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Abstract. Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington’s disease
(HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-
pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene.
Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and
other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support
instability of the HTT expanded-CAG repeat as being required for the progression of HD.
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Variation in inherited length of an expanded (>35)
CAG repeat in the Huntington’s disease (HD) gene
HTT explains the majority (∼60%) of variation in
the age-at-onset (AAO) of motor symptoms of HD,
with longer repeats resulting in earlier onset [1].
The residual variation in AAO is also highly her-
itable [1, 2], with evidence that expansion-biased
somatic instability of the expanded CAG repeat drives
the rate of pathogenesis [3, 4]. Somatic instability
occurs in the HD brain [5–10] with greatest instabil-
ity observed in the striatum and cortex, and peripheral
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tissues to a lesser extent [5, 10–12]. Striatal expan-
sions are evident even in tissue from Vonsattel Grade
0 brains (minimal pathology) implying that instabil-
ity is an early molecular event [6]. Functional studies
in mouse models [13–17] and HD cell lines [18–20]
show that somatic instability of the CAG repeat is
mediated by DNA repair genes. Variants in, or asso-
ciated with, six such genes (FAN1, LIG1, MLH1,
MSH3, PMS1, and PMS2) have been identified as
modifiers of AAO through genome wide association
[4,21,22] and candidate genotype studies [11], and
several have been found to modify repeat instability
in HD patient blood samples [4, 11].

Current data support a two-step theory of patho-
genesis in HD where the rate of somatic CAG repeat
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expansion controls the timing/rate of disease onset
[3]. This theory proposes that the inherited expanded
HTT CAG repeat allele undergoes somatic expan-
sion towards a critical threshold(s) in individual cells.
When this threshold is reached within a cell a toxic
mechanism is then triggered to cause dysfunction
and cell death, with symptom onset and disease pro-
gression occurring as increasing numbers of cells
pass the expansion threshold. Recent reviews [23,
24] suggest that studying pre-symptomatic and early
symptomatic low-grade tissues will help to resolve
the critical intracellular CAG repeat threshold and
the consequent pathogenic mechanisms.

We quantified somatic variation in CAG repeat
length in the OVT73 transgenic sheep model of HD
in striatum and liver. These two tissues exhibit high
instability both in HD knock-in and transgenic mouse
models [25–27] and in patients [6, 7, 9–11]. OVT73
are a premanifest model expressing an 11,625 bp
transgene consisting of full length human HTT cDNA
with an exon 1 repeat (CAG)69(CAACAG)2, under
the control of a minimal human HTT promoter (1.1
Kb genomic DNA immediately upstream of exon
1) [28]. The OVT73 model develops HTT positive
aggregates, gene expression and metabolic changes
in the brain but no discernible cell loss [28–40]. The
transgene is integrated as multiple copies at a single
locus in an intergenic region of ovine chromosome
10, with approximately 10 full length copies inte-
grated head-to-tail, surrounded by several smaller
transgene fragments that lack promoter sequence
[30].

Transgene repeat instability was first assessed
in six post-mortem OVT73 sheep aged 5-years (3
ewes, 3 rams; G1 and G2) (Supplementary Table 1).
High resolution small pool-PCR (SP-PCR) was
used to analyze CAG repeat length in single DNA
molecules containing the OVT73 transgene, based
on limiting dilution and Poisson analysis. All tissue
samples reported in this manuscript were obtained
from the South Australian Research and Devel-
opment Institute (SARDI) and were sampled in
accordance with approval of the Department of Pri-
mary Industries and Regions (PIRSA) Animal Ethics
Committee (Approval number 19/02).The SP-PCR
protocol was based on that previously described [8],
with the use of sheep- (first round amplification)
and transgene- (second round amplification) spe-
cific primers. The transgene-specific forward primer
was 6-FAM labelled to enable resolution of the
PCR product and quantification of repeat length
using an automated ABI3130XL DNA sequencer

with GeneScan™ 600 LIZ® Size Standard (Applied
Biosystems). Pure CAG repeat length was calcu-
lated from the tallest peak (modal repeat) of each
trace compared against an OVT73 sheep standard
with structure (CAG)69(CAACAG)2 (Supplemen-
tary Material). At least 50 single molecules were
genotyped per sample.

