
Transactions of the SDPS: 
Journal of Integrated Design and Process Science   
21 (4), 2017, 1-4 
DOI 10.3233/jid-2018-0006 
http://www.sdpsnet.org 

 

 

1092-0617/$27.50© 2017 - Society for Design and Process Science. All rights reserved. Published by IOS Press 
 

S  D  P  SS  D  P  S

SO
C

IE
TY

 F
OR

 D
ESIGN AND PROCESS SCIEN

CE
&

EDITORIAL 

Building Intelligence in Digital Transformation 

Jingwei Huang * 

Department of Engineering Management and Systems Engineering, Old Dominion University, USA  

We are in an age of great changes! An on-going profound societal movement is digital transformation, 
which is the pervasive diffusion of digital technologies in business and other societal processes. On the one 
hand, digital transformation is driven by the confluence of technologies such as Internet of Things, 3D 
printing, Big Data, machine learning and artificial intelligence (AI); on the other hand, digital 
transformation provides fertile fields for the further development of those technologies, and most 
importantly, for the growth of new technologies and new digital business, such as digital twins, blockchain, 
cryptocurrencies, digital archives, and smart contracts. Related to the emerging digital transformation 
phenomena, we expect many opportunities, challenges, and uncertainties. One thing for sure is that digital 
transformation will continue to make Big Data bigger and bigger, and in the emerging digital society, 
successes will belong to the organizations who are able to build intelligence in digital transformation by 
leveraging AI to turn data into knowledge and to use the knowledge in actions. 

What are approaches to building intelligence in digital transformation? First of all, what are data? What 
are Big Data? What is knowledge? What are the differences between them? What do Big Data mean to us 
when we try to understand and model a complex system or a complex process? Do Big Data carry all 
information about a system or a process? The study of the nature of knowledge can be traced back to Plato’s 
Theaetetus. In Philosophy, an influential definition of knowledge is “justified true belief” (Stanford, 2017). 
In AI, based on Kripke possible world semantics, a series of axiomatic systems (T, S4, S5, and KD45) to 
define knowledge and belief have been studied (Halpern and Moses, 1992). In information science and 
management science, many researchers have explored the concepts of data, information, knowledge, and 
wisdom, and their hierarchical structure - DIKW pyramid (Ackoff, 1989; Rowley, 2007). Bellinger et al 
(2004) illustrate the relations among data, information, knowledge, and wisdom in a two-dimension space 
(connectedness, understanding), where from data towards the direction of wisdom, the levels of 
understanding and connectedness increase. Intelligence is the ability to transform data into information and 
knowledge, to lift knowledge into wisdom, and to use knowledge in problem solving. 

