points and three axes of motion. A first point (P) 
experiences rotation (curvature +1).  A second point (Ο3 ) experiences a hyperbolic trajectory (-1).  
Observation is mediated by P and Ο3 in quantitative increments of value ℎ.  Consequent to our Axioms and 
Definitions, we now make the following assertions: 

Assertion 1:  A point in Spacetime making a circuit of precisely ℎ (Figure 4) is the smallest possible 
observer. 

Assertion 2:  A Spacetime Moment 𝑀6 is the smallest possible unit of Spacetime that can be observed. 

Assertion 3:  𝑀6 contains the following information: 
1. Angular Acceleration (mediated by Ρ, unit J)  
2. Trajectory (mediated by Ο3, unit J) 
3. Position (mediated by prior positions of 𝑃 and 𝑂5) 
4. Instantaneous (Simultaneous) Communications impacting relative Position, Acceleration 

and Trajectory, which we will call interactions 

Figure. 5.  Expanding Spacetime 



72 Frank M. Skidmore, Murat M. Tanik / THE RELATIVISTIC OBSERVER  
 
 
 
Assertion 4:  Consistent with the Heisenberg Uncertainty Principle, the location of Ρ and Ο3 cannot be 
precisely measured; information can therefore be modelled to be “stored” at the average location, Ο3. 

Assertion 5:  The “average observed” trajectory of Ο3, merging information from P and Ο3, is flat 
(Euclidean) 

Assertion 6:  If Ο3 experiences a rotation, or trajectory ≥ ℎ , new observable Spacetime Moments (new 
instances of 𝑀6) are generated (Figure 5). 

Assertion 7: Multiple Spacetime Moments have the capability of communication at speed c 

The characteristics of the formulated system of Spacetime Moments is a hyperbolic representation of 
the T-vectors described in our first paper.  To fully explore the consequences of the above axioms, 
definitions, and assertions, we will create a coordinate space, describe three classes of Spacetime Object, 
and demonstrate model utility by estimating, from first Principles, the inter-related fundamental constants 
of nature 𝑒, 𝛼, and 𝜋. 

1.4. The Planck-Space Coordinate System  

We now define a coordinate system for Planck-Space, in accordance with principle axes (trajectory and 
spin, embedded in hyperbolic space). Trajectory of Ο3 is labelled as axis T.  Spin of Ρ around Ο3 occurs 
orthogonally in the ∆𝑝∆𝑞 (also referenced as pq) axes (Figures 6, Euclidean 3D intuition).   Position in pqT 
space, with respect to a given Ο3 (Figure 6, orange central ball), can be represented in hyperbolic pqT 
coordinates.   

 

In Figure 7, we represent the pqT coordinate system on a Poincaré plane (Poincaré, 1895).  Note Figure 
7 represents only 2 dimensions (only q and T are represented).  For the purposes of defining the coordinate 
space we can assume Ο3 is the center of hyperbolic sphere 𝕊7.  (cross-section in Figure 7, white outer circle 
represents ∞), in which the radius unit value 1 is given the value ℎ  (i.e.  𝕊78 ).  To embed Euclidean surfaces 
into our Poincaré space we can generate internal circles C1 C2, C3, and C4, in this case either tangent, or 
perpendicular to an arbitrarily selected axis A.  We give our hyperbolic space curvature 𝜅8 = −1. Circles 
C1 C2, C3, and C4, contacting  Ο3 and ℎ	(∞), can be extended into spheres S1 S2, S3, and S4 in a full Poincaré 
spherical model, with apparent curvature in the 3D Poincaré projection of 𝜅8 = +1.   

Figure. 6. Planck-Space Coordinates (pqT coordinates) 
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Horizontal axis: T axis.  Vertical Axis (green): q axis.  An arbitrary Axis A can be defined 
that may or may not be perpendicular to axis T (trajectory axis). 

Note that surface of spheres S1 S2, S3, and S4 are perpendicular to all asymptotic parallels (Figure 8, left) 
and therefore projected orange triangle ABCH (with ∠𝐴9 + ∠𝐵9 + ∠𝐶9 < 180) forms a Euclidean 2D 
surface on a given defined sphere 𝑆! passing through the origin which we can label ABCE (with ∠𝐴: +
∠𝐵: + ∠𝐶: = 180).  We have now constructed a basic element that will allow us to model the impact of 
Assertion 5.  We further detail the Euclidean projected observer frame later, but as a first intuition, see 
Figure 8, right.  In this (right) image we represent a virtual trajectory T.  Ο3 is located centrally in a Poincaré 
sphere.  For illustration we also turn the ∆𝑝∆𝑞 rotation (yellow internal circle), 90 degrees; let us assume  

 

 
Left: Poincaré disk (gray) embedded in Poincaré sphere 𝕊$% .  A triangle in the disk can be projected on the surface 
of a sphere of radius ℎ/2 contacting the observer point (blue) and infinity, generating a projected Euclidean plane.  
Right: A point placed at the origin can observe dynamically generated Euclidean surfaces.  Specifically, when 
point Ο&  experiences a trajectory, point P perceives a rotational acceleration; both experiences exist along the 
respective Euclidean projected surface. 

Figure. 7. Poincaré Representation of qT Axes 

Figure. 8.  Projecting Dynamically Euclidean Surfaces in Poincaré Space 
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that for a right to left trajectory  𝑇' our “thumb” extends out of the page, yielding a counter- clockwise 
rotation for ∆𝑝∆𝑞.  For 𝑇- rotation is clockwise. In Figure 8 image right, we assume: 

𝑇' = 𝑇- = 1
2R ℎ = 𝜋ℏ 

Observed space is assumed to be generated through the rotation of the Euclidean 3-Ball.  We can see 
that a full trajectory (𝑇- → 𝑇' = ℎ = 2𝜋ℏ) is associated with a rotation from the yellow sphere position 
(red point 𝑇- in Figure 7) to the orange sphere position (blue point 𝑇') as well as an associated rotation 
from the green 3-sphere position 𝑃. to the red 3-sphere position 𝑃#.  Note that the 3rd dimension is implied 
in Figure 8; for a jump-step of ≤ 2𝜋ℏ information can be encoded in a rotating projected Euclidean plane, 
which becomes a 3D structure.  Note further that for a point 𝑂5 computing or observing a transition from a 
past point 𝑇- to a future point 𝑇' two possible trajectories are possible (fainter red/blue trajectory in Figure 
8).  We will relate this in later in our paper to observed spin states. 

1.5. Imputing Motion to a Spacetime Moment 

Before defining observation, it is now productive to impute degrees of motion and acceleration greater 
than ℎ to 𝑴𝒊, and describe the consequences.   We will define three classes of object, based on two possible 
motion characteristics,  𝑛∅ and 𝑛#<, as defined below: 

{ℝ}\{ℤ} = {𝑛∅: 𝑛∅ ∈ {ℝ}, ~(𝑛∅ ∈ {ℤ})} (3) 
{ℤ} = {𝑛#<: 𝑛#< ∈ {ℤ}} (4) 

Where ℝ is the set of all real numbers, and ℤ is the set of integers.  To briefly demystify these equations 
for those not familiar with mathematical encoding of language, we are saying, simply, that 𝑛#< is the set of 
all integers (ie 1, 2, 3, …) and that 𝑛∅ is the set of all other numbers (not including integers).  Note, however, 
in our space integers are defined as multiples of 2𝜋. 

 
Communication.  Two diagonal points P1, and P2 (representing the furthest distance 
traversed) are selected, showing a maximal distance between points at (𝑛∅ ∗ ℎ)/2. 

Object Class 1, Communication (𝑴𝑩 – Figure 9):  
Definition 10: We define a communication as the set of all objects such that the rotation of Ο3 is 

Since 𝑛∅ excludes integers, we see that 

Figure. 9.  A Communication 

Τ∅ = 𝑛∅ ∗ ℎ (5) 

Τ∅ ≠ 𝑛#< ∗ ℎ (6) 
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The movement of Ο3 from Ο$ to any defined Ο>	does not satisfy Axiom 3, and therefore Ο3 does not 

observe its trajectory as motion.  Object class 1 propagates at speed “c” and Τ progresses along a single 
(hyperbolic) dimension.   
 
Object Class 2, Stationary Observer (𝜧𝑺 – Fig 10, also Fig 8):   

Definition 11:  Here, we define a Special Case of Τ∅, where we define:  

The movement of Ο>' to Ο>- now satisfies Axiom 3.  In accordance with 𝚳𝑽 definition #5, we now 
define a rotation associated with Ο3, and can select (Figure 10) diagonal points  Ο.$ and Ο#$, in addition to 
trajectory points Ο>' and Ο>-.   We now assume this “stationary” object is receiving communication from 
one or more adjacent, diverging, converging, or co-traveling spacetime moments.   

 

 
We can select two diagonal points P1, and P2 that can be modelled to 
propogate over time.  Note a rotation around  Ο& is now embedded. 

Object Class 3, Accelerated Moment (𝜧𝒑 – Figure 11):   
Definition 12: An accelerated Spacetime Moment has a defined trajectory with respect to a given frame 

of reference, such that: 

Note the conic shape of the accelerated Moment; we describe the reason for this representation shortly 
(e.g. see Figure 12 and related discussion).  In the Point-Trajectory Model, the entire moment is assumed 
to move in a coherent fashion along a hyperbolic trajectory, following the leading element.  A “central”, 
dynamically generated average location point 𝑂B  exists for every Accelerated Spacetime Moment, 
representing the formation point for a new, embedded, emerging Spacetime Moment.  The impact of 
dynamically generating 𝑂B is most notable when 𝑛#< = {1, 𝑜𝑟	2}, and we will largely focus on this level 
of precision in this paper. 

Τ∅ = Τ< = ℎ/2 (7) 

Figure. 10.  A Stationary Observer 

Τ#< = 𝑛#< ∗ ℎ (8) 
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An accelerated moment generates an observable pocket of spacetime that can communicate 
location, trajectory, and acceleration to adjacent loci.  Additional Spacetime Moments can 
be implicitly generated that become manifest over 2 jump-steps. 

2. Principle Hypotheses 
After defining our model, we now present three principle hypotheses: 

Hypothesis 1:  Object class 1, Communications, can mathematically represent bosons. 

Hypothesis 2:  Object class 3, Accelerated Moments, can mathematically represent fermions. 

Hypothesis 3: Object class 2, Stationary Observers located at average moment computational positions, 
can account for properties of fermions, including spin, apparent perspectives of motion and rotation, and 
relativistic effects that differentiate leptons from hadrons.   

In the remainder of this paper, we will both describe the implications of the model and provide initial 
support for these hypotheses. Specifically, we will first extend our model to define a reference frame 
(Section 3), discuss the role of stationary observers in our model (section 4.1), and then build an (initially 
simplified) model of neutrons, protons, electrons, and a proton-electron pair (Sections 4.2). We will then 
estimate and relate Euler’s number (𝑒) the fine structure constant (𝛼) and 𝜋 (Sections 4.3-4.5).  Calculating 
𝛼  provides provides a model-based approach to electromagnetism.  As we describe the relationships 
between 𝑒, 𝛼, and 𝜋 we will also describe geometric approaches to understanding the weak force, neutrinos, 
and quarks, allowing us to build more complex models of a hydrogen atom (Section 5).  In Section 6, we 
review our hypotheses, and we conclude our paper with relevance and connections of our model to Quantum 
Physics in Section 7.  

3. Defining a Reference Frame and Relativistic Observers 

3.1. First Principles: Placing an Observer in a Representative Planck-Space 

Above, we have defined a model based on the 1-dimensional expansion of a point into a latent energy 
space under the assumption of a minimum observation distance ℎ.  In 3.1, we discuss general principles of 
observation consistent with our Axioms.  First, let us reconsider our object in Figure 4, and place this object 

Figure. 11. An Accelerated Moment 
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in an expanding hyperbolic frame (Figure 12).  We can assume a progression from a first state “1” (maximal 
point potential rotational displacement) to a second state “2” (maximal point trajectory displacement), and  

 
A representative Planck-Space with an observer placed.  We assume in this figure (and in this paper) that at least 
on the scale immediately consecutive “jump steps” of length 𝐽, where 𝐽()% = 𝑅*)% = ℎ , that 	ℎ can be assumed to 
remain constant.  Units are Plancks (𝐽 ∙ 𝑠).  Motion through the space can be described in terms of Joules. 

place an observer experiencing (positioned along) a hyperbolic trajectory.  We make the following 
assertions: 

Assertion 8: System energy 𝑆: is observed in increments of ℎ from the perspective of a given observer 
position along rotational and hyperbolic axes (Axiom 3) 

Assertion 9: The smallest possible observer is a single stationary observer of total length ℎ  (Definition 
11). 

Assertion 10: The relationship between the maximum hyperbolic displacement (or trajectory) and 
maximum observed rotational displacement for a closed system 𝑆: can be described as: 

In which any 𝑅!  represents rotational displacement, any 𝑇!  represents hyperbolic trajectory, and 𝐿! 
represents a location/energy relationship generated from properties of ℎ! .  Under the condition ℎ! =
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 equation 10 follows:  

Note here, we assume “momentum in the system” (number of available Plancks or ℎ!) remain constant.  
It should be clear that in this context, our system behaves similarly to the ideal gas law.  Energy expressed 
as rotations is analogous to pressure.  Displacement expressed as trajectory is analogous to volume.  
Available momentum (Plancks) is analogous to temperature.  In our system, there is no “outside”; available 
Plancks are constant.  Energy 𝐸C expressed in this (closed) system can therefore be represented according 
to the following logical progression: 

Figure. 12. A Simplified Planck-Space Universe 

𝑅.𝑇.
𝐿.

=
𝑅#𝑇#
𝐿#

; (9) 

𝑅.𝑇. = 𝑅#𝑇# = 𝐶	(𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (10) 
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 We have described, above, a simplified Planck-Space.  In this simplified representation we see some 
important features.  First, we observe the relationship between rotation and trajectory is a hyperbolic process, 
similar to heated gas expanding in an enclosed piston.  Second, we note the system is causally complete, 
and energy is conserved.  Observed hyperbolic trajectory and observed rotational movements are all 
perceived manifestations of a 1-D expansion of energy. In this context, any perception of space, mass, 
gravity, charge, or other forces (including weak and strong forces of nature) are hypothesized to represent 
manifestations of system energy as observed by a given Spacetime Moment, at a specific Spacetime 
location, along a trajectory T.  At the commencement of our system, an observer sees all available Plancks 
as a point of expanding energy (high rotational state, a “bang”).  In this simplified model,2 at the end of the 
system, an observer can infer all available energy would now be visualized as trajectory/displacement, with 
no additional available rotations available – a “heat death” at the end of observable expansion. 

3.2. An Accelerated Spacetime Moment Forms an Expanding Pocket of Observable Spacetime 

To assess our hypotheses, we now focus on the details of the nature of Planck-Scale observations within 
a Spacetime Moment.  We can start by visualizing an isolated Spacetime object moving through a single 
“jump step” 𝐽 of length ℎ.  Spacetime in this object consists of one point, Ρ with angular acceleration Α𝓅 
generating observer point Ο3  moving along a Euclidean trajectory T at speed c, mapped in hyperbolic 
sphere 𝕊78 , such that: 

Axiomatically, we must now address a perspective distortion in our illustrations; our Planck-Space is 
self-referential, but we have constructed figures with spatial dimensions from our external experience.  In 
Planck- Space, there is no right, left, up or down, no “into” or “out of” the page.  The space is defined solely 
by rotation, simultaneous distance metrics, and trajectory.  To allow us to continue to represent the space 
using geometric principles, an arbitrary axis, rotating over our trajectory, must be defined by internal 
metrics. We model the axis rotation as a rotation of the Euclidean “3-ball” surface displayed in Figure 7 
from position C2 to C4 (Figure 13).  Turning to Figure 13, we continue the convention of using the right-
hand-rule by extending a thumb to the left, with index finger pointing in the direction of the axis.   Focusing 
on an average location (middle of sphere in Figure 7), Figure 13 now represents an observed trajectory from 
the perspective of Ο3 along Euclidean arcs (Ο3𝑇', Ο3𝑇-).  We can define 2 distances.  The arc distance 𝑅& 
is the distance along the 3-ball arc connecting Ο3, 𝑇', and 𝑇-; more formally 𝑅& is the arc distance from 
an observer Ο3  to a second point located along the surface of a defined 3-ball sphere 𝐶D  located in a 
hyperbolic sphere 𝕊78 .  𝑅E is defined as the chord distance from Ο3 on map 𝕊78  to the second point.  Under 

 
 

2 Note an aggregative principle allowing storage of energy in State 2 could admit the existence of “Black Holes”; our Planck-space 
becomes more like a spring (e.g. see Figure 2) in this case. Since Spacetime is simply an expression of energy generated by observer 
perspectives, in State 2 no further energy is stored as “observable space” in the absence of observers; a new “Bang” could, 
theoretically, occur at this point based on energy stored in “trajectory”.   

𝐸C = m 𝑅𝑑𝑇
#

.
 

∴ 𝐸F = 𝑅.𝑇.m
𝑑𝑇
𝑇

#

.
 

∴ 𝐸F = 𝑅.𝑇.𝑙𝑛[𝑇].# 
∴ 𝐸F = 𝑅.𝑇.(𝑙𝑛[𝑇.] − 𝑙𝑛[𝑇#]) 

∴ 𝐸C = 𝑅.𝑇. ln -
𝑇.
𝑇#R 2 

(11) 

𝑇#< = 𝑛 ∗ ℎ; 𝑛 = 1 (12) 
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the condition of 1 jump step of length ℎ, 𝑅& = ℎ
2R .  In all cases the chord distance (linear hyperbolic 

distance) is less than the distance traversed along the Euclidean 3-Ball Arc (e.g. RG < RH).  Location Ο3 in 
Figure 13 is located in the “average instantaneous location” of the accelerated moment we have defined.  
Note, however, we can place an observer at any observer point; here intrinsic properties of hyperbolic space 
help us now define the structure of an object of defined length (length ℎ in this case) moving in Spacetime 
along a hyperbolic trajectory. In Figure 14, we choose to examine the destination point for the Spacetime 
Moment (green) with respect to 𝑂B (purple/lavender). Note the relationship between a destination point and 
𝑂B generates the dynamic perpendicular (Definition 9).  We can appreciate in the Poincaré representation 
that the Spacetime Moment destination can be approached by two potential displayed trajectories (red dots 
or blue dots), with two distinct rotational characteristics (into and out of the page).  In Figures 13 and 14, 
we showed C2 rotating on to C4, but we now also define a second unique pathway to, defined by a rotation 
of points from C3 to C1. 

  
An Accelerated Moment from the perspective of the leading edge of the Spacetime Moment.  Note Ο& (green 
locus, centered) observes that it could arrive to its position from either of two hyperbolic trajectories. Note 
this figure is to assist in developing model intuition.  The dynamic “3-ball” rotation through 𝕊$%  is not 
represented, and it should also be noted that perpendiculars in Poincaré space are curved, not linear. Further, 
note the properties of the “dynamic perpendicular” we have defined differ from the hyperbolic static 
perpendicular (for introduction to Poincaré space, see reference: Poincaré, 1895). 