For all samples, the modal repeat was determined
to be 69 CAG units (43.1–71.1% of molecules per
sample; Supplementary Dataset 1). This aligns with
genotyping of bulk genomic DNA (1000 genome
equivalents) from these animals and previous reports
for the OVT73 line [28, 29]. A smaller peak was
also detected at a lower frequency (6.6–20.8% of
molecules per sample). Sanger sequencing con-
firmed this is a transgene copy with structure
(CAG)26(CAACAG)2. This short transgene copy is
also detected in genomic DNA from the OVT73
founder animal HD260 (Supplementary Figure 1).
SP-PCR of fibroblast cells derived from founder
HD260 (Supplementary Material) shows that both
(CAG)26(CAACAG)2 and (CAG)69(CAACAG)2
transgenes are present in all cells (1:4 ratio). Pre-
viously reported capture sequencing estimates there
are 10 full-length transgene copies at the single
OVT73 locus [30]. It therefore appears that a frag-
ment of a single copy of the transgene integrated,
or that the construct DNA used in microinjec-
tion to create the founder OVT73 animal HD260
[28] inadvertently contained a short repeat clone
in addition to the predominant cDNA which inte-
grated along with the other copies at the OVT73
locus. The latter is most likely as other potential
founder animals generated at the same time as HD260
also carry the short (CAG)26(CAACAG)2 transgene
(Supplementary Figure 1). The absence of an mRNA
corresponding to the (CAG)26(CAACAG)2 trans-
gene in OVT73 indicates that it is not expressed.

As the (CAG)26(CAACAG)2 repeat is not
expanded it was removed from the SP-PCR dataset
for instability analysis. For the remaining products,
a size distribution all alleles with >56 repeats, the
modal repeat for each sample remained as 69 CAG
units with modest variation (57 – 80 CAG) observed
(Fig. 1, Supplementary Dataset 1).

Interestingly, the SP-PCR data also revealed a clus-
ter of alleles ∼65 CAGs as well as a few alleles
between 75 and 80 CAGs. Further analyses, pre-
sented below, revealed that additional copies of the
transgene at the multi-copy locus had repeat lengths
in these ranges. Given this, it is likely that CAG-
containing alleles around these sizes are products of
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Fig. 1. Somatic variation of the expanded CAG repeat of the OVT73 sheep transgene. Distribution and frequency of somatic variation in
pure CAG repeat length of the OVT73 transgene is shown for liver and striatum tissues from six OVT73 sheep (5 years old) with constitutive
polyglutamine-coding repeat structure (CAG)69(CAACAG)2. Repeat lengths were assessed in single molecules by small pool PCR. Modal
repeat length for all animals was 69 CAG.

other transgene copies, rather than somatic deriva-
tives of the 69 CAG repeat-containing transgene. The
presence of multiple transgene copies precludes accu-
rate quantification of repeat instability, e.g., using
Instability Index methods [8, 25]. This is because,
for repeats that are closely spaced in length it is
difficult to distinguish expansion peaks originating
from shorter alleles from contraction peaks originat-
ing from longer alleles. Further, for transgenes with
the same repeat length, it is impossible to discern the
specific transgene(s) from which expansion or con-
traction peaks originate. The small sample number
in this study also precluded meaningful assessment
for effects of generation, age, or inherited CAG
repeat length on instability, as has been observed
in mouse models [6, 26, 27, 41, 42]. Regardless,
the data clearly show that the polyglutamine-coding
repeat in the dominant OVT73 sheep transgene
(CAG)69(CAACAG)2 is remarkably stable. Notably,
a repeat of this length is expected to exhibit signifi-
cant levels of somatic expansion after 5 years, given
the instability present in a knock-in HD mouse model
with 72 CAG repeats [6].

To examine whether older sheep might show evi-
dence for somatic expansion, we performed bulk
PCR and MiSeq analysis in three OVT73 sheep of

advanced age (10-year-old, G3 ewes). These ani-
mals were recently utilized in a non-invasive cohort
study [39] where OVT73 sheep at 9 and 10 years
of age were found to have elevated mHTT levels in
CSF and changes in brain white matter structure as
assessed by MRI. The microstructural white matter
changes correlated with declining gait and mHTT
levels of CSF, indicating measurable disease progres-
sion over the one-year period. To assess potential
brain somatic expansion more broadly bulk PCR was
performed here on seven brain regions (brainstem,
caudate, cerebellum, motor cortex, piriform cortex,
putamen, temporal lobe) as well as liver (Supple-
mentary Material). Interestingly, at least four discrete
peaks were observed in tissues from all three animals,
corresponding to pure CAG repeat length estimates of
27, 65–66, 69–70 and 82–83 units (respectively), and
a peak with 76-CAG evident only in animal HD909
(Fig. 2, Supplementary Figures 2 and 3).