Big Data has been characterized with 3Vs – high-volume, high-velocity and high-variety by Gartner 
(2012). Volume is about the size or scale of data. Velocity is about the high speed in which data are 
produced and need to be processed. A common understanding of “variety” is about the various forms of 
data, such as structured and unstructured, text, images, videos, sensor readings, and so on; however, we 
must consider variety in another dimension – many different sources/views of data. The data about the same 
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object could come from different observers’ radar, sonar, lidar, and so on. The data about the same 
individual could come from different social media. The new reports about the same event could come from 
different witnesses, journalists, and media agencies. This new dimension of “variety” brings in complexity 
beyond technologies. Relevant to this, IBM introduced the fourth V – “veracity” to address the uncertainty, 
reliability, and trustworthiness of data (IBM, 2013). Researchers have been adding in new Vs, such as 
“value” (high value of collective data and low value density of data). Back to the earlier questions, in the 
context of Big Data, data can be interpreted as observations by a viewer from a specific view at a specific 
point of time, thus representing an agent’s belief. Knowledge is justified true belief in the relations, features, 
properties, patterns, and laws about the studied system or process, obtained through learning and logical 
reasoning including deductive, inductive, abductive, and analogical reasoning, based on known knowledge 
and the given trusted observations (data). It is important to evaluate the trustworthiness of those 
observations from different sources based on their provenance (Huang, 2008). People may remember the 
cheer “let’s put everything in and let the data speak for itself”, after some early successes of Big Data 
analytics, e.g. Google Flu Trend revealed influenza cases spiking two weeks prior to the CDC report in 
early 2010. As addressed earlier, data are observations by a viewer from a specific view at a specific point 
of time; Big Data provide much more observations than before; however, usually Big Data do not carry all 
information about a complex system or process. In a system’s state space, Big Data may have high 
redundancy in some regular system states, and may have just few pieces of information (even no at all) in 
those rare system states. In the latter case, Big Data carry just little information. It is fair to say that Big 
Data technology provides us the opportunities to gather unprecedented scale and unprecedented finer time 
intervals of observations, thus offering larger opportunities to capture the truth about the studied system or 
process, e.g. the most recent finding of Higgs boson decay (Nature News, 08/31/2018) and the earlier 
discovery of Higgs at LHC (Nature News, 07/04/2012), in which a scientist explained “Out of some 500 
trillion collisions, ‘the signal we're looking at is some tens or dozens of particles’, ... The feat is equivalent 
to picking a few grains out of an Olympic-sized swimming pool full of sand.” Surely, the increased density 
of experimental data collection powered by improved computing power directly contributed to the existing 
discovery. 

Jim Grey had a vision that science has had three research paradigms in history, that is, empirical 
(characterized as based on observation and description of natural phenomena), theoretical (characterized as 
based on mathematical models), and computational (characterized as based on simulations, when 
theoretical models become too complex to derive and prove propositions); now, today’s science is 
transforming into its forth paradigm – data-intensive paradigm, which leverages Big Data and associated 
Big Data technologies in scientific discovery. This insight has inspired various data-driven research in many 
scientific and engineering disciplines, including systems design and process science. For example, the 
recent DSR 2018–Workshop on Data Driven Design and Learning, held at Montreal, Canada. Data-
intensive science and engineering is a manifestation of digital transformation in the fields of science and 
engineering. 

Simon (1997) revealed that human cognitive activities have “bounded rationality”, i.e. the “rational 
choice that takes into account the cognitive limitations of the decision maker - limitations of both knowledge 
and computational capacity”. As we see from the earlier stories, the increased computing capacity in the 
past has significantly extended human society’s capability in knowledge acquisition and knowledge-based 
decision making. The first wave of lift in computing power was mainly attributed to the hardware progress 
dominated by Moore’s Law (Moore, 1965) for almost 50 years, which is now close to saturation; the second 
wave, now right in its peak, is from parallel and distributed computing, represented by Cloud Computing; 
the third wave, which now is coming, is probably from artificial intelligence, to make computing more 
intelligent and more efficient.  

Now let us return to our first question regarding how to build intelligence in digital transformation. 
Digital transformation includes digitization and digitalization. Digitization is to create a digital 
representation of a physical or analog product; examples include the digital version of a paper book, a 
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digital description of a product sold at Amazon, and a part design produced from CAD. An advanced 
example reflecting the state-of-the-art development could be digital twins of physical machines or products, 
which have been used in digital manufacturing. Digitalization is about to use digital technologies to operate 
digital or digitized entities in societal processes including business processes. Examples include the digital 
business of Netflix and Amazon, digital supply chain, and others. The Digital Manufacturing and Design 
Innovation Institute (DMDII) of UI LABS at Chicago, USA is an excellent showcase of digital 
transformation in manufacturing industry. Digitalization will lead to digital business. Digital entities and 
digitized entities provide the space to employ various digital technologies and to leverage Big Data and AI 
technologies. Currently, digital transformation in business has been largely attracted to Big Data analytics 
and machine learning. We believe, beyond machine learning, AI has immense potential to improve digital 
business in many aspects, naming a few, intelligent designers, intelligent business agents, intelligent process 
monitors, intelligent resource managers, and so on. 