  
Figure. 13.   Average observer point 𝚶𝝆, & Observed Axis Rotation 

Figure. 14.  An Accelerated Spacetime Moment (Poincaré Representation) 
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3.3. The Relationship between the pqT Frame, Axis Rotation, and Observable Spacetime 

It is now productive to define three distinct reference axis definitions.  First, we define model axis, ΑI.  
A model axis ΑI makes use of our cognitive and perceptual frame, which inherently fractures Spacetime 
into dimensions of space and time.   Our visuospatial system is finely tuned for computation and insight, 
and it is efficient, from a cognitive perspective, to construct our models in this frame.  Multiple projections 
can be defined (i.e. there many possible 𝐴I projections).  Second, we define the Spacetime observer axis, 
ΑJ . ΑJ  is our experienced axis of Spacetime. We propose ΑJ  can be computed from various ΑI 
projections (Figure 15).  Third, we have just defined axis as it pertains to Planck-Space (and the pqT frame).  
Planck-Space assumes a point can give rise to a one-dimensional space, and further dimensionality develops 
as a natural consequence of perceived motion as defined by Axiom 3. Axis Α5KB   is defined from the 
perspective of unique observer points (Ο3) placed centrally in a sphere 𝕊78 , and is defined by the rotational 
movement (in accordance with Axiom 3) of a point 𝑃!-. to a point 𝑃! around a central observer point Ο5 
moving through hyperbolic space. Relationships below the observation threshold ℎ both exist, and can be 
experienced, but are not observed as space or time as they occur at scales < ℎ related to any given observer 
system 𝑃!-.𝑃!.  We propose that these interactions are experienced as fundamental constants and forces of 
nature.  Specifically, we make a new assertion: 

Assertion 11:  When a stationary observer 𝛭L is observed to undergo hyperbolic motion to become an 
accelerated moment 𝛭5, directionality can be represented as an angle ∠5KB in reference to an axis of 
rotation Α5KB perpendicular to the hyperbolic trajectory 𝑇.   

 
The Planck-Space Point Trajectory model generates rotating axis Α#+(  embedded in a 3D+T 
hyperbolic Poincaré space (Axis Α,) to represent Spacetime as a 1-Dimensional Expansion of 
Energy.  We propose our stable 3-D Euclidean experience of space and fundamental forces of 
nature is fractured from a 1-dimensional expansion of energy. 

Note that Α5KB is generated by the dynamic movement of 𝑃 and Ο3 through hyperbolic space, and Α5KB  
can be mathematically modelled to rotate over a trajectory with respect to the Euclidean axes describing 
the one-dimensional accelerated framework. In summary, we propose a model based on recursive 
assumptions.   

1) We have defined Spacetime as a 1-D hyperbolic expansion of energy from a point. 

Figure. 15.  Proposed Model Outcome 
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2) We assume, as model builders, that we observe this 1-D hyperbolic expansion of energy as 4 

spacetime dimensions (3 of space, 1 of time) and fundamental forces such as gravity, the strong and 
weak force, and electromagnetism. 

3) We have generated 8 axioms to translate a 1-D expansion of energy into a model that accords with 
our assumed frame of observation. 

4) Projections, represented in our observer frame (ΑI ), requires all elements be self-referential 
(including requiring a rotating axis Α5KB). 

5) We propose that we can now use this dynamic model to re-create our observed and experienced, 
stable axes of Space and Time (ΑJ). 

A central feature of the model is the importance, on Planck scale, of the relative position of a given 
observer.  All Planck-scale observers experience a central location in 𝕊78 , but visualize Space and Time 
only along Euclidean axes. Figure 16 presents a visual intuition of an observer embedding a 3D+T 
visualization of Spacetime into hyperbolic space.  On the left we displays the “leading edge” of a Euclidean 
observer observing that its “tail” to the right is subject to hyperbolic expansion.  Note that the experience 
is symmetric. When we place 𝑂5 in a “tail” location, it becomes the center of hyperbolic sphere 𝕊78 , and 
the hyperbolic expansion appears to occur to the left (Figure 16).  To this observer at the “tail”, it appears 
that the leading edge moves as the observer remains stationary.   

  
The substance of 1D Spacetime is continuous.  The nature of 3D+T observation is discrete. The “leading 
edge” of an accelerated moment notes an expansion of its “tail”.  The “tail” similarly will observe itself as 
a unitary object of circumference ℎ, and observe a hyperbolic expansion of the leading element. 

The notion of relative observation frames may seem counter-intuitive, but recall we experience this 
perspective on a large scale.  As an observer I perceive the sun rotating around my personal relatively 
stationary location (Figure 17).  If the sun were truly to be rotating around my position, I would experience 
the rotation as occurring at a significant fraction of the speed of light (I will leave it to others to do the 
calculations). However, as I am progressing in Spacetime dynamically towards the Spacetime location of 
the sun, my observed relationship with the sun is largely (although not completely) defined by Euclidean 
perspectives. We propose that this experience also occurs at Planck Scale.  An “electron” coupled with a 
“proton”, in the absence of interaction can be assumed to experience, from its observer point, that the 
proton, and in fact all of Spacetime, rotates around its position as the electron “falls” through Spacetime 
towards the associated proton.  In the remainder of section 3, we will describe the reformulation of Planck-
Space, in accordance with this principle, into observable space and time.   

Figure. 16.  Observer Perspective is Relative 
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Observers at all scales observe conservation of energy states.  The 1D 

Spacetime destination of an observer is perceived as an orbit. 

3.4. Defining motion in Planck-Space for an accelerated moment  

In section 3.4, we focus specifically on observations made by 𝑃 and Ο3 in the Euclidean (3-Ball) frame 
during a single hyperbolic movement of length ℎ.  Formally, we will call this movement a Jump Step 𝐽#< =
ℎ.  Jump Steps are measured in integers; e.g. 2𝐽#< = 2ℎ = 4𝜋ℏ.  The selected observer (Ο3 in this case, 
central, green) measures space along axes defined by the Euclideans (3-Ball – Figure 18).  We display q 
and T axes only.   

 
Spacetime is observed along Euclidean 3D+T axes embedded in hyperbolic space.  
Axis transitions (e.g. Red/Blue, Yellow/Orange) are energetic. 

We can now re-represent only the visualized Euclidean parameters of the jump-step, neglecting the 
hyperbolic (Figure 19).  Figure 19 provides a general conceptual overview of potential 3D+T positions 
observed by 𝑃 and Ο3 over a single Jump Step.  We label the following points for Figure 19: 
𝑷𝒊𝜶 → 𝑷𝒊𝜷: Observed prior location of “trailing 𝑃”, related to trajectory observed by  𝑃OP , 𝑃OQ     
𝑶𝑻𝒊 → 𝑶𝑻𝑱: The Spacetime emergent trajectory (and newly generated Spacetime Moment) generated by 

the observed hyperbolic jump 𝐽#< of 𝑂5. 
𝑶𝒑𝜶 → 𝑶𝒑𝜷: The observed rotational jump 𝐽#< of 𝑂5. 

Figure. 17.  Orbits Encode Spacetime Destinations 

Figure. 18.  Observed Spacetime Axes 
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𝑷𝑱𝜶 → 𝑷𝑱𝜷:   Location of “leading 𝑃”, depending on trajectory/state 

Note, in Figure 19, all relationships are dynamic. A location is always in transition “emerging” from 
one location and “arriving” at a second location. 

We can make a related assertion: 

Assertion 12:  There exist a set of points 𝑂B$ , 𝑂BO, 𝑂5P , 𝑂5Q , 𝑃OP , 𝑃OQ , 𝑃$P , 𝑃$Q, within an accelerated 
Spacetime Moment 𝛭5 , that can be selected  that describe the relationships between 𝑃, Ο3 , and a  
dynamic perpendicular defined by 𝑂B$ and 𝑂BO.   

Explicitly in this representation,  
• 𝑂B makes a hyperbolic jump of distance < ℎ from 𝑂B$ to 𝑂BO, 
• A correlated rotational jump (ℎ) is observed from 𝑂5P to 𝑂5Q.   
• 𝑂5P and 𝑂5Q are the central loci along 𝑇 for points 𝑃!.   
• 𝑃OP can be modelled to experience a half rotation to 𝑃OQ due to the combined effect of a rotation 

around 𝑂5P  and an axis rotation around axis 𝑂B$ → 𝑂BO 
• The distance from 𝑃OP to 𝑃$Q is greater than the distance from from 𝑃OP to 𝑃$P 

The differences between the varying relationships (Table 1) are examples of relativistic relationships, 
which will have important impacts as we discuss first principles-based estimations of the Fine Structure 
Constant 𝛼, Euler’s Number 𝑒, and the Euclidean rotation constant 𝜋 we calculate in section 4.  We now 
must account for our model requirement that our axis ΑI representation must accord with Axioms #1-8.  
To accomplish this, we embed rotations that “bring all points back to the 1D”.  To visualize the “return to 
line”, we present Figure 20, which flattens the perspective to only observe the ∆𝑝∆𝑞 frame.  We can use 
the heuristic approach we demonstrated first in figure 4 (replicated right in figure 20 for ease of reference).  
We make the following assertion: 

Assertion 13: In order for movement to be observed by any point P, the point must return to an initial 
location a trajectory distance T away, measured in multiples of h from its initial location. 

   
Left:  A 3D+T representation of a Single Jump Step.  From the perspective of  𝑂(-, due to axis rotation,  
𝑃./ → 𝑃-0 > ℎ (and 𝑃.0 → 𝑃-/ > ℎ), while trajectory (𝑂(. → 𝑂(-) has advanced  < ℎ. 
Middle: A dynamic perpendicular is generated by the movement 𝑂(. → 𝑂(- (green). 
Right: A jump 𝐽1 (red) along the hyper-trochoid would represent the simple, Euclidean jump; 	𝑃 , however, 
makes jump 𝐽* due to axis rotation Α#+(. 

Figure. 19.  Potential Locations of 	𝑷 and 𝚶𝝆 from the perspective of 𝚶𝑻𝑱 
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Observed/Experienced Movement Type of Movement Distance 

𝑂(. → 𝑂(- Trajectory < ℎ 

𝑂#0 → 𝑂(2 , 𝑂#3 → 𝑂(2 Trajectory = ℎ 

𝑂#0 → 𝑂#3 Rotation = ℎ 

𝑃.0 →  𝑃-3,  𝑃./ → 𝑃-0 Trajectory > ℎ 

𝑃.0 → 𝑃.3 Rotation > ℎ 
 

 

 

 
Figure 20 is on right; Elements of Figure 4 reproduced on right for review. 

Presented in an ΑI frame, we represent this perspective in Figure 20, but also below in Figure 21.  
Turning to these figures, we see that in our model, constructed respecting Euclidean lines of observation 
within a Poincaré sphere, an accelerated moment 𝑃 “orbiting” axis {𝑂B$ → 𝑂BO} experiences a complete 
observation of its location(s) in 1D, Hyperbolic, Spacetime not over one jump-step, but rather over two.  In 
Figure 20, we observe the ∆𝑝∆𝑞 frame only and note 𝑃 and 𝑂5 appear to “orbit” 𝑂B.  Over one jump step 
(∆𝑇 = ℎ), rotational distance observed is |1 2R ℎ, ℎ, 3 2R ℎ~.  Figure 21 expands the view of Figure 20 into a 
3D+T frame, for better intuition, to make use of our innate visualization capabilities in this frame.  We can 
see that over 2 jump steps (2ℎ), Euclidean orbital circumferences of {ℎ, 2ℎ, 3ℎ} are observed.   

The following assertion flows: 

Assertion 14:  An accelerated Spacetime Moment observes a complete return to its starting location 
over 2 jump-steps.   

Moving to hyperbolic space, we can also project a version of ΑI, placed in a Poincaré sphere model 
(Figure 22).  In Figure 22, we show 𝑃O  moving on a trajectory through hyperbolic Spacetime.  The 
Euclidean 3D+T “sight-lines” we expressed as straight lines in Figure 20 and 21 are here expressed as 
hyperbolic surfaces along the “3-Ball”, in red and blue.  Embedded in hyperbolic space we note: 

Table. 1.  Examples of Relativistic Relationships 

Figure. 20.  2D+T ∆𝒑∆𝒒 𝚨𝑴 Visualization 
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1) Space and time can be mapped along the Euclidean trajectories (red/blue curves in a Poincaré 

representation). 
2) Non-Euclidean motion is also present but is observed as vectors of force or interaction projected 

on the 3-Ball surface. 

 
Due to axis rotation 𝑃- completes ½ of a full  ∆𝑝∆𝑞 rotation in a single jump step. 

We will demonstrate in the next sections evidence that these non-Euclidean movements, along with 
relativistic adjustments, can model observation of fundamental forces of nature. The Euclidean projections 
in Figures 20 and 21, and the Hyperbolic projection in Figure 22 are equally valid projections, serving 
distinct purposes.  Specifically: 

1) A Euclidean projection provides intuition on how the object is represented in 3D+T space. 
2) A hyperbolic projection provides intuition on how we can relate 3D+T coordinates with additional 

experiences (forces of nature). 

 
Hyperbolic trajectory is represented in gray.  Euclidean 3D+T Observations are shown in red, and blue. 

To tie these projections into an intuitive whole, we now must discuss the act of observation, the process 
of communication, and relativistic considerations.  Describing observation will allow us to define three 
fermions: a neutron, a proton, and an electron, as well as a more complex Spacetime object (a proton-

Figure. 21.  3D+T pqT Visualization 

Figure. 22. Point 𝑷𝒊 Observing Trajectory 𝑻𝟐𝝅 = 𝟐𝑱𝟐𝝅 (Hyperbolic Visualization) 
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electron pair, as well as deuterium and tritium – see Section 5), and provide a conceptual framework for 
describing the process of Beta Decay, as well as modelling Quarks. 

4. Observers in 1D Spacetime 
Summary of Section:  In prior sections, we have presented Axioms, Definitions, some Assertions, and 

General Hypotheses.  We then presented a coordinate space, and placed observers in this coordinate space.  
We presented a variety of perspectives, including illustrations touching on an intuitive “view from outside” 
(based on an Axis ΑI representation generated in our 3D+T space), with a hyperbolic visualization in ΑI 
making use of the Poincaré convention.  We finally described a rotating axis Α5KB that connects our model 
to the base substrate of the 1-Dimensional, dynamic, hyperbolic expansion of energy that is Spacetime.  In 
this section, we will bring these introduced concepts together, describing the impact of Spacetime location 
on perspective, and relativistic considerations that influence observation of position and energy state. 

4.1. The Stationary Observer 

After defining the geometry and behaviour of points in Planck-Space we can now describe the 
fundamental process of observation.  We start with four new, derived, but important, assertions: 

Assertion 15:  In accordance with Axiom 8 (conservation of momentum), in the absence of a defined 
interaction, all points in Spacetime can be modelled to experience and observe their progress through 
Spacetime as a linear trajectory. Other communicating points and objects from the perspective of the 
selected point display dynamically generated hyperbolic trajectories and/or rotations.   

Assertion 16:  Correlating with Assertion 15, all points in Planck-Space can also be modelled, in the 
absence of interaction or communication, as Stationary Observers. 

Assertion 17:  A communication, or interaction, can change the rotation, or trajectory of a Planck-Space 
point. This change is observed as a change in trajectory or rotational characteristics of the Moment (and 
a change in the observed/experienced dynamic perpendicular). 

Assertion 18:  All observed communications for all points 𝑂5 (in which 𝑂5 here refers to an “average 
point” for a coherent Spacetime Moment or set of Moments),  at any given trajectory, can be modelled 
to be observed (received) in a 3D+T coordinate system simultaneously at a given distance.  Space and 
time locations are observed at defined integers of the minimum observation distance, i.e. 
{1ℎ, 2ℎ, 3ℎ,… 	𝑛ℎ}.   

Assertion 19:   From the perspective of an observer, Spacetime occurrences transpiring at non-integer 
distances < ℎ can be modelled as computations, which we will call experiences.  These experiences 
manifest as non-space, non-time energy characteristics located at the 3D+T coordinates. 

Observed distances, rotations, and trajectories are point dependent.  In this fashion, we can model 
discrete and continuous features of Spacetime.  Specifically: 

In Assertion 15, we return to the base assumption of our model; Spacetime is the result of a continuous 
1-Dimensional expansion of energy that occurs in the context of a minimum observation distance ℎ.  Space, 
Time, and Fundamental Forces of Nature are observed as consequences of ℎ and a uniform communication 
speed 𝑐 . The Planck-Space Point Trajectory Model is a description of the rules and characteristics of 
observation that generate the observer perception.  

Assertion 16, in particular, may seem difficult to accord with the previous discussion of objects moving, 
accelerating, jumping, and rotating, but we must recall now a simple but important feature of our cognitive 
processes and how we are communicating these ideas.  Our model describes behaviours with respect to a 
reader – an observer.  Consider your position, seated, or standing while reading this paper.  From your 
perspective, in the past 24 hours the moon, the sun, and the Andromeda galaxy have all rotated around your 
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position, while you, the reader, has remained largely motionless (review Figure 17).  We propose that this 
is a scale-free phenomenon, that occurs not only on large scale, but also on Planck-Scale.  Recall that while 
a “proton” observes that the electron rotates around it, the “electron” observes the proton orbiting. Any 
change in the steady process of a trajectory requires a communication or interaction (Assertion 17).   

Regarding Assertion 18, prior to an observer interpretation fracturing the model into discrete 
observations and experiences, recall there is no space, or time in Planck-Space – only trajectory, spin, and 
observation distance.  The relative location of a communication must therefore be described either as a 
hyperbolic trajectory, or rotational characteristic with respect to any given observer point placed centrally 
in a Poincaré sphere, in relation to scalar integer representations of our only distance measure, ℎ.  Note 
points will always disagree on relative coordinate locations of events; observation is relative.   

Assertion 19 follows Axiom #4; while observation is discrete, Spacetime is continuous.  We now can 
apply Axiom #8 (“conservation of momentum”) to our model.  In Figure 23 we observe a full Spacetime 
trajectory in a Universe projected to start at a point position (Planck trajectory circumference ℎ, maximum 
potential rotations/energy ℎ! , progressing to maximum emergent trajectory energy ℎ! ).  While a 
“ringdown” or gradual shift in global system energy transfer is assumed to occur on large scale, at Planck-
Scale, we make an important assumption that now needs to be made explicit (Assertion 20). 

Assertion 20:  The rate of energy transfer between rotational and trajectory energy (the slope of the 
relationship between rotation and trajectory) can be modelled to be negligible on Planck Scale in our 
Universe. 

 
We assume observed relationship between hyperbolic and rotational measurement is negligibly 
small on Planck-scale.   

This assumption is important to allow us to use symmetry to approximate the relationship between 
objects “in front of”, and “behind” a given 𝑂B. While on Cosmic scales Assertion 20 does not hold, in this 
paper, we focus only on a single Spacetime Object, which we now define:   

Definition 13 (𝑴𝑶):  A Spacetime Object is a coherent series of Spacetime Moments traversing a 
uniform Trajectory 𝑇, such that all elements maintain a uniform distance from a central point 𝑂B. 