The bulk PCR electrophoretogram peaks corre-
spond with the 5-year-old SP-PCR data and MiSeq
data, although there is a discrepancy in the short
transgene copy repeat length which was called as
26 CAGs in the SP-PCR data and 27 CAGs by
MiSeq. CAG repeat length calls for both fragment
sizing datasets were calculated based on the OVT73
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Fig. 2. Alternative copies of the OVT73 transgene have different polyglutamine coding repeat lengths (Animal 909). Bulk PCR traces from
striatal genomic DNA of three 10-year-old (G3) OVT73 sheep indicate presence of multiple copies of the OVT73 transgene with differing
polyglutamine-coding repeat lengths, inserted at the ovine chromosome 10 locus. Bulk PCR traces from brain and liver tissues are shown for a
single animal (animal 909). The dominant pure CAG repeat length was 70. Repeat lengths of 27 (short allele), 65, 76 and 82 are also observed.
Traces were consistent across the eight tissues examined. GeneScan 500 LIZ internal size standard was used to determine product size. CAG
repeat size was estimated against a knock-in mouse model standard, with adjustment for known differences in the polyglutamine-polyproline
repeat sequence structure between the mouse and sheep models (refer to Supplementary Material).

transgene polyglutamine-polyproline coding repeat
structure (CAG)n(CAACAG)2(CCG)9(CCT)3, pre-
viously determined by sanger sequencing of all
OVT73 generations (data not shown) and validated
here by MiSeq sequencing of bulk PCR products
from the 10-year-old animals HD909 and HD913
(Supplementary Figure 4). Review of the shape of
SP-PCR electrophoretograms (Supplementary Fig-
ure 1) supports that the predominant short transgene
copy in the 5-year-old animals likely also contains
27 CAGs, as the height of the 27 CAG peak is
almost equal to that of the 26 CAG peak. The modal
call of 26 CAGs for the short transgene in the SP-
PCR dataset may therefore reflect PCR slippage
caused by overamplification of the short allele dur-

ing SP-PCR. Other repeat lengths detected in the
10-year-old bulk PCR fragment analysis (65–66, 76
and 82–83 units) were present with lower abundance
as evident by the electrophoretogram peak heights
(Fig. 2, Supplementary Figures 2 and 3) consis-
tent with constitutive CAG repeat lengths of lower
abundance transgene copies, rather than instability
of the predominant (CAG)69(CAACAG)2 transgene
copies. The presence of transgene copies with these
CAG repeat lengths was confirmed in the MiSeq
data (Supplementary Figure 4). The electrophore-
togram peak indicating a 76 CAG repeat length in
animal HD909 (Fig. 2) may reflect germline expan-
sion of a copy of the transgene. As explained above,
CAG-containing alleles detected by SP-PCR in the
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5-year sheep around the repeat sizes of these major
repeat length clusters are most likely attributable
to individual 65–66-, 76-, and 82–83-unit polyglu-
tamine coding transgene copies. Analysis of many
more single molecules by SP-PCR would confirm
the presence of these alternative repeat-length trans-
gene copies in the 5-year-old animals, although the
narrow repeat range (65–87) prevents the accurate
assignment of variation to specific transgene alleles.

It was notable that two of the three 10-year-old
animals (all G3) had a 70-unit CAG repeat allele,
compared to 69 units in all 5-year-old sheep (G1
and G2). This agrees with previously reported one-
unit generational creep between G2 and G3 animals
[29]. Identifying generational and/or individual dif-
ferences in CAG repeat length is relevant for breeding
of the OVT73 model. We also note that the shapes of
the 69–70 CAG repeat distributions differed between
animals, e.g., in animal 909, the peak to the right
of the modal peak drops sharply in height relative
to the modal 70-repeat peak, while in animal 912,
the peak to the right of the modal peak is relatively
close in height to the modal 69-repeat peak. This may
reflect subtly different degrees of somatic expansion
between these sheep; however, the shapes of these
CAG length distributions might also suggest the pres-
ence of transgene copies with both 69 and 70 CAGs
and overlapping PCR products generated from each
(Fig. 2, Supplementary Figures 2 and 3). Regardless,
these data reveal that at 10 years the OVT73 transgene
CAG repeat is still remarkably stable in all tissues
tested.

Taken together, these data provide new insight into
OVT73 transgene locus composite sequence, where
at least 4–5 different repeat lengths are apparent in
different full-length copies of the transgene, with a
majority of copies having (CAG)69-70(CAACAG)2
polyglutamine-coding repeats. As explained above,
the presence of multiple transgene copies is a com-
plicating factor for quantifying somatic variation in
this model. However, minimal repeat length variation
observed overall indicates that all transgene copies
are quite stable, including between tissues, individ-
uals, generations, and ages. As the OVT73 sheep
are a prodromal model with no overt neurological
symptoms or cell death, these findings provide further
evidence that somatic instability of the HTT expanded
CAG repeat beyond a threshold length is required for
onset and progression of HD and suggest that ∼70
CAGs may be insufficient to trigger disease onset.