This issue of JIDPS presents five research papers. Each of them reflects some interesting aspects of the 
related research issues. In digital transformation, a significant portion of data are in the form of unstructured 
text. Therefore, efficient knowledge discovery from text and information retrieval from text are critical to 
digital transformation. Paper “A Semantically Enriched Context-Aware Stemming Algorithm”, by Melyara 
Mezzi, Nadjia Benblidia and Xiangji Huang, proposes a hybrid stemming algorithm to combine the strength 
from rule-based stemmer and dictionary stemmers. Stemming is an essential pre-processing stage for text 
mining; stemming transforms a word from its variant forms into its root form (or word stem). The authors 
show the improvement of their algorithm by comparing with some representative algorithms with 
benchmark datasets. 

Big Data may come from many different sources even just within an enterprise. Echoing this feature of 
“variety”, paper “Knowledge Management Through Ontology-Driven Integration of Disparate Knowledge 
Sources”, by Jan Werrmann and Bernd J. Kramer, addresses the issues on enterprise knowledge search 
from disparate sources. Knowledge and information relevant to a specific case or situation are distributed 
in many different information systems, knowledge bases, databases, wikis, emails, and document archives, 
and it is a challenge to find the knowledge related to a given scenario at real time. The authors propose to 
represent knowledge/information items and their relations as ontologies, and to construct an ontology 
directed quick search. They also allow dynamic reinforcement of the relations among those 
knowledge/information items by using users’ case specific searches and feedbacks. They also report their 
successful test of the prototype implementation on the business of car maintenance, repair, and services by 
a car manufacturer. 

One of the benefits of digital transformation is the flexibility of digital products and services, which 
allows to offer personalized services. Paper “Integration of Digital Social Story Intervention into 
Differentiated Instruction Framework”, by Win Ko Min and Lau Bee Theng, illustrates how they effectively 
leverage digital materials augmented with personalized instructions in special education for children 
diagnosed with Autism Spectrum Disorder.   

To build intelligence in digital transformation, not only the application of machine learning and AI is 
important, but also the education, knowledge and skills preparation, and fostering culture for digital 
transformation are equally important. Paper “Empowering Rural Youth for Socio-Economic Benefits: A 
Case Study of Knowledge Management Practices in Sarawak”, by Wan-Tze Vong, Patrick H. H. Then and 
Tien-Hiong Teo, introduces the design of the Rural ICT-Guided Home-based Technopreneur (RIGHT) 
program for training rural youth in Malaysia on information and communication technologies, from 
knowledge management perspective with components of knowledge acquisition, knowledge utilization, 
and knowledge sharing; and the authors evaluate the effectiveness of this special knowledge management 
process. 

Different from many ways of knowledge acquisition by learning and reasoning, paper “Application of 
Design Methodologies to Web System Design: A Case Study of JIDPS Editorial System”, by Mengli Shu, 
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Suo Tan, Liang Fu, Yijing Zeng, Xinlin Cao, and Yong Zeng, shows in the context of product design an 
interesting approach to acquire knowledge (specifically, customer requirements) from a conversation 
dominated by a general structure called Recursive Object Model (ROM). The authors integrate this 
intelligent requirement acquisition process into a “Quality Function Deployment” based product design 
framework. The authors demonstrate how this approach works with a case study on the design of a web-
based journal editorial system. 

In the on-going digital transformation, several disruptive technologies such as Internet of Things and 
blockchain are still in their infant stages. Internet of Things extends the Internet into the physical world. 
We all already experienced the remarkable changes that Internet brings to us; but the impact from Internet 
of Things will be much stronger. The applications of Internet of Things in industry are leading to the “fourth 
industrial revolution” (Schwab, 2017). This new development is changing the landscape of engineering 
systems design (Huang, 2016). The dramatic and active interactions between digital technology 
development and the digital transformation in society will continue. JIDPS will continue to publish articles 
on the theme and relevant emerging research topics.    
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