Figure. 23.  A Simplified Spacetime pqT Universe 
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Clarifying the implications of Definition 13, note that points in hyperbolic space inherently diverge. A 

series of points that maintain a constant distance from a central point must invariably observe a transfer of 
energy with their hyperbolic environment to maintain this coherence.  When a series of points do not 
maintain a constant coherent distance, either a new single object is created (a fusion) or a single object gives 
rise to one or more new objects (a decay).  A group of Spacetime Objects can further communicate relative 
position and trajectory, per definition 14: 

Definition 14 (𝑴𝑶):  We define a Reference Frame as an instance of communication among a group 
of Spacetime Objects regarding relative position and trajectory to a particular Spacetime Object with 
centre  𝑂B.  All reference frames are observer-point specific (Figure 24). 

 
Selecting any given 𝑂(, we can locate future, and past positions. 

Turning to Figure 24, we now explicitly reinforce a feature of Spacetime Objects: 

Wherein 𝑑 is defined as the trajectory distance a Spacetime Object is observed to move in a single jump-
step, and n is an integer.  Communications traverse hyperbolic trajectories at the speed of communication.  
Spacetime Objects traverse hyperbolic trajectories in all cases at less than the speed of communication.  We 
now make four assertions, relating Spacetime Points, Spacetime Loci, and Stationary Observers to 
Accelerated Observers. 

Assertion 21:  In the absence of an instantaneous interaction, all Spacetime Points and Spacetime Loci 
identify themselves as Stationary Observers.  Other objects, including interactions and communications, 
are observed and experienced as Accelerated Spacetime Moments.   

Assertion 22:  Euclidean Space and Time (3D+T) provides discrete spatial information for all Spacetime 
Experiences. 

Assertion 23:  Strong and Weak interactions are generated by relativistic interactions within Spacetime 
Moments. 

Assertion 24:  Electromagnetism and Gravity are generated by relativistic interactions between 
Spacetime Moments. 

Figure. 24.  Reference Frames 

{(𝑅! ∗ 𝑇! = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)&(𝑇#< = 𝑛 ∗ ℎ)} ⟹ 𝑛 ∗ 𝑑 < 𝑛 ∗ ℎ	 (13)	

Table. 2. Proposed Discrete and Continuous Relativistic Interactions 
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Type of Interaction 
Location of 
Observation/Experience Proposed Examples 

Discrete (Observation) Integer Increments of ℎ 
(Between Moments) 

The generation of 3D+T 
Spacetime Coordinates 

Continuous (Experience) 𝐸 < ℎ (Within Moments) Strong and Weak Interactions 

Continuous (Experience) 𝐸 > ℎ; 𝐸 ≠ 𝑛 ∗ ℎ (Between 
Moments) Electromagnetism and Gravity 

Note, it can be intuitively useful visualize our Spacetime Objects in “A Space”, but it is important to 
recall that objects do not approach and recede from each other in 3D space. Rather, we recognize the 
following due to 1D expansion of Spacetime in the context of measurement imprecision: 

1) Space and Time are dynamically generated discrete energy relationships between Spacetime 
Objects 

2) Forces of nature are continuous experiences for observers locate at discrete 3D+T locations related 
to the 1D expansion of Spacetime.   

Only in a silent Universe at the end of expansion could objects conceivably traverse Spacetime in the 
absence of interaction.  We have now sufficiently explored the implications of our definition of Spacetime 
(a 1-D expansion of energy) and Axioms #1-8 to describe a Neutron, Proton, Electron, and Proton-Electron 
Pair in our model.  We will not prove assertions 21-24 fully in this paper, but we will, in the following three 
sections, provide proof of the general merits of our approach by approximating, from our definitions of 
fermionic matter and first principles, Euler’s Number 𝑒, the related fine structure constant 𝛼 , and the 
Euclidean Rotation Constant 𝜋.  

4.2. Defining a Neutron, Proton, Electron, a Proton-Electron Pair   

We have hypothesized that Accelerated Moments can represent fermions (Hypothesis 2).  In this section, 
we will explore this hypothesis by making an assumption, and generating some consequent definitions.  
Specifically, we assume that a single Spacetime Moment, moving through hyperbolic space, is the 
fundamental substrate for Spacetime Objects we identify as Fermions (Figure 25, Definitions 15-18).  

Definition 15:   A Planck-Space Neutron is a single Spacetime Moment of length 𝐽#< = ℎ, with center 
𝑂5 that is observed by other Spacetime Moments to be centered on a dynamically generated reference 
frame 𝑅.  

Definition 16:  A Planck-Space Proton is a single Spacetime Moment of length 𝐽#< = ℎ, with center  
𝑂5'< that is observed by other Spacetime Moments to be centered a half jump-step ( )*ℎ = 𝜋ℏ ) ahead  
of a dynamically generated reference frame R. 

Definition 17:  A Planck-Space Electron is a single Spacetime Moment of length 𝐽#< = ℎ, with center  
𝑂5-< that is observed by other Spacetime Moments to be centered a half jump-step ( )*ℎ = 𝜋ℏ ) behind 
a dynamically generated reference frame R. 

Definition 18:  A Proton-Electron Pair is a Spacetime Object of length 𝐽 = 2ℎ, consisting of a Proton 
and Electron following the same Hyperbolic Spacetime Trajectory.  

In Section 4.3, we will describe a Neutron as a Spacetime Object that observes (and dynamically 
generates) 2-D+T Spacetime and provide an initial first principles-based estimate of Euler’s Number (𝑒/) 
as a term describing an expanding Spacetime Trajectory.  In Section 4.4, we will discuss neutron decay and 
describe decay products of the Neutrino, the Proton, and the Electron, focusing most specifically on 
generation of a Proton-Electron Pair as one possible decay product.  We will further describe the generation 
of 3D+T Spacetime by Protons, Electrons, and Proton-Electron Pairs, and provide an initial first principle-
based estimate of the Fine Structure Constant (𝛼/).  In section 4.5, we will focus on the natural emergence 
of the rotation constant 𝜋 from the linear expansion of Spacetime.  In section 4.6, we will end Section 4 by 
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discussing how an object of initial trajectory dimension 2ℎ can be modelled to expand, and be observable, 
as an object the size of a visible atom due to the relativistic impact of Spacetime Expansion. 

 
Relative placement of Spacetime Moments for Proton, Neutron, and Electron in 1D position 
compared to Reference Frame (“Observed Now”). 

4.3. Properties of a Neutron, and the emergence of an expansion term “𝒆𝟎” as a natural 
consequence of accelerated spacetime   

We have defined a Neutron as a Spacetime Moment straddling a reference frame. We can reflect on the 
following Axiom, assertions, and definitions (replicated below): In accordance with Axiom 4, Spacetime 
is continuous.  We now review related assertions regarding this Spacetime Moment: 

Axiom 4 (restated):  Spacetime is continuous. Observation is discrete. 

Definition 6 (restated):  In the presence of acceleration, Ο3  experiences an orthogonal (linear) 
trajectory Τ.   

Assertion 15 (partial restatement):  In accordance with Axiom 8 (conservation of momentum), in the 
absence of a defined interaction, all points in Spacetime experience and observe a linear trajectory.  

Assertion 23 (restated):  Strong and Weak interactions (scale < ℎ ) are generated by relativistic 
interactions within Spacetime Objects. 

Equation 13 (partial restatement): Trajectory distance 	𝑂B$ → 𝑂BO < ℎ; also see Table 1. 

We now make a related assertion: 

Assertion 25:  Expansion of Spacetime can be modelled as a Sub-Planck experience, occurring within 
a Spacetime Moment. 

We can model the implications of assertion 25, pertaining to a Neutron straddling the reference frame.  
We can first note that the expansion of Spacetime is related specifically to the motion of Spacetime 
generating the dynamic perpendicular to trajectory 	𝑂B$ → 𝑂BO.  To calculate the expansion constant for a 
single jump-step, which we will term 𝑒/, we focus on all points 𝑂, neglecting for the moment 𝑃 (Figure 
26). We second note that a Spacetime Object is a coherent series of Spacetime Moments traversing a 
uniform Trajectory 𝑇, such that all elements maintain a uniform distance from a central 𝑂B (Definition 13).  
A static intuitive representation can generate for us an isosceles triangle (Figure 26, right image). 

 

Figure. 25.  Fermions and Reference Frames 
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𝑂# and 𝑂( dynamically generate internal location characteristics (space) over 2 jump-steps.  This internal 
space can also be computationally represented as 2-dimensional. 

In figure 27, we represent, from the perspective of  𝑂B (central red dot) a point 𝑂5 with a particular 
arbitrary spin state returning to its original position over 2 jump-steps. Note that an alternative spin state 
(due to axis rotation) can also be observed; more about alternative spin states is discussed in Section 5. We 

 

note that (in a 2D projection) from the perspective of 𝑇, there is precisely one perpendicular line to the 
internally derived trajectory at point 𝑂5, and the posterior and anterior trajectories of 𝑂5 are related to this 
dynamic perpendicular.  We now make two assertions, which we will support in part by visual intuition 
(Figure 28): 

Assertion 26:  The trajectory of a single jump-step in the context of a single dynamic perpendicular can 
be modelled as occurring on a plane. 

Assertion 27: A second jump-step along the same linear trajectory, in the absence of interaction, can be 
modelled as an equilateral triangle, with sides of equal length ℎ (= 2𝜋ℏ). 

In summary, we have stated that space is an emergent property, constructed by the observer from a 1-
dimensional expansion of energy.  It follows that the experience of Space, like other experiences pertaining 

Figure. 26.  A Dynamic 𝚫𝒑𝚫𝒒 Projection of 2-D Euclidean Space+Time 

Figure. 27.  A Dynamic qT Projection of 2-D Euclidean+Time 
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to expansion of energy, is observer and scale dependent.  On the smallest possible observation scales, 
Spacetime is observed by points 𝑂 in the moment as a 2+T-dimensional expansion of energy that can be 
modelled as an isosceles triangle. Related experiences below the level of observation are computed as forces 
of nature occurring “within the moment”.  Figure 28 provides several, equivalent or “translating” images 
representing differing visualizations of the 2D fracture of Space and Time from a 1D Spacetime expansion. 

 

1. Spacetime Moment 2. Normalizing the Axis 

 

 
3. Future Position 4. Relativistic Position Shift 

  
Various perspectives of a dynamic Spacetime Moment.  Bottom right and bottom left formulations place an 
observer variously at a destination point (Bottom Left) or average position (Bottom Right). 

We provide explanation and context for each image in Figure 28 below: 
1. Top Left Image:  we present a Spacetime Moment as a flat linear expansion with a rotating frame 

(blue arrows). 
2. Top Right Image:  The axis is normalized to the 𝐴5KB frame; a dynamic axis rotation is not shown but 

should be presumed to be present.  We present (for best intuition) a Euclidean rotation.  It is productive 
here to return to a fundamental principle: all Spacetime points have equivalent quintessence. The 
movement 𝑂$P → 𝑂$V should not be conceptualized as a ball spinning on a string, rather the system 
𝑂$P𝑂O𝑂$V should be conceived more accurately as a precisely equally weighted baton, pivoting around 
axis 𝑂O𝑂$ as it moves through Spacetime.  Analogous to calculation of a center of mass of a baton 
pivoting precisely around point 𝑂O, the “Average Moment Point” can be considered to be the average 
moment location for a given jump 𝑂$PV → 𝑂O. 

3. Bottom Right Image:  The Moment is perpetually moving towards a future point 𝑂O  through 
hyperbolic space.  𝑂O  can be modelled to observe a point 𝑂$:  located along the 3-ball (or 3D) 

Figure. 28. Projection of Spacetime Moment Point Positions 
(See Descriptive Statements, Next Page) 
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coordinate frame, with position dependent on a spin state 𝑂$P → 𝑂O  or 𝑂$V → 𝑂O . A hyperbolic 
expansion term 𝜔 can be used to account for the “extra rotation” required to account for rotation of 
the 3-Ball. 

4. Bottom Left Image:  Recall that momentum is conserved; any given point  𝑂$:, in the absence of an 
interaction, experiences itself as in “free fall” towards its defined future; all other points appear to 
rotate, precess, or vibrate around its location.  While 𝑂O, the destination for the moment, views 𝑂$: as 
displaced by the factor 𝜔  from the simple Euclidean rotation due to hyperbolic expansion, 𝑂$: 
experiences that it is 𝑂O that has accelerated. 

An alternative visualization, to assist in generating intuition as to the predicted value for 𝜔, is provided 
in Figure 29.  Turning to Figure 29, we now place a Euclidean point observer in plane, observing the 
dynamic generation of (2-D) Euclidean Space, and experiencing the impact of its hyperbolic trajectory 
through Spacetime.  Specifically, note that transitional point 𝑂+:, the selected Euclidean point observer 
experiences communication from past points 𝑂$V  and future points 𝑂OQ  at a distance of 1 2R ℎ  as it 
progresses through transition point 𝑂+:. (An identical reasoning can be used pertaining to the alternate spin 
approach 𝑂$P; we can represent both – equivalent for this purpose – points efficiently as 𝑂$PV). Recall we 

 
From the perspective of computational point 𝑂.1, the axis of past and future positions can be modelled to spin.  
As a given point 𝑂.1  is in the process of jumping to 𝑂-1  we note the transitional point 𝑂41 , receives a 
communication (blue) from 𝑂- and 𝑂./ (red), from distance 1 2> ℎ.  Note here we revert to an illustration in 
which the Spacetime axis (“up” /“down”) shifts (in sub-Planck terms these are Moment spin states); 𝑂1 (the 
Euclidean Observer) on large scales will observe these movements as orbits. 

have defined our hyperbolic system as having unit dimension 𝕊78  where ℎ = 2𝜋ℏ .  We can now 
approximate our expansion term 𝑒/ based on these principles.  We define, and will support further below, 
that: 

The trajectory 𝑂$PV → 𝑂O is the hyperbolic distance 	ℎ = 2𝜋ℏ.	 𝑂+:  receives and computes information 
from 𝑂$PV and 𝑂O at a simultaneous distance of 𝜋ℏ = 1

2R ℎ.  We have presented Euclidean positions in 
Figures 26 - 28, but we recognize that, in hyperbolic space, the circumference of a circle of a given radius 
r is greater than 2𝜋𝑟 (see equations (15,16) below).  Restated, our Euclidean dynamic point observer, 
existing along the Euclidean 3-Ball, expects – and observes spatially – a Euclidean jump of distance of 
2𝜋ℏ, but in transitioning through hyperbolic space it also experiences an unobserved additional experience 
– an “extra amount of rotation”.  Specifically: 

Figure. 29.  Past and Future Merge and Are Computed Within the Moment with a 
Communication Distance 𝝅ℏ 

(2𝑒/)# = (ℎ𝑐𝑜𝑠(30/))# − (𝜔/)# 

2𝑒/ = �(ℎ𝑐𝑜𝑠(30/))# − (𝜔/)#
* = �-�2𝜋𝑐𝑜𝑠(30/)�#2 − ((𝜔/)#)

*
 

(14) 
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Where 𝑅9 is the hyperbolic radius and 𝐶9 is our hyperbolic circumference.  From the perspective of the 

Euclidean observer, we define 𝜔  as the “extra experienced hyperbolic rotation”.  It follows that our 
Euclidean observer within the moment experiences a motion of 2𝜋𝑐𝑜𝑠(30/), but its trajectory through 
Spacetime is for-shortened, or accelerated compared to Euclidean expectation; we define this factor of 
acceleration 𝜔<. 

To calibrate the impact on our Spacetime Trajectory, we must project this factor, using the dynamic 
perpendicular for our estimate (See figure 30 for intuition). 

We now calculate 𝑒/: 

Note the relationship between our expansion term estimate and Euler’s Number e: 
𝑒/ 𝑒R ≈ 0.999998032713991 

 

 

A Euclidean observer experiences a foreshortened Spacetime trajectory,  “accelerated” towards 𝑂-.  
Within a single Moment, we can define an acceleration term 𝑒5.  Note if we shift our observer 
point, we can define a reciprocal view, from 𝑂./ (right). 

 
 
 

Our estimate of 𝑒 is derived from a projection, rather than a full parameter space.  We will need to 
address the discrepancy between 𝑒/  and Euler’s Number 𝑒 in later work, but we offer one, additional, 
insight before moving to the next section.  We have defined in this section a 2D structure, involving one 
orthogonal dimension of Space and a Trajectory dimension, similar in nature to a Minkowsi space.  In our 
next section, we will discuss the emergence of 3-dimensional Space+Time.  It is common to think of our 
Spacetime as 4-dimensional, but our experience tells us that time is different from other dimensions.  All 
dimensions of space, in our experience, move in only one dimension of time.  Our geometric model must 
account for this property of Spacetime.  In part, the distinct geometry of 3D+T Spacetime, compared to 

𝑅9 = 𝜋ℏ
2𝜋ℏR = 0.5ℎ

ℎR  

𝐶9 = ℎ ∗ sinh-0.5ℎ ℎR 2 
𝐶9 = 𝜋ℏ ∗ 1.042190610987495 

(15) 

𝜔< = 𝜋ℏ ∗ (1.042190610987495 − 1) (16) 

𝜔/ = 𝑤< ∗ 𝑐𝑜𝑠(30/) 
𝜔/ = 0.229575910157313 (17) 

(2𝑒/)# = 29.60881320326808 − 0.052705098524559	 
2𝑒/ = 5.43655296164247 
𝑒/ = 2.718276480821235 

 

(18) 

Figure. 30.  A 2D Euclidean Observer in Hyperbolic Spacetime 
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1D+T Spacetime, is the underpinning for the distinct mathematics of the geometric projection leading to 
our estimate of the Fine Structure Constant. 

4.4. The emergence of the Protons and Electron, and the Fine Structure Constant as a Natural 
Consequence of the Energy State of a Neutron 

Overview (and Figure): In 4.3 we focused on estimation of a trajectory expansion constant.  We now 
turn our attention to the impact of the rotation of 𝑃 around 𝑂5.  In Figure 31, we provide a conceptual 
framework for describing how this can result in the development of 3 dimensions of space from a 3-Ball 
rotating and progressing through hyperbolic space.  Turning to Figure 31, the energy inherent in a  

dimensionless point is proposed in our model to be zero.  Spacetime is hypothesized to contain latent 
energy, which results in trajectory (brown), and acceleration (gray – top left).  Once a trajectory > 	ℎ 
occurs, our point now has developed dimensionality.  Recall, our system must be self-referential, and 
respect 3 metrics – trajectory, rotation, and continuous distance (with spatially observed distance occurring 
in increments of ℎ, and experiences comprising the balance (top middle).  A trajectory constant 𝑒/  is 
generated by the expansion of Spacetime.  We now place an observer at the anterior point of our Spacetime 
Object, “looking back” over the expanse of the hyperbolic trajectory.  We will state, without proof at this 
point, that a projection exists such that the sum of observed expansion steps (or trajectory steps) 
approximates Euler’s Number 𝑒 (top right). In the image bottom left, we take a closer look at a single jump-

 

  

 

 
 

From the perspective of a Euclidean Observer, all other Hyperbolic Spacetime Trajectories are curved.  We 
present flattened Euclidean projections. 