Cis- and/or trans-genetic factors may limit the
instability of the OVT73 transgene. Cis-factors

include the transgene sequence and genomic struc-
ture. The transgene polyglutamine-polyproline cod-
ing repeat structure is (CAG)n(CAACAG)2(CCG)
9(CCT)3, confirmed by MiSeq sequencing data
from the 10-year-old animals described here and
Sanger sequencing of all generations (Supplemen-
tary Figure 4). Although it is a non-canonical human
sequence including a duplicate polyglutamine-
coding (CAACAG)2 sequence following the (CAG)n
repeat, the (CAG)n repeat is uninterrupted and there-
fore should be permissive for instability [4].

Other cis-factors potentially limiting OVT73 trans-
gene repeat instability include that it is cDNA rather
than genomic DNA [43], or that the chromatin context
surrounding the transgene may not be permissive for
instability. Expanded CAG/CTG repeats flanked by
genomic DNA are reported to be more unstable than
those within cDNA transgenes (reviewed by [43]).
The genomic locus of expanded CAG/CTG repeats
also contributes to their ‘expandability’ as evidenced
by differences in instability between CAG/CTG
repeat expansion diseases [43]. The randomly inte-
grated OVT73 cDNA transgene may therefore lack
cis-elements that are important for instability in HD.
There is also evidence that transcription is required
for instability [44, 45]. Protein expression of the
OVT73 transgene is relatively low (80–90% lower
than levels seen in several transgenic rodent models
[29]), potentially limiting repeat instability caused by
transcriptional mechanisms [43, 46]. The low lev-
els of transgene expression may be explained by
genomic context, where the transgene is integrated
in an intergenic region and is also methylated close
to (∼2 kb) the CAG repeat [47]. We note however
that in humans, hypermethylation of a CGG repeat
expansion immediately upstream of the FMR1 gene
(causative of Fragile X syndrome) does not appear to
inhibit further somatic repeat expansion [48]. Regard-
less of somatic instability, low transgene expression
alone may explain why the OVT73 model does not
manifest overt pathology and neurological symp-
toms.

Sheep may also lack the appropriate complement
of trans-factors that modify HTT CAG repeat insta-
bility. Human huntingtin has a longer polyglutamine
coding tract than all other species, thought to confer
an evolutionary advantage in neuronal function [49,
50]. Although direct comparison of HD patient and
animal model data is difficult due to differences in
lifespan, mouse models of HD appear to require
very long repeat lengths relative to humans to
achieve the frequency and size of mutations that is



38 R.R. Handley et al. / CAG Repeat is Somatically Stable in HD Sheep

seen in humans [51–53]. Additionally, a knock-in
minipig model with CAG150 shows less instability
than a knock-in mouse with comparable age and
repeat length [54]. The mechanism for the species
difference is not fully understood but likely involves
DNA repair proteins that influence instability [43,
49]. Key DNA repair genes that have been implicated
in somatic repeat instability in HD (MSH3, FAN1,
MLH1, LIG1, PMS1, PMS2) (reviewed by [43]) are
expressed in multiple sheep tissues, according to
the publicly available RNAseq database BioGPS;
http://biogps.org/sheepatlas/#goto=welcome (Sup-
plementary Table 2). Predicted amino acid sequences
for these genes also demonstrate high conservation
between human and sheep (Supplementary Table 2).
Functional expression is therefore likely, as expected
of a complex mammal. Investigating genetic varia-
tion in these DNA repair genes in the OVT73 model
and expression levels may provide additional insight
into their influence as trans-modifiers of repeat
stability in sheep.

With limited availability of human tissue, char-
acterizing the handful of animal models capturing
prodromal and early HD is important to resolve the
intracellular threshold CAG repeat length that trig-
gers cellular dysfunction and the transition from
pre-symptomatic to symptomatic [23]. Understand-
ing the mechanism of instability may further reveal
possible targets to suppress expansion. Mouse models
of HD and other repeat disorders have demonstrated
that DNA repair genes influence repeat instability
[13–16, 43, 55]. The reason for the stability of the
OVT73 sheep transgene expanded CAG repeat is not
currently clear but may involve access by the DNA
repair gene complement. Attempting to introduce
instability via modulation/knock-out of DNA repair
genes would test this idea and potentially enable study
of the CAG length pathogenic threshold, with the
complex brain and longer lifespan of sheep provid-
ing a realistic window to assess the mechanism of
the prodromal-symptomatic transition. A humanized
knock-in sheep would complement this by resolving
complications of transgene composition and transge-
nesis.
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