Figure. 31. Connecting Euler’s Number and the Fine Structure Constant  
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step for our accelerating object.  While observation is discrete, Spacetime is continuous.  To model this 
continuous movement, we allow our observer to move half-steps as it observes surrounding Spacetime.  
Note our point occupies an observable locale of scale ℎ which we have modelled as a circle involving two 
dynamically interacting points 𝑃 and 𝑂5 .  The object in row 3, defined solely by the trajectory of 𝑂5 , 
observes itself move. The object’s associated points 𝑃  move in parallel, their presence noted “in the 
moment” as they are below the threshold of observation (< ℎ) but communications from prior moments 
arrive, since this object travels at a trajectory speed of 𝑇 < 𝑐.  In the image bottom right we flatten the 
hyperbolic trajectory plane to propose a structure for a Proton-Electron pair.   Spacetime fractures into 
observable Space+Time, as an observer point 𝑂5 (gray observer “eyes”) rotates around and generates a new 
trajectory perspective.  A central Stationary Observer (green diamond/triangle) flows with Spacetime and 
observes and experiences the rotation and trajectory of surrounding moments following the same trajectory. 
Just as 𝑒/ is generated by an “extra experienced trajectory” mediated by hyperbolic expansion, the Fine 
Structure Constant is mediated by an “extra rotation” experienced by 𝑃 as it rotates farther (in pqT space) 
than its observed Euclidean rotation.   

Beta Decay:  A transition between the objects presented in row 2 in Figure 31, in energy space, implies 
an energy transition, or transmission, within the object.  We propose this transition is the basis for the 
observed Spacetime Occurrence referred to as Beta Decay (Figure 32).  In Beta Decay, a Neutron is 
observed to decay into a proton, and electron, and a Neutrino.  Related to Beta Decay, we make an important 
assertion: 

Assertion 28: Beta Decay marks the emergence of observed three-dimensional space.   

We provide some preliminary, limited mathematical modelling of the generation of 3-dimensional 
Spacetime in Section 5.  While an important process, we need not understand this process in full to estimate 
the fine structure constant.  Before moving on to the next section, however, Figure 32 provides a limited, 
brief intuition of Beta Decay.  As we will show in Section 5, Beta Decay results in a reduction in the amount 
of energy stored by a Spacetime Moment at the reference frame.  A neutrino, in this context, represents a 
communication transmitting information about the amount of energy in a particular Spacetime Location 
tied up in the reference frame.  Neutrinos are hypothesized to exist on a Sub-Planck level but would be 
modelled to be transmitted in large numbers and continuously in regions of Spacetime in which Protons, 
Electrons, and Neutrons are actively undergoing Beta Positive and Beta Negative interactions.  Neutrinos 
would be modelled to interact with distant objects in Spacetime only when their resonant state coincides 
with that of an intersecting Spacetime Moment. 

The Emergence of Electromagnetism:  In Figure 33, we can visualize the underlying geometry giving 
rise to Beta Decay, Weak interactions, and the connection between the Weak Force and Electromagnetism.  
In the left image, we see a full Spacetime progression for an individual Spacetime Moment (such as a 
solitary Neutron located at the frame).  We note: 

 
Where we define 𝑀#<  as a Spacetime Moment existing at an arbitrary reference frame.  For this 

Moment, 𝑂B  is in process of making a trajectory jump-step from 𝑂$V  to 𝑂OP .  An additional “force” is 
experienced by the additional hyperbolic interaction with 𝑃, experienced as two components: 

1) Bosonic and fermionic communication from 𝑃$V as it “falls towards”  𝑂B at speed c 
2) Bosonic communication from 𝑃OP , “from a future position” communicating at speed c as 𝑃OP 

rotates into its next jump-step 

Given 𝑀#< 
𝑂$V𝑂OP = 2𝜋ℏ = ℎ 

𝑂$V𝑂B = 𝑂B𝑂OP = ℎ
2R = 𝜋ℏ 

𝜋ℏ < 𝑃$V𝑂B = 𝑂B𝑃OP < 2𝜋ℏ 

(19) 
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Top Left:  A Neutron straddles the reference frame.   Beta Decay occurs when Spacetime fractures to Space+Time, 
charge, and the experience of electromagnetism.   
Bottom Left:  From the perspective of a Spacetime Moment, the Neutron’s observer point can be modelled to be 
placed along the trajectory (red “eyes”); the generation of a proton-electron pair results in a “relaxation” of energy 
embedded at the reference frame; this energy can be projected here to orbit the trajectory (blue/green “eyes”). 
Image Right:  From the perspective of an external observer, during Beta Decay energy embedded in the reference 
frame is reduced, radiating a Neutrino (green) at a significant fraction of c (also see Section 5).  In the Beta-Negative 
Process, energy is injected into the reference frame, lending insight to energetic processes involving many such 
interactions (such as Supernovae). 

Both of these components from 𝑃 are located at a distance < ℎ and are therefore not observed but are 
instead experienced as a force.  This nascent emergence of an additional dimensionality may be 
experienced, we propose, as a Weak Interaction. After Beta Decay, a Spacetime Object of minimum 
observable length 2ℎ = 4𝜋ℏ exists straddling the reference frame.  We can project for this object: 

 
  

Figure. 32.  Differing Perspectives of Neutron, Proton, and Electron, and the Process of Beta Decay 

Given 𝑀W<ℏ 
𝑂$V𝑂OP = 4𝜋ℏ = 2ℎ 

𝑂$V𝑂B = 𝑂B𝑂OP = ℎ = 2𝜋ℏ 
𝑃$V𝑂B = 𝑂B𝑃OP > 2𝜋ℏ 

(20) 
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Neutron (Spacetime Moment, at Frame) Proton-Electron Pair 

  

𝑨𝒑𝒒𝑻 or “return to line” projection of Spacetime for an Individual Moment (Left) and a Proton-Electron pair (Right) 
straddling a reference frame.  An Spacetime Moment observing itself at frame is a Neutron. 

Where we define 𝑀W< as two Spacetime Moments in front of, and behind an arbitrary reference frame 
that share the same Spacetime trajectory.  The new dimension of energy expansion is now observed as 
Space, separate from trajectory T (observed “linear” time).  Further information on the properties of this 
3D+T frame, including why we perceive 3 Euclidean spatial dimensions, is located in Section 5.  We can 
now “unroll” our 𝐴5YB rotating axis to an 𝐴I  (point-trajectory) representation of Spacetime (Figure 34).  
Turning to Figure 34, we first illustrate a Proton-Electron Pair as an object dynamically in the process of 
making a trajectory from 𝑂B$ to 𝑂BO.  Dynamic perpendiculars define relative positions of 𝑃𝑖 at various 
trajectory steps. We specifically examine 𝑃$Z  rotating around 𝑂$Z   , with the two points making a trajectory 
to 𝑂BO  and 𝑃BO .  The characteristics of this Spacetime trajectory are computed at a central Spacetime 
Moment (Blue Box), and these characteristics can be modelled to be “computed” or “held” at average 
moment point 𝑂5 (Fig 34, Top Image).  Communication occurs via bosonic communications at speed “c”.  
We can look at the communications within this Spacetime Moment in more detail (Bottom Image).   

We identify the Moment communications along the following trajectories: 
1) 𝑂B$) → 𝑂B → 𝑂B>) represents the average computed Spacetime Trajectory of the Proton-Electron 

Pair as observed by the proton, the leading element of the Spacetime Object, with respect to the 
perspective of 𝑂B. 

2) 𝑂[$) → 𝑂[ → 𝑂[>)  represents a virtual experienced trajectory of the Spacetime Moment with 
respect to the perspective of 𝑂[ (Blue Box). 

3) 𝑂[ also experiences and observes the trajectories: 
a. 𝑂$Z) → 𝑂[ → 𝑂OP) 
b. 𝑃$Z) → 𝑂[ → 𝑃OP) 

4) We ignore at present a relationship between 𝑂[ and 𝑂B$ → 𝑂B → 𝑂B> 
Note, from the perspective of 𝑂[ , which experiences itself at rest in the absence of interactions, 

instantaneous velocities, and angular accelerations, the “past” and “future” appear to rotate in opposing 
directions.  This opposing relationship, we propose, is the basis for the experience of charge.  We can now 
define the rotational relationship in terms of angular acceleration, between positive and negative charged 
objects.  We first note, referencing the concept of dynamic parallels, that within our object: 

 

Figure. 33.  Comparing a Neutron and a Proton-Electron Pair 

 
𝑂B$𝑂B𝑂B> = 𝑂[$𝑂[𝑂[> = 2𝜋 cos�asin�1 𝜋R �� ≅ 5.95637621413871 

 
(21) 
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We can now take the perspective of 𝑂OP)𝑃OP) , the projected communication (on to the computing 
moment) of the relationship between 𝑂B> and 𝑃OP.  The observed Euclidean distance from 𝑂$Z) to 𝑂OP) is:  

The expected Euclidean distance from 𝑃$Z) to 𝑃OP) is: 

The ∆𝑝𝑞 step change along the dynamic perpendicular from points  |𝑂$Z) , 𝑂OP)~ to correlated points 
along the respective dynamic perpendiculars |𝑃$Z) , 𝑃OP)~ is ℏ.  Across a single jump-step of length ℎ =
2𝜋ℏ, we have demonstrated that, as visualized by the 𝐴I formulation, a half rotation occurs. The expected 
radius and circumference of a Euclidean circle with radius ℏ is: 

In order to maintain its location on the dynamic perpendicular, 𝑃 must make an additional increment of 
rotation.  This is related to the hyperbolic circumference: 

Figure. 34.  Generating the Observation of Charge 

 
𝑂$Z)𝑂OP) = 2𝜋ℏ = ℎ 

 
(22) 

 

𝑃:$Z)𝑃:OP) ≅ ��2𝜋 cos�asin�1 𝜋R ���
#
+ (3)#

*
 

𝑃:Z)𝑃:OP) ≅ 6.66921416692832ℏ = 1.06143840120514ℎ 
 

(23) 

𝑟: = ℏ = 1
2𝜋R ℎ 

𝐶: = 2𝜋𝑟: = ℎ 
 

(24) 

 (25) 
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We showed previously that over a single jump step, in the 𝐴I model, a half-rotation occurs.  We can 
therefore approximate this extra rotation 𝜙9 as: 

Recall (for intuition, see Figure 35, also see Section 5) that 𝑂[ only experiences simultaneous distances.  
Therefore, if 𝑂[ observes 𝑂$Z) 	and 𝑂B> at a distance of 𝜋ℏ, it observes 𝑃$Z) and 𝑃OP) at the same distance.  
This is possible by recognizing that 𝑂[ observes these points at different trajectory points; further, 𝑂[ can 
be modelled to “average” or “summate” the perspective of these two points.  The difference between the 
two perspectives can be modelled as a rotational energy: 

 
Perspective is relative. Due to the dynamic generation of Spacetime, 𝑃.9! observes a future location of 
𝑃-0! , while 𝑃-0!  observes a past location of 𝑃.9! .  These observations occur at scale < ℎ , and a 
computation of the average of these observations are modelled to occur at location 𝑂:. 

The increased rotation results in the generation of two overlapping isosceles triangles, representing a 
disagreement in Spacetime location between 𝑃$Z)  and 𝑃OP) .  The base of this isosceles triangle is > 1, 
related to the relative respective relativistic displacements, estimated as: 

 
The height of this isosceles triangle, with equal leg/distances of ℎ = 2𝜋ℏ, is: 

The associated angle observed and experienced by 𝜃P is: 

𝐶9 = 2𝜋sinh	(𝑟:) ≅ 1.004227066076697ℎ 
 

 
𝜙9 ≅

(1.004227066076697ℎ − ℎ)
2R ≅ 0.0021146599929 

 
(26) 

 
𝜔:) ≅ (1.0021146599929) ∗ (1.06143840120514 − 1) ∗ 2𝜋ℏ ≅ 0.386845179534552 

 
(27) 

Figure. 35.  Perspective Disagreement Generates Charge 

 
𝑏\J: ≅ �(1)# + (0.386845179534552)#* ≅ 1.07221679540352ℏ 

 
(28) 

 

ℎ\J: ≅ �(2𝜋ℏ)# −
(1.07221679540352)

4

#*

≅ 6.26027199011921ℏ 

 

(29) 

 (30) 
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Rotational energy in our system follows a standard physics form and is proportional to the square of the 
angular displacement, giving us a constant: 

If we set 𝐶] = 1/2, then: 

We can now relate our predicted fine structure constant to the observed fine structure constant, defined 
as having a value of:  𝛼 = 0.00729797352569311: 

It won’t have escaped even a cursory read that our coordinate system for calculating 𝛼/ and 𝑒/ differ.  
As we mentioned earlier, our shift in perspective occurs due to the distinct cognitive process that must 
occur, informed by the relativistic relationship of our observer frame, in order to expand our observation 
frame from 1D+T Spacetime to observed 3D+T Spacetime. To understand this difference, and provide 
convergence between these estimates, we must now define the nature of 𝜋. 

4.5. The Emergence of 𝝅 from Hyperbolic Linear Expansion of Spacetime 

Introduction:  In sections 4.3 and 4.4, we modelled the emergence of Euler’s number, and the Fine 
Structure Constant, under the assumption of a single, or two jump-steps.  In this section, we now embed 
these concepts in a relativistic model, in which an observer integrates information over multiple jump-steps.  
One preliminary model for eventually rectifying  𝑒/ and 𝛼/ to 𝑒 and 𝛼 can be represented, generally, as a 
summation (Equation 34):  

In which 𝑚 represents the number of trajectory steps, or rotations, that have occurred since the original 
jump-step of the system.  Heretofore, we have brought in the extra-logical number of 𝜋 as a descriptor of 
our rotational parameter (Definition 5).  We now introduce Equation 35 as a corollary to Equation(s) 34: 

As we will see, this approach unifies the apparent observer discrepancies we presented earlier between 
our calculation of 𝑒 , which we modelled based on the right triangle with side lengths of 
{2𝜋ℏ, 𝜋ℏ, 2𝜋cos	(30/}, and our calculation of the fine structure constant, which we model based on a family 

𝜃P ≅ 2 ∗ 𝑎𝑟𝑐𝐶𝑜𝑠(ℎ\J:)	 
𝜃P ≅ 0.170856344723473			 

 

 
𝛼/ ≅ 1

2R ∗ 𝐶] ∗ (𝜃P)# 	≅ 𝐶] ∗	0.0145959452661332 
 

(31) 

 
𝛼/ ≅ 0.0072979726330666 

 
(32) 

𝛼/ 𝛼R ≅ 0.999999877688442	(𝜎~10-^) 
NOTE:   

𝑒/ 𝑒R ≈ 0.999998032713991	(𝜎~10-_)	 
(33) 

𝑒 = )𝑒/∆𝑇
)

!,/

 

 

𝛼 = )𝛼/∆𝑇
)

!,/

 

(34) 

𝜋 = )𝜋/∆𝑅
)

!,/

 (35) 
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of right triangles with side lengths |2𝜋ℏ, 𝑛ℏ, 2𝜋ℏcos	(𝑎𝑟𝑐𝑠𝑖𝑛�1 𝜋R �)~.   Specifically, we propose that the 
observation of the value 𝜋 is an emergent property of linear hyperbolic expansion of Spacetime.  More 
generally, we propose that the observed Euler’s number, the Euclidean rotation constant 𝜋, and the fine 
structure constant 𝛼, can be modelled to emerge as a Universe evolves.  In the first two jump-steps, (𝑚 =
2)  Euler’s number would theoretically become for the first time measurable/observable. We propose that 
the relationships 𝜋/ and the fine structure constant 𝛼/ may become observable shortly thereafter, if the 
system energy is such to allow space (protons and electrons) to emerge.  As observable trajectory and 
rotational steps proliferate, we hypothesize that these constants can be projected to normalize to the precise 
observable values we calculate.  Note we estimate values from angles derived from a 3D+T projection of a 
higher dimensional parameter space, additional precision would also be obtained from better identifying 
and approximating higher dimensional characteristics impacting our projections. 

Estimating a value for 𝝅𝟎:   We can start our exploration of the relationship between 𝜋, 𝑒, and 𝛼 by 
observing a projection of the progress of a proton-electron pair through Spacetime (Figure 36), Turning to 
Figure 36, we present a simplified visualization of a Proton-Electron Pair (also see Section 5).  To visualize 
the movement of our Proton-Electron pair through Spacetime, we must now approach, and attempt to 
understand some properties of projective spaces.  We can start with a simple visualization (Figure 37).   

 

 
 

 
 

In Figure 37, we demonstrate an object existing in 2-dimenstional space. Focusing on the blue right 
angle, we can see a projection of the object on to the vertical line (labelled).  Note that we only see an aspect 
of the whole; the green “projection” is not visible.  We propose that, similar to this example, that 𝜋 is best 
understood as a projection that occurs from a complex process.  First, Spacetime exists as a linear expansion 
in the context of a minimum observation distance.  Second, observers are formed from Spacetime, and 
generate multi-parameter translations of this expansion to account for observations and experiences.  Some 
observers, formed from charged matter (protons and electrons), project a location from a (at least) 6 
parameter set of observations and experiences into a 3D+T observed frame of reference, measured out in 
increments of Planck scale minimum observable distances. In our model, we attempt to decode this complex 
projection.  Specifically, in Figure 38, we introduce the steps taken to project a hydrogen atom in 3D+T.   
The purpose of the progression is to display, on a conceptual level, the emergence of rotation from linear 
expansion, in the context of a minimum observable distance.  Note, we present a perspective from outside 
the system, focusing specifically on the front element (the proton), the location towards which the paired 
Spacetime Moments are progressing.  We model our Spacetime Object making a complete circuit over a 

Figure. 36.  Visualizing a Proton-Electron Pair (Hydrogen) 
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distance of 2ℎ, with an axis shift (defining that we have moved to a new dynamic perpendicular).  In a step 
wise fashion, we can now study how our axioms and assertions impact our 3D+T visualization.   

 

 

It is important to recognize, by visualizing these relationships from “outside the system”, we are 
performing a complex projection indeed, as in essence we propose to “step outside the Universe” of the 
model to model what is occurring within.  While we place the projection in a Euclidean space, we must 
remember the points are dimensionless, the lines have no “width”, and there is no true “space” that our 
“circles” occupy.  As observers constructed from Spacetime, we have generated a heuristic geometry, with 
underlying number systems and relational systems, to explain our observations and relate ourselves to an 
environment of similar observers.  It is only natural that to fully understand Spacetime, we may make use 
of this heuristic geometry to return to the simple principles from which Spacetime is generated.  Image-by-
image discussion of Figure 38 is presented below: 

• IMAGE 1:  Point 𝑃  perceives a linear trajectory through hyperbolic space, with a minimum 
observable distance ℎ.  To accommodate to our preferred 4D (3D+T) perspective, we model this 
linear trajectory as a circle, in hyperbolic space, around an un-seen axis. 

• IMAGE 2:  In accordance with Axiom 8, momentum is conserved.  Our point 𝑃 perceives neither 
trajectory, nor rotation.  We can model instead that it observes itself at the “average position”, with 
other related objects rotating around its perspective.  The posterior element (the “electron”) 

Figure. 37. Projective Space 

 

 

 

 

Fixing different observer points results in different dynamic model (𝐴,) projections. A final rotation step (pale 
green arrow) is also occurring within the moment. 

Figure. 38.  Stepwise Generation of Observed Spin and Trajectory 
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accordingly appears to rotate.  If the wave-front or tip of our “proton” is modelled by the right-
hand rule to rotate in Counter-Clockwise direction, we can assert that it perceives the tail or back 
end of our “electron” to rotate in a Clockwise direction.  Note if we placed our observer point at 
another location, the direction of observed rotation may change. 

• IMAGE 3:  We can now model the perspective of an observer in the mid-point of our Spacetime 
Object, located a distance of ℎ from the tip and posterior end of the object of length 2ℎ.  Recall 
from Figure 14 (inset) that the central observer is itself in a state of relative rotation with respect to 
𝑃.  From the perspective of this object, the axis of our object is in a state of rotation; the “tail” has 
rotated to a new position perpendicular to its prior position.  The “tip” to be consistent must also 
occupy a new dynamic perpendicular.  Importantly, the “mean computational point” describing the 
motion of our Spacetime Object is this central point – our “frame of reference”. 

• IMAGE 4:  We combine these differing perspectives as a single geometric figure, describing 
trajectory, spin, and axis rotation. 

It is important to understand that in the series of images in Figure 38, we are merely “casting a shadow”, 
from a higher dimensional object on a 4D manifold (incorporating a 3D perspective and arrows to generate 
a concept of time).  Similar to the process of projecting the shadow of a 3D object on a 2D surface, we 
invariably lose information in the transform. Nevertheless, we can use this operational visualization as a 
geometrical projection or “shortcut” to estimate 𝜋/, a rotational constant arising as a natural consequence 
of our model.  Specifically, we propose to introduce a spin term 𝜛 to relate trajectory to observed spin 
(Figure 39).  Note in our Euclidean visualization, the 3 positions of the electron spin-state displayed are 
separated by 120/ . We therefore, as a first approximation, assign a spin-state value of 𝜛: = 1.5ℏ .  
Incorporating 𝜛: , trajectory, and the speed of communication we can now characterize a “rotation” 
parameter,  𝜋/.  Together, 𝑒6, 𝛼/, &	𝜋/ characterize trajectory, rotation, and (in objects of size > 2ℎ) a 
dynamic angular relationship between trajectory and rotation.  To calculate our rotation parameter, it is 
instructive to first return to a 2D projection of our hyperbolic space (Figure 40).  To determine the 
relationship between rotation and trajectory of our object of length = 2ℎ, we can relate the average rotational 

 
 

Trajectory of a Spacetime Object of length 2ℎ is foreshortened by a spin constant 𝜛. 

location of the posterior element (red dot) to the average trajectory location of the forward element (blue 
dot – Figure 39 right, replicated as blue dot 𝛽 in Figure 40).  In Figure 40, we now limit ourselves to 2 
dimensions, to assist us in accounting for the fact that the “front end” of our object has 2 orthogonal axes 
(one spatial and 1 trajectory axis), while the “tail” has 3 independent orthogonal spatial axes, each with an 
orthogonal trajectory axis, visualized by an observer point that (in Figure 40) is approximated by the 
dynamic/emerging location between red point 𝛼 and blue point 𝜓..  For the purposes of this visualization, 

Figure. 39.  The Impact of Spin on Observed and Experienced Trajectory 
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in essence it is productive to conceive of ourselves as flatlanders (Abbot, 1926).  Any dimension into, or 
out of the page, is “imaginary” for us.  In this context, we “see” only the projection of one plane, derived 
from trajectory and a flat dynamic perpendicular, and we only “observe” a full projection in our flat  

 
Initial position (Observed Flat Dimension), Spacetime.  We will determine at what point the 
communication for α,β, and ψ from our posterior element (electron, red) reach the approximate location 
of our anterior element (blue).  We wish to define at what point our posterior element (rotational element, 
average position red dot 𝛽) “returns to the line” (trajectory element, average position blue dot 𝛽). 

dimensional projection every third jump-step.  In Figure 41 (next page), we map out the approximate 
number of jump-steps required for the communication from the posterior element to reach our anterior 
element.  Turning to Figure 41, we can see at the 3rd jump step, our communication still lags far behind our 
trajectory.   In succeeding steps, we can see the communication gradually “catch up” with the anterior 
element of the Spacetime Object.  The communication from the electron communicates with the proton at 
approximately Jump-Step 24.  Examining the intuitions offered in figure 41, and considering the related 
implications, we will be able to approach the initial estimate of 𝜋 that would be generated by observers in 
the model we describe. We now present equations associated with Figure 41, and the related implications.  
We start with a revised calculation of 𝑇, accounting for the dynamic property (pertaining to the energy of 
rotation) we visualize in Figure 39 (also see Figure 42).  In equation 36, we estimate 𝑇8. 

Figure. 40.  Base Position of a Proton-Electron Pair in Flatland 

2𝑇8 = �(2𝑇6)# − (𝜛)#
*  

2𝑇8 = �-4𝜋ℏcos	(arcsin	(ℏ 𝜋ℏR )2
#
− (1.5ℏ)#

*
 

2𝑇8 = 11.81793850116973ℏ 
𝑇8 = 5.908969250584863ℏ 

(36) 
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The Electron communicates with the Proton at ~Jump-Step 24 (Image Bottom Right). 

In these projections, we note: 
1) 𝑇6 is an observed Euclidean trajectory progressing (rotation/trajectory) through Spacetime 
2) 𝑇8  is a relative foreshortening experienced by the observer, impacting trajectory step at which 

communication between the ∆𝑝∆𝑞 linear displacement (“rotation”) of the electron, and the proton, 
occurs. 

3) To maximize intuition, rather than present a pure Poincaré representation, we present a hybrid 
“observed location” presentation where we project the Poincaré progression onto a Euclidean plane.  
We justify this presentation based on the following principles, which we have either supported or 
implied earlier: 

1. The observed location of a dynamic object within a Spacetime Moment is defined by the 
dynamic perpendicular.  

2. Observed locations in Spacetime can be observed as points occupying a 3-ball passing 
through the origin.  Euclidean space arises as a dynamic rotation of this 3-ball progressing 
through hyperbolic Spacetime.  

3. Circles and spheres in hyperbolic space, from the perspective of a central point in Poincaré 
space, follow the same geometric principle (equal distances can be presented as an 
undistorted circle centred at the origin).  

 

Figure. 41.  Point of Interception of Electron Communication with Proton Jump-Step Location 
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Importantly, our Euclidean projection should be recognized not as a static plane passing through 
Poincaré space (such as we present in Figures 7, 8, 13, 14); the projection in Figures 40, 41, 43, and 45 
occurs when we “unroll” and flatten a dynamically generated Spacetime Observer perspective.  This 
distinction is important enough to comprehending the generation of observed 𝜋 that we also highlight this 
distinction in Table 3.  

Static Hyperbolic Perspective 
Examples: Figures 7,8,13,14 

Dynamic Hyperbolic Perspective 
Examples: Figures 40, 41, 43, 45 

• A static plane is passed 
through a Poincaré sphere.  

• We demonstrate a cross-
sectional location of a 3-
sphere upon which observable 
Spacetime points can be 
arrayed. 

• A 3-sphere is rotated dynamically through hyperbolic space over a 
series of trajectory distances.   

• An object of length 2ℎ is arrayed along the surface of the 3-sphere. 
• A trajectory direction is defined by a Spacetime Locus of dimension ℎ, 

located in a ∆𝑝∆𝑞 frame orthogonal to T, in which ℎ is represented as 
an equidistant (circular) shape of  distance 2*(constant)*(radius), and 
the trajectory direction is defined by the virtual center.  

• The perspective of the dynamic perpendicular at all points along the 
trajectory is respected 

• An observed plane is formed by “unrolling” the resultant surface. 
• A hybrid projection respects Euclidean conventions for trajectory (for 

intuition), but hyperbolic circumferences are calculated. 
Throughout this work, we have presented differing perspectives of Spacetime.  Each perspective can be considered 
a shadow of a whole (see reference: Plato, 514b-518a, about 380 BCE).  When we project a higher dimensional 
“shadow” into 4D space, we lose precision, but can gain substantial insight.   In this paper, we pursue first insight.  
Insight can allow us to then pursue precision in later work. 

Turning again to Figure 41, we display an estimate of how the trajectory and rotation correlate within 
the Spacetime Object we have defined.   We displayed earlier how communication from the posterior 
element “catches up” with our anterior element at ~Jump-Step 24.  In equation/calculation 37, we present 
calculations representing the varying relationships between trajectory parameters 𝑇6-#W, 𝑇8-#W,  and 
communication step 𝐶#W.  For our estimate of  𝜋/  we will focus exclusively on the average (𝛽) location of 
the trajectory moment and rotational moments displayed in figure 40. 

 
 

Figure. 42. Generating 𝑻𝒉 

Table. 3. Distinct Projective Representations 
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In which 𝑃`-6Q/ is the mean location of the posterior rotational point (our “electron”),  𝑃5-Q6/ is the initial 
average trajectory location of our anterior trajectory point (our “proton”), 𝑃5-Q6#W  is the predicted 
trajectory location of 𝑃5-Q6/  after 24 jump-steps, and 𝐶\Q-#W  is the radius of the communication of 
location 𝑃`-6Q/, assuming a constant speed of communication (for historical reasons, we label this constant 
speed  “𝑐”), and 𝐷9-5`#W is the calculated, dynamically generated, Euclidean distance between the proton 
and electron at the jump-step as the Communication-step arrives from the electron.  Note, the co-location 
above is not precise, and as we demonstrate later precision will be important for calculating π.  We can now 
take the perspective of 𝑃5-Q6#W, setting the coordinate space such that 𝑃5-Q6#W = {0,0} (Figure 43).   

Recall that from the perspective of 𝑃5-Q6#W,  embedded in our dynamically generated “flatland” plane, 
𝑃`-6Q/ dynamically emerging from one of two perpendicular (let us call them “imaginary”) dimensions.  
The plane is defined by a constant dynamic perpendicular that is emerging on our unrolled plane. We can 
estimate the hyperbolic expansion, as visualized by 𝑃5-Q related to the set of points |𝑃`-Q., 𝑃`-Q#, 𝑃`-Qa~, 
as shown in Figure 43.  In figure 43, note that we have placed our “observer point {0,0} at the mean location 
of the electron.  We can define the dynamically generated “observed linear distances” projected in Figure 
43 according to relationships: 

𝑇6-Q#W = 24 ∗ ¡2𝜋ℏcos ¢arcsin-ℏ 𝜋ℏR 2£¤ = 142.9530291393291ℏ 

𝑇8-Q#W = 24 ∗ �1 2R � -�(2𝑇6)# − (𝜛)#
* 2 = 141.8152620140367ℏ 

𝑃`-6Q/ = {0,0}; 𝑃`Q/0 = 0, 𝑃`Q/b = 0 

𝑃5-Q6/ = ¥−
3
2
-�(2𝑇6)# − (𝜛)#
* 2 , −0.5 ∗ (3ℏ) + 3ℏ¦ 

𝑃5-Q6/ = {−8.86345387587729ℏ,−4.5ℏ}; 
𝑃5Q/0 = −8.86345387587729ℏ, 𝑃5Q/b = −4.5ℏ 

𝑃5-Q6#W = |𝑃5Q60 − 𝑇8-Q#W, 𝑃5Q/b~; 
𝑃5Q6#W0 = 150.7498263352448ℏ, 𝑃5Q6#Wb = −4.5ℏ 

𝐷9-5`#W = 𝑃5-Q6#W → 𝑃`-6Q/ = −�(150.7498263352448ℏ)# + (−4.5ℏ)#*  
𝐷9-5`#W = −150.7458968669908ℏ 

𝐶\Q-#W = 24 ∗ 2𝜋ℏ = 150.7964473723101ℏ 
§𝐷9-5`#W§ ≈ 𝐶\Q-#W 

(37) 

 
𝐺𝐼𝑉𝐸𝑁	𝑇𝐻𝐴𝑇:		𝑇8 = 5.908969250584863ℏ	(𝑠𝑒𝑒	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	36),	 

𝑊𝐸	𝐷𝐸𝐹𝐼𝑁𝐸	𝑇𝐻𝐴𝑇:		𝑇8/# = 2.954	484	625	292	423ℏ 

𝐷9-5`/-. = 𝑃5-Q/ → 𝑃`-Q. = ��3𝑇8/#�
# + (6)#

*
 

𝐷9-5`/-# = 𝑃5-Q/ → 𝑃`-Q# = ��3𝑇8/#�
# + (4.5)#

*
 

𝐷9-5`/-a = 𝑃5-Q/ → 𝑃`-Qa = ��3𝑇8/#�
# + (3)#

*
 

𝐴𝐿𝑆𝑂 
𝐷9-5`/-. = −3ℏ ∗ 1.135	656	312	216	57;	𝐷9-5`/-. > −𝜋ℏ 
𝐷9-5`/-# = −3ℏ ∗ 1.054	705	261	247	539;	𝐷9-5`/-# > −𝜋ℏ	 
𝐷9-5`/-a = −2.978	550	885	405	966ℏ;	𝐷9-5`/-a < −𝜋ℏ 

(38) 
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“Proton Mean Point” 𝑃#;3 : Blue Circle labelled 𝛽# .“Electron Dynamic 
Perpendicular Points”: E𝑃<;3!,𝑃<;3",𝑃<;3#F: Red Circles, yellow highlight. 

 
 
 

Pertaining to the last point (𝐷9-5`/-a < 𝜋ℏ), it is appropriate to note that even at Jump Step 0, a 
potential position of  is “within the moment” for , while the average and maximal position are 
“outside of the moment” of the system defined by {𝑃[ , 𝑃 }.  We can define the observed dynamically 
generated Euclidean relationships at jump-step 24: 

Recall, there is only one point 𝑃 in our model, and various instances of Spacetime are generated through 
various communications of relative positions and past positions of this point 𝑃 with future instances of 𝑃 .  
We can therefore transform the distances above to communication step 𝜅 between relative positions of the 
“electron” and mean trajectory position of our “proton”: 

To restate equation 40 verbally, we can state that when the mean proton position arrives by jump-step 24 
as follows: 

• The average and closest positions of the “electron signal” have already arrived, and 
• The furthest possible projected position of the “electron signal” is arriving 

Pe Pp

Figure. 43. Observed Proton-Electron Distances 

 
𝐺𝐼𝑉𝐸𝑁	𝑇𝐻𝐴𝑇:		𝑇8/# = 2.954484625292423ℏ 

𝐷9-5`#W-. = 𝑃5-Q#W → 𝑃`-Q. = ��51𝑇8/#�
# + (6)#

*
 

𝐷9-5`#W-# = 𝑃5-Q#W → 𝑃`-Q# = ��51𝑇8/#�
# + (4.5)#

*
 

𝐷9-5`#W-a = 𝑃5-Q#W → 𝑃`-Qa = ��51𝑇8/#�
# + (3)#

*
 

 

(39) 

 

𝜅`Q#W-. = ¢
𝐷9-5`#W-.

2𝜋 £ = 24.000	267	487	554	82 

𝜅`Q#W-# = ¢
𝐷9-5`#W-#

2𝜋 £ = 23.991	954	637	202	64 

𝜅`Q#W-a = ¢
𝐷9-5`#W-a

2𝜋 £ = 23.986	015	123	079	44 

 

(40) 
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At this point it is productive to also invert our perspective, defining the “return to line distances” – a 1D 

projection of the model (Figure 44).  Note, this “return to line” communication is perceived by an observer 
that is also moving through Spacetime and is computed (we have proposed) as an interplay between a 
rotation metric, a dynamically generated perpendicular, a trajectory metric, and the generation (for a Proton-
Electron Pair) of 3 Euclidean dimensional axes, progressing through hyperbolic space. The purpose of the 
perspective shift displayed in 44 is to remind the reader that our projections collapse high parameter 
computations into lower dimensionality, but our original parameter space was originally 1D.  Provided the 
parameters and rules of observation are fully accounted for, the “return to line” formulation will ultimately 
be the most precise in our model.  By generating Hyperbolic and Euclidean projections, in other words, we 
are fracturing Spacetime in a manner similar to our experience to compute approximate solutions, gaining 
intuition, but often at the expense of precision. 

 
A 1-D projection of Spacetime has low “geometric precision” compared to our experienced Spacetime.  A 
matter observer, moving in trajectory steps < c, observes a communication of “where  was” – defined by 
a relativistic transform of increments of minimum observable distances at specific points in the past.  Points 
arranged along a 1D projection can also be projected as geometrically existing on along a Euclidean dynamic 
perpendicular. From the observer’s perspective, principles of Euclidean Geometry apply. 

In Figure 45, we examine now at an “unrolled” planar structure, based on an object of length 2ℎ 
progressing through Spacetime.  This object is the expansion of the object displayed in Figure 43.  As we 
have referred to earlier, our plane “unrolls” dynamically.  In every 3rd Jump-step, we can represent the 
progress along our unrolled planar structure (we can consider jump-steps out of plane as “imaginary” from 
our flatland perspective).  For perspective, the elongated strip on the right side of Figure 45 presents the 
approximate Euclidean distance between the proton and electron when the average signal from the electron 
“catches up” with the proton.  In equations 36 through 40, we showed that the signal “catches up” around 
jump-step 24 – a point “visible on the unrolled plane”. 

In Figure 46, we examine a flattened perspective of the precise point at which the “average signal” from 
the electron “catches up” with the proton.  We label the average “moment point” for the proton 𝑃5-Q,-, 
and the signal from the average point of the electron at 𝑒𝐶<- .  We can now define the following 
relationships: 

 

P

Figure. 44. A One Dimensional Spacetime Projection 

𝑃5-Q<- = |�𝑃5Q60 − 𝑇8-Q<-�, �𝑃5Q/b�~ 
𝑒𝐶<- = 𝑁<- ∗ ℎ 

𝑇8-Q<- = 𝑁<- ∗ 𝑇8		 

��𝑃5Q60 −𝑁<- ∗ 𝑇8�
# + (−4.5)#

*
= 𝑁<- ∗ ℎ 

(41) 
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𝒆𝑪𝟐𝟑:  23rd Communication step from {0,0} 
𝒆𝑪𝟐𝟒:  24th Communication step from {0,0} 
𝒑𝑪𝜷𝟐𝟒;𝟏:  1st Communication step from {150.7498263352448ℏ,−4.5ℏ} (see Eq. 38) 
𝒆𝑪𝝅𝟎:  Average Object Communication-Moment Intercept 
𝑷𝒑;𝜷𝝅𝟎:  Modelled Proton Moment Computation Point 

In which 𝑃5-Q<- is the point of interception where the mean electron signal intercepts the mean jump-
step location of the proton-electron pair (with 2D coordinates {(𝑥), (𝑦)}, 𝑒𝐶<- is the communication-step 
radius at 𝑃5-Q<-, and 𝑁<- is the number of steps (communication and jump) that have occurred such that 
the location of 𝑃5-Q<- coincides with communication radius 𝑒𝐶<-.  Specifically, we are mathematically 
reflecting in equation 41 the following logical train of assertions: 

Assertion 29: The electron and proton in a Proton-Electron Pair maintain a specific and constant 
average relationship as the pair progress through Spacetime  

Assertion 30:  The number of jump steps pertaining to the proton, occurring at trajectory increments < 
c, and the number of communication steps (communication increments = c), communicating the location 
and relationship of the electron to the proton, are identical.    

Assertion 31:  A point of computation occurs when the communication step from the electron 
coincides, or “reaches” the jump-step location of the proton.    

 

Figure. 45. Point of Communication/Interception 

Figure. 46. Interception (Communication Step and Jump-Step) 
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We can solve a Euclidean Quadratic from our dynamically generated plane of observed point 

relationships: 

We formerly approximated the location of our computation as existing at a location somewhere between 
jump-step 23 and jump-step 24; we now have a precise location (Figure 46).  We are now positioned to 
estimate the value of 𝜋/. It is productive at this point to review precisely what we are describing with the 
constant 𝜋/.  We will describe our interpretation of the meaning of 𝜋 in our model through a series of 
assertions, that recapitulate some of our previous arguments, descriptions, and illustrations. 

Assertion 32: A point with dynamic trajectory generates a line progressing through hyperbolic space. 

Assertion 33:  A first dimension is generated at a minimum observable distance; the point observes “I 
have been here ‘before’”. 

Assertion 34:  A second dimension – the observation of “time passing” and a multi-object coordinate 
space, is generated when a second trajectory jump-step occurs. 

Assertion 35:  It is possible for an object spanning 2 minimum observable distances to exist; for these 
objects, a 4D spacetime manifold is necessary to describe observed Spacetime location(s) of the object.  
The additional dimensions emerge dynamically.   

Assertion 36:  In addition to location, additional relationships of the object to other objects manifest as 
fundamental forces of nature. 

Assertion 37:  The number 𝜋 describes a distance observed and experienced within a Spacetime object, 
and in relationship to other Spacetime objects, pertaining to the dynamic emergence (over a trajectory) 
of an observed 3rd dimension from 2D space (i.e., the emergence of a 4D manifold).  

  

Returning now to Figures 40,41,43, and 45, recall we are taking the perspective of a “Flatland Observer” 
inhabiting our flat, dynamically generated plane.  Recall also our perspective; dimensionality is arriving on 
our 2D plane from an “imaginary” plane. The observer now “looks back” to observe and compute the 
emergence of this new spatial dimension (a plane existing outside of the current plane).  We know the 
observed relationship between the two furthest points is precisely 6ℏ at distance 2ℎ	(	= 4𝜋ℏ).  However, 
we calculate (our Euclidean estimate) that the communication of this relationship occurs 
23.865865158328 jump-steps later – and the communication is impacted by the hyperbolic expansion of 

�𝑃5Q60�
# − 2 ∗ 𝑃5Q60 ∗ 𝑁<- ∗ 𝑇8 + �𝑁<-�

# ∗ (𝑇8)# + (−4.5)# = �𝑁<-�
# ∗ (ℎ)# 

39.4784176043574 ∗ �𝑁<-�
# − 34.9159176043574 ∗ �𝑁<-�

#
 

−104.747752813072 ∗ 𝑁<- − 78.5608146098042 − 20.25 = 0 

4.56250000000001 ∗ �𝑁<-�
# − 104.747752813072 ∗ 𝑁<- − 98.8108146098042 = 0 

𝑁<- = {23.865	865	158	328, 𝑜𝑟 − 0.907	453	582	860	25} 

(42) 

Partial Reproduction of Figure 4 
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Spacetime.  We can use these relationships to estimate the value 𝜋/. We start from the premise that a full 
observation can be modelled as a full transit around a circle of radius ℏ.  Two jump-steps, as we have 
demonstrated, are required to make a full observation – i.e. to observe the “orbit” (the full dimension), we 
must observe the object “arrive” from one side, and “progress” to the other.  For ease, we take only a half 
orbit, “arriving” to our perpendicular from the new dimension.  We can accordingly define the following 
relationships, ignoring the antidromic3 trajectory (i.e. −0.90745358286025) for now: 

Specifically, we are stating, based on a hyperbolic projection combining location and communication 
time, a Planck-scale observer of diameter 2ℏ must traverse a distance of 3.141743021032094ℏ to arrive 
at our dynamic perpendicular from another dynamic plane. Recalling the 𝐴5KB property of axis rotation can 
give us a shortcut to complete the visualization.  Projections are inherently distorted, and do not contain all 
information; the calculations above are therefore on the order of a “proof of concept” rather than a 
mathematical proof, which can come later.  Additionally, note in equation 35 we proposed a model of 𝜋 as 
a summation; the above formulation is not inconsistent; we can formulate equation 43 as a series of 
incremental hyperbolic adjustments occurring at each jump-step.  Note we have not placed a specific “point 
of observation” pertaining to this estimate.  However, since the “point of observation”, or observer frame, 
must lie between the proton and the electron in this formulation, this observer point would itself be predicted 
to be subject to a dynamically generated hyperbolic perspective expansion along the vertical axis (see figure 
below for re-acquaintance with intuition, if needed).  This perspective expansion will have important 
consequences for a more accurate estimation of 𝜋, which we will address in a future work. 

 

 
 

3 In typical use, “Antidromic” refers to an electrical impulse traveling in an opposite direction to the normal transmission direction 
of a neuron.  In this case, we redefine or “recoin” the term antidromic to refer to a movement against the prevailing directional 
motion of Spacetime.  In later works, we (or other authors) may in time discuss the relationship between antidromic motion in 
Spacetime and antimatter. 

𝐺𝐼𝑉𝐸𝑁	𝐴𝑁	𝐸𝑆𝑇𝐼𝑀𝐴𝑇𝐸	𝑇𝐻𝐴𝑇	𝐶\Q-<- = 	23.865	865	158	328ℎ 
𝐶9-<- = 𝐶\Q-<- − 2ℎ = 21.865865158328ℎ 

𝑅9Z =
sinh	�1 2𝜋R �

�1 2𝜋R �
=
(0.159827701552778)
(0.159154943091895)

= 1.004227066076697 

𝑅9:-. =
(𝑅9Z − 1)

2
+ 1 = 1.002113533038348 

𝐷] = 6ℏ 
2𝜋/ = 𝐷] ∗ (𝑅9:-.)Z./,-  

2𝜋/ = 6 ∗ (1.002	113	533	038	348)#..e^_e^_._ea#e = 6.283486042064188 
𝜋/ = 3.141743021032094 

𝜋/
𝜋
≅ 1.000047863443444	(𝜎~10-_) 

(43) 

Partial Reproduction of Figure 15 Relativistic Expansion 
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4.6. Hyperbolic Expansion and the “Edge of the Observable Atom”  

We state in this paper that a Proton-Electron Pair is a structure of length 2ℎ  progressing through 
hyperbolic Spacetime.  In this section, we introduce, conceptually, how an object of length 2ℎ can manifests 
as an atom.  According to our model, a communication of the electron reaches the proton at approximately 
jump-step 23.865865158328ℎ. As we have discussed, a full “return to line” formulation, due to embedded 
axis rotation, requires 2 jump-steps (≈47.7317303166560	ℎ).  In order for a full observed 4D manifold, we 
must observe all dimensions manifest (≈50.7317303166560	ℎ) and based on first principles the full object 
must exist at least 2 spacetime locations, at least 2 jump-steps apart ((+2ℎ).  These very preliminary 
approximations should be considered highly subject to adjustment, however they can provide us a basis for 
intuitively grasping how we can generate an object the scale of an atom from our model. Specifically, we 
can calculate an associated hyperbolic circumference at a jump-step radius of ≈53	ℎ: 

In which 𝑅5` represents a putative 53 step trajectory length of a 4D Spacetime object, 𝐶5`-9 represents 
the map location of the circumferences in Poincaré Space (unit distance).  𝐶5`-𝕊0)  is the calculated (unit) 
hyperbolic radius at 𝑅5`-9, and 𝐶5`-𝕊01  is the radius in increments of ℏ if we assign a unit value of ℎ.  The 
above demonstration is not meant to be precise, but illustrative.  At 53 communication steps, for an object 
of length 2ℎ, the potential extent of hyperbolic (Planck, or energy) space implied to account for all possible 
positions and communications of the object is on the order of at least ~10#a − 10#W Plancks in extent.  As 
a comparison, note that a Planck length (in meters), is on an order of magnitude of 10-a_m, while the 
diameter of a hydrogen atom is on the order of 10-.#m, an order of magnitude difference of ~10#a. Note 
we do not fracture Spacetime into meters/seconds or account for a “communication cone”; these precise 
measurements and relationships can be addressed in future work.   

5. Modelling Atomic Structure and Strong and Weak Interactions 
Summary of Section:  In prior sections, we outlined a model of Spacetime based on dynamic expansion 

of a momentum-space over time.  Space, time, and forces of nature are generated through the observations 
and experiences of observers moving through the momentum-space we have defined. Protons, neutrons, 
and electrons in this space are generated referring to a communication dynamics model in the absence of 
particles, or waves; a particle or wave observation (or experience) is defined by the nature of the observation 
and interaction within this momentum-space.   

In this section, we expand out, in a limited fashion, a more general description of fundamental forces of 
nature by describing the emergence of observed 3D space, some (preliminary) estimated parameters of 
weak interactions, how our model can accommodate atomic structure (specifically describing hydrogen, 
deuterium, and tritium), and a proposed relationship between observed 3D space and quarks.  In this section, 
in summary, we begin to plot how our model can practically be applied to fundamental problems of physics 
in a fashion that can complement the perspectives of quantum physics. 

5.1. Neutron, and an Exploration of Planck-Scale Hyperbolic Expansion 

In order to understand a Proton-Electron Pair and the emergence of 3D space, we must first study in 
more detail some mathematical approximations pertaining to a Neutron.  In 5.1, we will first provide some 

𝑅5` ≈ 53	ℎ ≅ 333ℏ 

𝑅5`-9 ≈
(𝑒_a − 1)
(𝑒_a + 1)

 

𝑅5`-9 =	0.99999999999999999999998079463989098264794 
𝐶5`-𝕊0) = 2𝜋 sinh�𝐶5`-9� ≅ 3.272 ∗ 10#a	
𝐶5`-𝕊01 = 2𝜋 ∗ 𝐶5`-𝕊0) ≅ 2.056 ∗ 10#W	

(48) 
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background information, and we will second describe some mathematical approximations of Neutron 
structure, illustrating these concepts with hybrid figures incorporating both Euclidean and hyperbolic 
elements. 

Euclidean Circumference 𝟐𝝅𝒓 
Hyperbolic Circumference 𝟐𝝅𝐬𝐢𝐧𝐡	(𝒓) 
This well understood relationship is highlighted as it is central to our understanding of the 
experience of a Euclidean Observer progressing through hyperbolic space.   

Background Principles (Neutrons):  In hyperbolic geometry, the circumference of a circle is greater 
than 2𝜋𝑟 (Table 4).  For geometric intuition in a Euclidean frame, we can represent this “extra distance” 
travelled as an additional increment of Space that a point must travel to complete a circle (Figure 47).  In 
Figure 48, we present a Hyperbolic Projection of this same phenomenon.  These two, seemingly 
contradictory projections are consistent when we consider a fundamental property of projection: 
dimensional collapse.  Figure 47 collapses a 6-parameter space to 2D+T.  Specifically, hyperbolic trajectory 
and rotational expansion are collapsed to a Euclidean 2D frame. To account for the hyperbolic expansion 
of spin we must map an “extra degree of rotation” onto our Euclidean circle.  In Figure 48, we present a far 
more complex diagram or “pseudo-projection”, placing an object in a Poincaré space in which we distort 
the relative sizes of objects to allow us to use a Euclidean frame for our intuition.  A “red curve” 
incorporating 𝑃$Q , represents a Euclidean, observed, 3-Ball posterior position of 𝑃 .  A “blue curve”, 
incorporating 𝑃OP, incorporates an anterior 3-Ball destination for 𝑃.  The dynamic rotation 𝑃$Q → 𝑃OP is 
observed in our model as a Euclidean Rotation of precise length 1/2ℎ occurring over time, but because we 
are moving through hyperbolic space, an additional increment of rotation has occurred, experienced as 
something other than space or time (ie we propose this extra rotation is experienced as a force). More 
specifically, let us examine 3 points – the jump step involving 𝑃$V , 𝑂B , &𝑃OP.  A Poincaré disk plane bisects 
our object.  𝑂B is placed at a reference frame point (the plane intersection of the central circle).  When our 
disk centered on 𝑂B is observed to move a single jump-step 𝐽#< (jump length ℎ from 𝑂$V to 𝑂OP), 𝑃 must 
jump a distance greater than ℎ, but less than 2ℎ.  Pertaining to Figure 49, from an axiomatic perspective, it 
is now productive to review some fundamental precepts: 

• Observation is Discrete, but Spacetime is Continuous 
• The Speed of Communication is Constant 
• All relationships must be described in terms of Rotation, Trajectory, and distance  

Defining Characteristics of a Neutron: Having reviewed these precepts, we can now discuss Figure 
48 in detail.  By focusing on our two points 𝑃$V and 𝑃OP we generate a series of points that represent various 
dynamically observed locations of 𝑃 and 𝑂5 with respect to 𝑂B that we can describe in terms of Rotation, 
Trajectory, and distance.  We can now approximate a series of observed distances, representing some 
parameters of a single Neutron Jump-Step (Equation 49) from the perspective of an adjacent Stationary 
Spacetime Moment: 

Table. 4.  Euclidean versus Hyperbolic Circumference 

𝑂$V𝑂5 = 𝑂5𝑂OP = 𝑃$V𝑃$: = 𝑃OP𝑃O: = ℎ
2R  

𝑂$𝑂5 = 𝑂5𝑂O ≅ ℎ
2R ∗ cos	(arcsin	�1 𝜋R �) 

𝑃$V𝑂5 = 𝑂5𝑃OP ≅ ��𝑂$𝑂5�
# + (2)# 

𝑃$V𝑃OP ≅ 2 ∗ ��𝑂5𝑂g�
# + (2)# 

𝑶𝒊𝑩𝑶𝑱𝜶 = 𝒉 

(49) 
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Focusing on the observation(s) of 𝑃 as it transitions 
from 𝑃./  to 𝑃-0 , a variety of perspectives are 
generated regarding the location of its associated 
point 𝑂#.  Locations cannot be measured, but can 
be computed, and modelled to exist as parameters  
at 𝑂(. 

Note that as we have dynamically generated Euclidean space by rotating our 3-Ball through hyperbolic 
space, our mathematical formulation of observed trajectory coordinates respect the Euclidean. A second 
jump-step along the same linear trajectory, in the absence of interaction can be modelled as an equilateral 
triangle, with sides of equal length ℎ (= 2𝜋ℏ).  Since all referenced points are placed along the Euclidean 
“3-Ball” surface, Euclidean trigonometric relationships apply.  Two points are excluded from Equation 49: 
𝑂$Vh and 𝑂OPi; these points will be approached later.   

In Figure 49 we explicitly display the dynamically generated 3-Ball surface as a flat plane for better 
visualization.  We can now name points, as follows: 

• 𝑃$V is the initial observed location of 𝑃 
• 𝑃gP is the final observed location of 𝑃, after the Spacetime Moment has expanded by a trajectory 

jump-step 𝐽#< (from 𝑂$V to 𝑂OP) 
• 𝑃$Q: and 𝑃OP: are the respective  .

#
𝐽#< (or .

#
ℎ) distance points for 𝑃$V and 𝑃OP 

• 𝑂5 is the center of the Spacetime Moment 𝑀5  
• 𝑂$V and 𝑂OP are the respective  .

#
𝐽#< (or .

#
ℎ) distance points for 𝑂5  

• 𝑂$  and 𝑂O  are the respective ℏ  (where ℏ = 8
#<

) distance points perpendicular to trajectory 
𝑂$ → 𝑂5 → 𝑂O, for 𝑂$V and 𝑂OP  

𝑷𝒊𝑩𝑷𝑱𝜶 > 𝒉 

 
When illustrating a dynamic trajectory through 
hyperbolic space, we must represent at least 6 
parameters of trajectory and rotational freedom, 
and possibly 8 or more – which is not tractable 
for human intuition.  However, we can project 
the Space into our Euclidean framework.  Note 
that in Figure 48, we flatten trajectory. 

Figure. 47. Euclidean Projection 
Figure. 48. Pseudo-Hyperbolic Projection 
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Neutron Jump-Step, from the perspective of 𝑂#.  Note here 𝑂# is a dynamic perspective generated by a 
co-traveling Stationary Spacetime Moment (see Figure 34, top, for intuition), allowing us to generate 
the flattened trajectory based on 𝜋𝑐𝑜𝑠 b𝑎𝑟𝑐𝑠𝑖𝑛f1 𝜋> gh .  Using this 𝐴,  formulation, Euclidean 
trigonometric relationships apply, but the relationships between 𝑃.1 , 𝑃-1and 𝑂#  are dynamic (lighter 
points reminds us we can spin our perspective in hyperbolic space). A dynamic hyperbolic generation 
of Euclidean space allows either a “spin up” (light) or “spin down” (dark) object to occupy a given 
Spacetime Moment location.  Note 𝑃.1𝑂- and 𝑂.𝑃-1 are out of frame.   

The distance  𝐽5 implies a non-integer Jump-Step for 𝑃, and we must describe this jump-step within the 
parameters of the model, i.e. simultaneous distance, rotation, and trajectory.  We can address this within 
an 𝐴I axis formulation by adding a third dimension.  In Figure 50, we take the perspective now of point 
𝑃$V observing a point 𝑂B within a Spacetime Moment 𝑀B.  Since we axiomatically state (Axiom 4) that 
Spacetime is continuous, we calculate communications within the Spacetime moment based on this Axiom.  
Specifically: 

1) We select ℎ 2⁄  as a distance of simultaneous measurement for point  𝑃$V communicating with 𝑂B.   
2) We then describe a rotation that can describe the relationship between 𝑃$V and 𝑂B  

 
𝑃./ cannot “see” the location of 𝑂( in this Spacetime representation; it must see 𝑂( at a different trajectory/rotational 
location, which can be modelled as a new dimension, projecting from the page towards the reader. 

Observation is occurring as the moment 𝑀5 is dynamically moving through Spacetime.  Visualizing our 
equivalent distance in Figure 50, we can see that the sight line (point of simultaneous distance) for 𝑃$V does 
not extend to 𝑂B  in the 2-D projection.  However, our model is dynamic; 𝑃$V	can see 𝑂B  at a different 
trajectory and rotational location, which we can project into another dimension (Figure 51).  We now apply 
Axiom #8; in the absence of communication or interaction, momentum is conserved.  𝑃$V observes stable 

Figure. 49.  Neutron Jump-Step 

Figure. 50. Simultaneous Perception Distances (Neutron) 
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rotation and trajectory.  It however experiences that 𝑂B  has “moved” a distance < ℎ.  As Spacetime is 
continuous (Axiom #4), this experience must be communicated within the Spacetime moment.   

 
Trajectory T is flattened “thumb into the page”, Euclidean representation (we ignore the hyperbolic 
dimension).  Using the right-hand rule, 𝑂(  observes a stable trajectory; 𝑃./  rotates Clockwise.  
Conversely, 𝑃./  observes that 𝑂#  makes a Counter-Clockwise rotation.  Both locations agree on 
relative distance and trajectory. 

Communications move at the speed of communication and are therefore bosonic.  Symmetrically, we 
can also note that 𝑂B experiences a stable location and trajectory; 𝑃$V has “moved”.  Therefore 𝑃$V and 𝑂5 
agree on trajectory and relative distance along the trajectory but disagree on rotational position within the 
Moment. Respective points according with these rotational positions in Figure 51 are named  𝑂$h to 𝑂Oi.  
We can define some distances with respect to these points, based on first principles, specifically: 

In other words, 𝑃$V𝑃$V:𝑂$Vh and 𝑃OP𝑂OP:𝑂OPi can also be modelled as isosceles triangles. We can use these 
isosceles triangles to now define an energy relationship occurring within a Spacetime Moment as it traverses 
Spacetime.   

Defining Characteristics of a Proton-Electron Pair:  We can use a similar process to now describe a 
proton-electron pair in our model (flattened representation, Figure 52).  For consistency, we maintain 
nomenclature, but note we replace 𝑃$V with 𝑃$Z; the reason for this substitution will become clear shortly.  
Important distinguishing properties of this object include  

• An elongated jump-step 2𝐽[ 
• Distinct angular relationships (for example, ∠𝑃$Z𝑂5𝑂$Z(𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛) ≠ ∠𝑃$V𝑂5𝑂$V(𝑁𝑒𝑢𝑡𝑟𝑜𝑛) 

 

Figure. 51. Observer-Point Perspective Disagreements 

𝑷𝒊𝑩𝑷𝒊𝑩𝑬 =
𝒉
𝟐
⟹ 𝑷𝒊𝑩𝑶𝒊𝑩𝜸 =

𝒉
𝟐

 

𝑷𝑱𝜶𝑶𝑱𝜶𝑬 =
𝒉
𝟐
⟹ 𝑷𝑱𝜶𝑶𝑱𝜶𝜹 =

𝒉
𝟐

 
(50) 

Figure. 52. Flattened Point-Trajectory Representation of a Proton-Electron Pair 
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Note we can bound a central, “observing” Spacetime moment (blue line).  𝐽[ is superimposed on the 

average position of the Electron as observed/experienced by the Moment (right, superior blue dot) and 
proton (left, inferior blue dot).  As we have discussed throughout this paper, all computation can be assumed 
to occur within the confines of a Spacetime Moment.   

Directly Comparing Characteristics of a Neutron with a Proton-Electron Pair:  Understanding 
that the characteristics of the central Spacetime Moment computes the property of the object, we can now 
directly now compare hyperbolic (experienced) and Euclidean (observed) differences between a Proton-
Electron Pair and a Neutron, for a given Spacetime Object, as computed by a given centrally located 
(dynamically generated) 𝑂B (Figure 53, Equation 51). 

In Figure 53, we overlap a Proton-Electron Pair with a Neutron, as both Spacetime Objects straddle a 
reference frame defined by a dynamic perpendicular through 𝑂B.  The central Spacetime Moment computes 
properties at Planck-length for both objects.  At an equivalent computational distance, 𝑂B observes and 
experiences differences between jump trajectory and rotational characteristics of the respective objects.  We 
can approximate these differences by noting the Euclidean differences between the two objects: 

  
A Proton-Electron Pair is a coherent Spacetime object in which two Spacetime Moments share an 
overall trajectory (𝑂(. → 𝑂(-) over two jump-steps.  Note a Neutron to “return to line” similarly evolves 
over two jump-steps.  Because of the change in rotational characteristics, however, in the case of a 
Proton-Electron Pair, 𝑂( observes, experiences, and computes, properties from both Jump-Steps. 

Figure. 53.  Rotational characteristics of a Proton-Electron Pair Compared to a Neutron 

NEUTRON PROTON-ELECTRON PAIR   

𝑂$V𝑂B = 𝑂B𝑂OP = 𝑃$V𝑃$: = 𝑃OP𝑃O: = ℎ
2R  

𝑇6D = 𝑂B$𝑂B = 𝑂B𝑂BO 
𝑇6D ≅ ℎ

2R ∗ cos	(arcsin�1 𝜋R �) 

𝑃$V𝑂B = 𝑂B𝑃OP ≅ �(𝑂$𝑂B)# + (2)# 

𝑃$V𝑃OP ≅ 2 ∗ ��𝑂5𝑂g�
# + (2)# 

𝑶𝒊𝑩𝑶𝑱𝜶 = 𝒉 
𝑷𝒊𝑩𝑷𝑱𝜶 > 𝒉 

𝑷𝒊𝑩𝑷𝒊𝑩𝑬 = 𝒉
𝟐R ⟹ 𝑷𝒊𝑩𝑶𝒊𝑩𝜸 = 𝒉

𝟐R  

𝑷𝑱𝜶𝑶𝑱𝜶𝑬 = 𝒉
𝟐R ⟹ 𝑷𝑱𝜶𝑶𝑱𝜶𝜹 = 𝒉

𝟐R  
 

∠𝑃$V𝑂5𝑂$V = ∠𝑃OP𝑂5𝑂OP 

≅ arctan -2 𝑇6DR 2 − arctan	 -1 𝑇6DR 2 

𝑂$Z𝑂B = 𝑂B𝑂OP = 𝑃$Z𝑃$: = 𝑃OP𝑃O: = ℎ 
𝑇6[: = 𝑂$𝑂B = 𝑂B𝑂O 

𝑇6[: ≅ ℎ ∗ cos	(arcsin	�1 𝜋R �) 
𝑃$Z𝑂B = 𝑂B𝑃OP ≅ �(𝑂$𝑂B)# + (3)# 

𝑃$Z𝑃OP ≅ 2 ∗ ��𝑂5𝑂g�
# + (2)# 

𝑶𝒊𝑪𝑶𝑱𝜶 = 𝟐𝒉 
𝑷𝒊𝑪𝑷𝑱𝜶 > 𝟐𝒉 

𝑷𝒊𝑪𝑷𝒊𝑪𝑬 = 𝒉⟹ 𝑷𝒊𝒄𝑶𝒊𝑪𝜸 = 𝒉 
𝑷𝑱𝜶𝑶𝑱𝜶𝑬 = 𝒉⟹ 𝑷𝑱𝜶𝑶𝑱𝜶𝜹 = 𝒉 

 

∠𝑃$V𝑂5𝑂$Z = ∠𝑃OP𝑂5𝑂OP 

≅ arctan -3 𝑇6[:R 2 − arctan	 -2 𝑇6[:R 2 

(51)  

∠𝑃$V𝑂5𝑂$V > ∠𝑃$V𝑂5𝑂$Z   ( 
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The above classical relationships, once we add relativistic considerations, can provide a basis for 

comparing the dynamic energy state of a Neutron, with that of a Proton-Electron pair.  We have claimed 
that differences between the dynamic energy state of the Neutron and Proton-Electron pair generate 
observable 3D+T space through the process of beta-decay; we preliminarily explore the energy states 
associated with this transition in more detail in Section 5.2 below. 

5.2. The Emergence of Three Spatial Dimensions from the Process of Beta Decay and the 
Emergence of Neutrinos as a Transmission of Reference Frame Energy State 

Earlier in this paper, we calculated a Euclidean rotation constant 𝜋/ as a natural consequence of the 
expansion of Spacetime.  Here, we provide another visualization of this process to improve our intuition of 
how a 2-Planck object moving through Spacetime inevitably generates a 3- dimensional observation of 
Spacetime.  We have asserted that, pursuant to the existence of a minimum observation distance ℎ, an 
average point 𝑂5 for a given Spacetime Moment 𝑀J can be modelled to contain the information content of 
the moment (Trajectory, Rotation, and Instantaneous Communication).  We now return to the visual concept 
we introduced in Figure 48, to discuss the divergent properties of a Neutron and Proton-Electron Pair and 
describe the emergence of three observable dimensions of space.  We can start by placing an illustration, 
from the perspective of a dynamically generated 𝑂B pertaining to the properties of a Neutron, compared to 
the properties of a Proton-Electron pair (Figure 54).  We note that 𝑂$h and 𝑂Oi and 𝑂$h have angular and 
distance relationships with 𝑃, 𝑂B, and 𝑂Oi definable on the Hyperbolic pqT axes; the relationships can be 
modelled as a planar structure.   

  

Added intuition is provided in Figures 55 and 56.  In these figures, we rotate the front and back ring, 
rotate the axes as we have demonstrated previously, and place 𝑂$h and 𝑂Oi which project into the emerging 
3D frame over 2 jump-steps (note green plane merging in Figure 55).  Note, a different spin-state generates 
a distinct intersecting plane with the same trajectory characteristic.  In Figure 56, we examine a 2D 
projection of the plane we show in Figure 55.  We can note, specifically, that 𝑃 does not observe 𝑂B  
directly as a center of rotation at distances < ℎ.  Rather, 𝑃 observes 𝑂V$h move to 𝑂OP as 𝑃$V transits to 𝑃OP, 
which we can model to occur over a curved Spacetime distance Φ.   We can define a radius of the half-step 
as 𝑤/. Since the speed of communication is constant, the excess trajectory distance equals the rotational 
displacement, and an isosceles triangle can be used to generate an estimate of half-step radius 𝑤/. Recall 
that in our model, all observations occur along a dynamically generated Euclidean 3-Ball surface.   

Figure. 54.  Poincaré Comparison, Neutron vs Hydrogen 
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We can accordingly approximate the expected Euclidean location of 𝑂$h and 𝑂Oi for a single jump-
step for a Neutron, compared to a Proton-Electron pair, as follows: 

 

 
Figure. 56. Flattened Representation of Plane of Spine 

In Equation 52, we demonstrate the intuition we provided in section 4.4 (illustrated in Figure 32 – see 
also Figure 57). When a Proton-Electron Pair is generated from a Neutron, there is an apparent reduction 
of energy stored at the reference frame. Note a reciprocal relationship exists between 𝑂B and perceived 
locations of all points 𝑂$ , 𝑂O, and 𝑃, generating the projected planes displayed in Figures 55 and 56, for both 

Figure. 55.  Poincaré Sphere, Spin Plan 

NEUTRON PROTON-ELECTRON PAIR 

(52) 

𝑻𝑶(𝑵) ≅ 𝝅 ∗ 𝐜𝐨𝐬	(𝒂𝒔𝒊𝒏�𝟏 𝝅R � 

𝑱𝒑 ≅ ��𝑻𝑶(𝑵)�
𝟐 + (𝟐)𝟐

𝟐
 

	𝜹𝑻 = 𝜹𝑷𝑸 = 𝜹𝑶(𝑵) ≅ 𝑱𝑷 − 𝝅 

𝝎𝑶(𝑵) ≅ �𝟐 ∗ �𝜹𝑶(𝑵)�
𝟐𝟐

 

𝑻𝑶(𝑷𝑬) ≅ 𝟐𝝅 ∗ 𝐜𝐨𝐬	(𝒂𝒔𝒊𝒏�𝟏 𝝅R � 

𝑱𝒑 ≅ ��𝑻𝑶(𝑷𝑬)�
𝟐 + (𝟑)𝟐

𝟐
 

	𝜹𝑻 = 𝜹𝑷𝑸 = 𝜹𝑶(𝑷𝑬) ≅ 𝑱𝑷 − 𝟐𝝅 

𝝎𝑶(𝑷𝑬) ≅ �𝟐 ∗ �𝜹𝑶(𝑷𝑬)�
𝟐𝟐

 

𝝎𝑶(𝑵) > 𝝎𝑶(𝑷𝑬) 
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the Neutron and Proton-Electron pair.  The difference in scale between an observable distance (≥ ℎ) and 
experienced, unobservable distances -< ℎ,≅ ℎ

2R 2 differentiates the observed properties of a Neutron from 
the properties of a Proton-Electron Pair. 

 
More apparent energy is stored by a Neutron at the reference frame (red loop), compared to a Proton-
Electron Pair (blue loop).  Beta Decay is energetically favorable in low density energy states. 

We have taken the perspective of 𝑂B for both objects, however returning to definition 18, we note that 
a Proton-Electron Pair is a Spacetime Object of length 𝐽 = 2ℎ , consisting of a Proton and Electron 
following the same Hyperbolic Spacetime Trajectory.  To provide intuition regarding how this manifests 
in Spacetime, and how, for example, we can incorporate further objects within the Proton-Electron pairing 
(ie Neutron(s)), we provide Figure 58.  In Figure 58, we present a model of isotopes of the Hydrogen 
molecule.  A simple Proton-Electron pair exists as single “spin” or energy transform across a 2ℎ jump 
length.  Note the spin characteristic of an electron may be concurrent with the proton or diverge.  Also note 
that our model reads onto current quantum theory in that a divergent spin state (in which the proton spin 
diverges from the electron spin) is more energetically favourable, as it requires less rotational energy to 
describe.  In Deuterium, an additional spin (additional rotational energy) at the reference frame admits an 
observable Neutron.  Tritium exists when two possible spin states exist at the reference frame.  An 
additional important point, examining Figure 58, is the observation that fully describing the Euclidean 
position of two Neutrons in our model requires 6 jump-steps (6ℎ, 4 shown for Tritium).  To an observer 
with sufficiently precise measurement, it may appear that the two Neutrons “trade spins” at a high frequency 
as Tritium progresses through Spacetime.  However, our new object generates something far more magical 
than the possibility of 2 Neutrons in one “location” generated from 1 dimension of energy expansion.  The 
existence of a single hydrogen atom in Spacetime dynamically generates three-dimensional space (Fig 59).  

Figure 58 is complex, and we will dwell this figure a bit as we finish 5.2.  First, let’s delve into the 
concept of spin in more detail.  We visually introduced the concept of spin in Figures 27 and 29 and also, 
in part, in Figure 14.  Turning to Figure 14, we can observe that a 3-Ball dynamically rotating along a single 
spin axis along a trajectory implies two possible jump-step configurations.  Conceptually, an object of 
length 1 jump-step observes two dimensions of space, and experiences additional characteristics that 
manifest as dimensionality at larger/longer observation distances as “energy” and “spin states”.  Individual 
protons, neutrons, and electrons therefore can be modelled to exist in and observe a two-dimensional 
frequency space. In a 2 jump-step object, a 3rd spatial dimension becomes manifest and observable to a 
point 𝑂B located at the frame, as it observes dynamic objects locates a distance ℎ behind, or ahead of the 
respective frame.  To borrow language and a concept from the fields of neurology and psychiatry, we can 
note that in order to maintain “object permanence” as a 2 jump-step contiguous object (jump-step length of 
ℎ, spin distance ℎ), the observer frame must observe the overall trajectory of 𝑃 through hyperbolic space  

Figure. 57. Energy Stored at the Reference Frame (Projection) 
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As is observed in nature, protons and electrons of the same, or opposite spin states can be associated, but an opposite 
spin-state system is energetically slightly more favorable.  Shown is hydrogen in its lowest energy state 
configuration, and proposed structures for Deuterium, and Tritium. Note, observer placement impacts  perspective 
(and projection) of rotational direction(s). 

Figure. 58. Hypothetical Model-Based Visualization of Isotopes of Hydrogen 
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in incremental steps of > ℎ.  An average observer frame for hydrogen can be defined (top image, Figure 
58), which observes 𝑃 progress from 𝑃- to 𝑃' as a single jump of average length 2 ∗ ℎ.  The forward 
element 𝑃'  defines the trajectory of the object through hyperbolic space and can be represented as a 
consistent destination for all points 𝑃-.  From a model perspective, when 𝑃 “reaches” 𝑃', the object has 
now moved from State 1 (bright green) to State 2 (bright green).  The minimum Euclidean distance traversed 
for 𝑃-   to its next state must be at least 1 Planck (ℎ = 2𝜋ℏ).  As the “height of the cone” is 3ℏ, the 
Euclidean, observed circumference (correlating with the number of possible positions) can be represented 
as 2 ∗ 𝜋 ∗ 3ℎ = 6𝜋ℏ .  The construct of a proton, and an electron, is generated by the internal 
communication between 𝑃-, 𝑃', and the Observer Frame (representing the average position of Spacetime 
Object 𝑃-𝑃').  Along an observation length of 3 jump-steps we can describe in the model 1 proton (the 
destination for the object), and the movement of one electron moving through the 3-dimensional states (in 
either of two spin characteristics as shown in Figure 58).  An added spin straddling the observer point 
admits an additional Spacetime object – a Neutron.  If the spin characteristics of the Neutron correlate with 
that of the electron (a lower object energy state), we observe Deuterium (Figure 58, middle).  If the Neutron 
spins independently from the electron (a higher energy state), over 6 jump-steps (6ℎ = 12𝜋ℏ) up to 2 
neutrons can be described following the same trajectory (Tritium, lower image in Figure 58) – however 
since a proton-neutron-electron system can be described efficiently in 3 jump-steps, we can intuitively 
understand that a 6 jump-step version might be inherently less stable, and “decay” or revert to a more 
energetically favourable state (decay from tritium to deuterium).   

  
Placing 𝑃 in a dynamic, hyperbolic space, with axis rotations to “bring us back” to the 1-D energy 
expansion gives rise to Spin and observed Euclidean 3-dimension space.   

Figure. 59. Spin States and Dimensionality 

5.3. Modelling the Strong Force, and Quarks, as a Sub-Planck Correlate of the Emergence of 
Euclidean Space  

We have defined protons, neutrons, and electrons in a Communication Dynamics-based model in the 
absence of particles, or waves.  We proposed, rather, that the observation of particles and waves are 
emergent properties derived from a linear expansion of Spacetime.   We defined in this model how a point 
can give rise to the observation of 1D motion, how 1D motion through hyperbolic space generates 2D, and 
how dynamic rotation in hyperbolic space generates the perception of 3D Euclidean space progressing 
through a 4th trajectory dimension (Figure 59). We claimed that this model provides an analog, or 
translation, of our observed 4D Spacetime, with emergent observed dimensions defined by a single 
universal metric we define as “Plancks”.  A dynamic expansion of Plancks over a trajectory gives rise to 
the experience of energy localized in dimensional Spacetime.   Specifically, various translations of this 
underlying energy become the observations and experiences of Space, Time, particles, waves, and 
fundamental forces of nature.  In this context, we now propose the notion that Quarks can be modelled as 
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a correlate of Euclidean dimensionality, projected on a sub-Planck scale (i.e. below the level of direct 
Euclidean observation).  To explain this proposition, we can place an observer point at the centre of a 
reference frame determined by the position of a proton (“ahead” in Spacetime) and a Neutron (arrayed 
along the dynamic perpendicular – Figure 60).  We observe the communication from the proton, 
propagating from the “future”, and the Neutron, in which communication is generated from our experienced 
dynamic perpendicular. While a Proton-Electron Pair exists within an object of jump length 2ℎ , the 
distinction between a proton and neutron is more subtle.  Figure 60 presents a 4D representation of a frame 
point in transition between a “past point” (𝑓-. #s ) and a future “infinite point” (𝑓'. #s ); the frame can be 
modelled to exists at an average, perpetual “transition point” (𝑓/ ) between past and future. Our average 
frame point never exists in the past, nor in the future, but always in the liminal state of “emerging” from 
the past and “arriving” at the future (also see 5.4 for more intuition on this concept).   We model energy of 
the neutron to exist at 𝑃!, along the observed dynamic perpendicular.  We model that the energy of the 
proton exists at a future point 𝑃5.  We can note, within the Spacetime Moment, that, as a first approximation:  

In which 𝑃5 → 𝑃>  is the “communication distance/time” between 𝑃5  and 𝑃> , 𝑃! → 𝑃>  is the 
“communication distance/time” between 𝑃!  and 𝑃> , 𝑂>2) *3 → 𝑂>-  is the average dynamic location 
parameter associated with the trajectory/ communication between the proton and the frame, and 𝑂>/) *3 →
𝑂>- is the average dynamic location parameter associated with the trajectory/ communication between the 
neutron and the frame.  Let us now take the perspective of the frame.  Recall, in the absence of interaction, 
our frame point observes neither trajectory nor rotation; it rather observes itself following an inertially 
neutral path as objects “rotate around it”; we can model this trajectory as a straight line, but here both the 

 
The relationship between Proton, Neutron, and Observation Frame from the perspective of the Proton. 

Figure. 60. A Reference Frame Can Experience Incipient, Sub-Planck Dimensionality 

proton (𝑃5) and the Neutron (𝑃!) are modelled to traverse Spacetime bracketing a dynamic frame  (𝑂>/) *3 →
𝑂>-/𝑃> → 𝑂>2) *3  – Figure 61).  Note 𝑃> never “leaves” 𝑂>/) *3 , nor does it ever “arrive” at 𝑂>2) *3 ; these 
points are “virtual points” that parameterize the perpetual computation occurring at 𝑃>  as it transits 
spacetime in a liminal state, poised dynamically between the past and future.  It is productive now to review 
the concept of “observation” in this context.  𝑃>  observes neither past, nor future, but rather observes 
simultaneous location information of objects at a defined radius. We define the radius of observation in this 
case at ½ Planck, or )*ℎ = 	𝜋ℏ.   

𝑂>2) *3 → 𝑂>- ≈	𝑂>/) *3 → 𝑂>-  
𝑃5 → 𝑃> ≈	𝑃! → 𝑃> 

(49) 
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Each point in Planck-Space, in the absence of interaction, perceives its own trajectory as inertially neutral. 
The energy of Spacetime flows around any selected point 𝑃 as a hyperbolic trajectory and rotation vector as 
the Universe expands. 

Figure. 61. An Observer Experiences (rather than Observes) Perspective Disagreement 

Our defined 𝑃> observes two distinct rotational parameters.  Communications from our proton can be 
modelled to appear as “clockwise” rotations.  Conversely, communications from our neutron can be 
modelled to appear as “counter-clockwise” rotations since these communications emerge from the dynamic 
perpendicular “behind” 𝑃>/𝑂>.  Note we have embedded 𝑃> as the point also observing the emergence of 
3-dimensional dynamic spacetime, generated by the electron.by the electron. Let us now embed this 
dimensionality on our sub-Planck Frame (Figure 62).  In row 1 of Figure 62, we can observe the perspective 
of the 𝑃>  observing system ¥𝑃5/ , 𝑂

>2
)
*
, 𝑃52¦  (top left), and observing, simultaneously, system 

¥𝑃!/ , 𝑂
>/

)
*
, 𝑃!2¦ (top right).   

  

  

Note we model the position of the three dynamic perpendiculars generated from the emergence of 3D+T 
Spacetime, driven by the emergence of the electron. As we are below Planck scale, we cannot specifically 
measure position; we rather can measure three possible relationships given our model of unidirectional, 
accelerating spacetime: 

Figure. 62. Flattening the Projected Experience of the Observer (Proton, versus Neutron) 
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In which we call 𝑄] our potential Quark Relationships.  In row 2, let us now plot these relationships on 
a single Planck.  We can see from the perspective of our dynamic frame, the rotation of dynamic 
perpendicular from 1 to 2, and from 2 to 3, represent small (let us call them “convergent”) rotations, while 
the rotation from 1 to 3 is further (“divergent”).  Conversely, when our frame point looks backwards, we 
see two divergent rotations, and only one convergent rotation.  If we were to return to our modified 
hyperbolic frame, in which our neutron is “behind”, the proton “ahead”, a quick examination would show 
we could translate our perspective of the proton’s communication (towards, towards, away) as distinct from 
the neutron’s communication (away, away, towards).  A relationship between quark states and particle 
identity analogous with quantum theory becomes apparent: 

This simple illustration is more a visual poem than a proof, but does allow us to make an assertion that 
can be explored in future research: 

Assertion 42:  Quarks, and Strong interactions, are sub-Planck manifestations of the generation of 
observed Spacetime dimensionality. 

A quark, in our model, cannot be separated from a neighbouring quark not because of a specific property 
of a gluon, but rather for the same reason that “up” cannot be separate from “left” or “forward”.  Quarks 
are expressions of emergent Euclidean space, experienced on a sub-Planck level.  If we wish to further 
make comparisons with our 3D frame of reference, we could state that in our standard Euclidean 
dimensionality, when we move in a certain direction, we move away from two other dimensions (i.e. we 
move in what we perceive as a “straight line” in 3D space, over time).  In the peculiar (to us) dimensionality 
of the frame as it visualizes the proton, two dimensions progress “towards” the frame, and only one “away”.  
When a neutron expands to an object of length 2ℎ, a 3D perception of space emerges relativistically, 
visualized as a beta decay, with two dimensions of space perpetually spinning away from the observer point 
in the 3D+T translation of Spacetime generated to describe the experience. 

5.4. The Point of the Matter 

We close this section by noting that, for the observers we have defined, there is only 1 point 𝑷 
traversing Spacetime along a single dimension.  A reader can readily question – “where do all these spins 
come from – what is driving the observed energy states in this model?”  To address this question, consider 
Figures 58-62 are static representations of a dynamic process. Spacetime generates a rendering of 3D+T 
space and time for an observer analogous to an artist that generates a coherent sketch without lifting a pen.  
In brief, in this paper we attempt to describe properties of our experience of Spacetime with a model that 
represents a more parsimonious underlying reality, which we claim is best understood as a continuous 1D 
expansion of energy observed under the condition of the existence of a minimum observation distance ℎ 
and a defined speed of communication 𝑐.  Different perspectives are generated by objects that are “out of 
phase”.  All Spacetime objects observe dimensions, and forces of nature, but to maintain a 1D trajectory all 
observation must “return (or rotate) back to the origin” to maintain object permanence.  Our model chops 
Spacetime into moments, but the movement of an observer is continuous.  Until a given wave-function for 
the entire system (the Universe) concludes, observers exist in a continual state of “becoming”.  𝑃- never 
“arrives at” 𝑃'.  𝑂5 observes 𝑃 in a persistent process of arriving (Table 5).  In other words, while a large-
scale energy process (e.g. a “Universe”) is expanding, the smallest possible observers never experiences a 
full trajectory from a past to a future.  The observer is liminal, perpetually in the process of looking back at 
“where it has been”, and forward to “where it is going”. 

𝑄] = {1 → 2, 1 → 3, 2 → 3} (50) 

𝑃𝑟𝑜𝑡𝑜𝑛 → {𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡, 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡, 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡}~{𝑡𝑜𝑤𝑎𝑟𝑑𝑠, 𝑡𝑜𝑤𝑎𝑟𝑑𝑠, 𝑎𝑤𝑎𝑦}~{𝑢𝑝, 𝑢𝑝, 𝑑𝑜𝑤𝑛} 
𝑁𝑒𝑢𝑡𝑟𝑜𝑛 → {𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡, 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡, 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡}~{𝑎𝑤𝑎𝑦, 𝑎𝑤𝑎𝑦, 𝑡𝑜𝑤𝑎𝑟𝑑𝑠}~{𝑑𝑜𝑤𝑛, 𝑑𝑜𝑤𝑛, 𝑢𝑝} (51) 

Table. 5. Model and Reality 
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Point Trajectory Model 1D Spacetime 
𝑷; traverses or “jumps through” 𝑶𝒑 and “arrives 
at” point 𝑷D 

𝑶𝒑	observes the dynamic act of 𝑷; progressing through 
continuous Spacetime to 𝑷D 

Our model conveniently frames Spacetime as a dynamically generated set of 3D+T locations with embedded 
energy.  We model discrete “jump-steps” of length ℎ, implying defined borders. However, we present this model 
as a convenient way to frame observations and experience of a continuous underlying 1D energy expansion from 
a point.  𝑂#, the observer perspective, continuously and dynamically generates observed 3D+T Spacetime as a 
computation or communication of this dynamic 1-D energy expansion as 𝑃 progresses through Spacetime. 𝑃; 
never “arrives at” 𝑃D.  Existence is the act of observation of 𝑃; in the process of arriving. Each Spacetime object 
accordingly represents the sum of all observations and experiences, from the beginning of the Universe to its 
current location. The existence of ℎ, a minimum observation distance, admits relativity. 

6. Examining Hypotheses 
This paper started from what could have been considered the naïve perspective 8 years ago, spurred by 

conversations with my good friend Murat Tanik, that Planck-scale objects, based on visualizations of 
Communication Dynamics Theory, could lead to a better understanding of atomic structure and 
fundamental constants of nature.  In Section 2, we presented the 3 principle hypotheses that emerged over 
time: 

Hypothesis 1:  Communications, can mathematically represent bosons. 

Hypothesis 2:  Accelerated Moments, can mathematically represent fermions. 

Hypothesis 3: Stationary Observers located at average moment computational positions, can account 
for properties of fermions, including spin, apparent perspectives of motion and rotation, and relativistic 
effects that differentiate leptons from hadrons.   

We believe that this work does provide initial evidence that a hyperbolic, relativistic translation of 
Communication Dynamics Theory provides an intuitively useful approach to understanding space, time, 
matter, and fundamental forces of nature as a natural consequence expanding Spacetime.  Further evidence 
will be needed to fully evaluate the usefulness of our theoretical construct, but the findings in this paper 
suggest the possibility that a proton, neutron, and electron are the same Spacetime Object, seen from 
different observer perspectives.  The same model provides evidence that quarks and strong interactions 
might be modelled as sub-Planck manifestation of the dynamic emergence of the dimensionality of our 
experience of Spacetime.  In this context the weak force is a manifestation of energy, in locales where 
energy is spread over large trajectory-spaces, to manifest location in 3 dimensions of space and time.  The 
emergence of the fine structure constant is intimately connected with the emergence of this observed 3D+T 
space, as a Neutron decays to a Spacetime Object capable of observing a more complex Spacetime location.   

We cannot replicate the precision of Quantum Physics in a single work.  For example, we have proposed 
a 6 (or more)-parameter model (a point progressing and rotating through hyperbolic space).  Slight 
discrepancies between our estimates of 𝑒, 𝛼, and 𝜋 could benefit from adding additional parameters (or 
emergent dimensionality).  However, we predict that our general approach, based on communication theory, 
will be robust enough to both incorporate the observations of Quantum Physics, and provide more precise 
estimates of the characteristics of matter and energy by integrating special and general relativity into a 
unified theory of matter and energy. 
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7. Conclusion 
Quantum Theory, embodied most directly by the Standard Model, underpins many of the most dramatic 

scientific and technical advances of the 20th Century.  For over 90 years, experimenters have meticulously 
tested the theory without calling its foundations into question.  A longstanding, fundamental problem 
however has long been recognized to exist: the current Standard Model of Physics and General Relativity 
are incompatible.  A philosophical debate exists at the centre of this incompatibility.  Physics, in the early 
20th century divided into two general camps (Table 6) – the realists, and the anti-realists (Smolin, 2019). 

Anti-Realist Perspective The Realist Perspective 
• The observer is the fundamental arbiter of natural 

phenomena 
• Observers create the Universe they inhabit 
• Each observer inhabits their own Universe 
• The future state of any given physical system is not 

predictable 

• The Universe exists independent of our minds 
• This Universe can be described by deterministic 

laws 
• In principle, with enough information, the future 

state of a given physical system can be predicted 

Quantum physics, and the Standard Model of Physics, is largely based in the anti-realistic perspective. 
Sir Frances Bacon, so eloquently referenced by Steven Weinberg in the forward to this issue, believed that 
the way to learn nature is through patient observation.  After data is amassed, the nature of reality becomes 
apparent (Logicus, 1889).  Quantum Physics is very much in the tradition of Bacon.  Based purely on the 
power of observation, an a-priori assumption of the existence of Space and Time, an ill-defined “particle-
wave duality”, and quantum coin tosses, the Standard Model offers a dizzying array of particles and 
interactions (Quig, 2005; also see Wolchover 2020).  Particles (Fermions) act via a series of force carriers 
(Bosons). Fermions come in two “flavors”, Quarks and Leptons.  Gauge Bosons (Photon, Gluon, W, Z) are 
linked in some fashion to a so called “God Particle”, the Higgs Boson.  Quarks have unexplainable rules; 
solitary quarks are never seen and have partial charges.  Quarks have “handedness” and come in 3 colors 
(Red/Green/Blue).  Left-handed Up/Down Quarks interact via the Weak and Strong Bosons, but Right-
handed Up/Down Quarks do not interact via Weak or Strong Bosons – except that any Quark can be bound 
in a 3-part grouping by Gluons (the mediator of the Strong Force).  Conversely, Leptons have no structure 
or color – and for unexplainable reasons, a neutrino is close to massless.  Further, for unexplainable reasons, 
right-handed neutrinos have never been detected.  For unexplained and unexplainable reasons, 3 versions 
of each particle exist that are identical in all properties except for one – mass.  A series of unexplained 
constants permeate the theory.  The Standard Model is a triumph of human ingenuity based on a simple 
premise.  Put simply, theory rejects any underlying unseen or unseeable structure to the Universe.   Rather, 
the model rests on a single column of inquiry – experimental observation.  An unobserved theoretical 
underpinning is neither necessary, nor desirable. 

Einstein was a founder of the field of study that became Quantum Physics, but in the end he found the 
anti-realist perspective un-satisfying, famously stating “God does not play dice with the Universe”, 
prompting Bohr to retort “Einstein, stop telling God what to do” (Bohr 1917).  Einstein in later writings 
hedges “God tirelessly plays dice under laws which he has himself prescribed” (Einstein 1945).  
Neverthless, Lee Smolin, a modern day gladiator for the Realist perspective, identifies Einstein, de Broglie, 
and Schrödinger as realists, individuals who believed, for example, that “an electron was real and somehow 
existed as both a wave and a particle”, compared to Bohr and Heisenberg, “enthusiastic anti-realists, who 
believed we have no access to reality, only to tables of numbers which represent the interactions with the 
atom, but not the atom directly” (Smolin, 2019). 

We identify our theory as falling within the Realist camp, but with a twist.  In Communication 
Dynamics, the Universe knows very well its processes and destinations.  It is observation, not the Universe, 
which is quantized.  Advances in human understanding typically occur when we remove ourselves from a 
privileged position.  When Copernicus placed the sun at the centre of the cosmos (Copernicus, 1543), he 

Table. 6. The Realists and the Anti-Realists 
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upended established scientific thought, leading to an advance in understanding of the position of human 
observers in a larger cosmos.  We propose that the Universe exists and generates observers in accordance 
with a principle of minimum observable distance.  Each observer generates their own (quantized) version 
of reality from a deeper un-observed whole.  Because observers communicate at a universal speed in 
quantized observational increments, for observers constructed from matter the quantum illusion is 
complete.  Like the inhabitants of Plato’s cave (Plato, 514b-518a, about 380 BCE), observers are chained 
to the Universe they inhabit. There is no observer outside the model; all observers exist within the model 
and communicate with each other using a universal frame of reference to define location and observation.  

Lee Smolin defined 5 principles that would inform a model “replacing” Quantum Physics (Table 7, from 
Smolin 2019). We agree with Einstein, and with Smolin, that Quantum Theory is incomplete.  We believe 
the Communication Dynamics approach agrees with and can in time incorporate and extend the 
observational power of Quantum Theory.  As the theory is based on underlying first principles, we propose 
as a testable hypothesis that Communication Dynamics can structure and predict “unseen” (unobserved) 
causes and better approximate what appear, now, to be random, or “Quantum” outcomes.  In this sense, we 
propose a theory not to replace Quantum Theory, but incorporate its strengths, and improve the precision 
of its predictions. 

Principle Quantum Theory Communication Dynamics 
1 Background Independence: The 

theory should depend on structures 
which evolve dynamically, and do 
not require any outside matrix. 

Does Not Satisfy. Objects 
are assumed to travel 
through space and time. 

Satisfies. All objects are generated 
from one matrix. 

2 Space and Time are Relational: 
Specific objects occupy specific 
spaces at specific times.  Space 
and time location are always 
relational for all objects. 

Does Not Satisfy.  Objects 
can exist in “superposition”, 
occupying multiple 
Spacetime Locations at 
once. 

Satisfies. Observations/experiences 
derive from dynamically generated 
observers interpreting the expansion 
of a single point of momentum 
expanding as energy. 

3 Causal Completeness:  All events 
have a discernable cause that is 
derived from within the system. 
No cause from “outside the 
system” is needed. 

Does not satisfy.  
Occurrences can be random 
and unpredictable.  Effect 
does not necessarily follow 
cause. 

Satisfies.  Seemingly “random” 
occurrences are the effect of 
quantized observation. 

4 Reciprocity: If an object A acts on 
B, then B must also act on A. 

May satisfy (unclear) Satisfies.  All objects communicate 
relativistically at a Universal speed 
“c” 

5 Identity of Indiscernibles: Any two 
objects that have precisely the 
same properties are in fact the 
same object. 

Does not satisfy.  Two 
distinct protons are assumed 
to be identical objects. 

Satisfies. Not two objects are the 
same.  Two “distinct protons” differ 
by location and Universal 
expansion constraints.  All matter is 
in a state of decay. 

 
In summary, we propose a theoretical model, consistent with Special and General relativity, which 

generates observers at small scale that we interpret as protons, neutrons, and electrons. The theory claims 
that the Universe, to observers, appears at small scales to be random and arbitrary because observers are 
not separate from the Universe, but constructed from it, and subject to rules of observation that prevent the 
observation of relativistic, cause-effect relationships generated below a minimum observable distance.   We 
openly challenge the notion proposed by Quantum Physics of a random Universe. We claim that effects do 
not occur without cause, but rather state that quantized observers cannot see the cause of all effects.  We 
propose that all observation, including Space, Time, and all fundamental forces of nature, can be linked by 
a general, (at least) 6-parameter geometrically accessible and calculable dynamic matrix that generates our 
3D+T frame of reference and related perception of fundamental forces of nature.  Consequently, we propose 

Table. 7.  Principles of a Grand Unified Theory (Lee Smolin) 
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that currently unexplained particles, interactions, forces, and constants can be modelled, based on known 
geometric principles, as extensions of a 1D expansion of energy (Spacetime).  By removing the primal 
position of the observer from physics, our theory is causally complete, and fulfils Smolin’s criteria for a 
model that can both incorporate, and augment Quantum Theory, explaining currently unexplainable 
constants.  We hope our approach can, over time, provide more precise estimates of unseen causal 
relationships and provide more robust predictions of “Quantum” outcomes. 
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Suggested Reading 
We primarily base our approach to physics from a re-imagining of Einstein’s theoretical approach to 

physics, applied to Communication Dynamics Theory.  Works by Lee Smolin, Douglas Stone, and Lee 
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problems facing the field of Quantum Physics that Communication Dynamics Theory attempts to address. 
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methods to understand signal, noise, and statistical power in imaging data. Dr. Skidmore’s academic 
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