
Supplementary Material

Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the
Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in
Huntington’s Disease

Mathematical modelling of the differential effect of MutLα/PMS2 on repeat expansion in

different diseases, disease models and cell types. A Python script was used to generate a pool of

MutL complexes containing MutLα, MutLβ and MutLγ in various ratios that roughly reflect the

relative proportions of PMS2, PMS1 and MLH3 in cells [1]. The number of expansion substrates

available was then defined and each MutL complex in the pool was then randomly assigned to

successive expansion substrates until either three MutLs were complexed on each substrate or the

pool was exhausted. At that point bound MutL trimers containing MutLγ were scored as

expansions. This process was repeated 1000 times and the average number of expansions

calculated. The process was then repeated for increasing numbers of theoretical expansion

substrates. The python script is shown in (A) and examples of the results obtained with different

ratios of MutLα, MutL β and MutLγ in (B)

A) Python3 script:

Assumptions
Two MutS molecules must bind to a lesion but are not limiting here
Three MutL molecules are required to bind to a lesion to resolve it, at least one must be Mlh3
for an expansion event, otherwise no expansion occurs
The MutL proteins do not load onto a lesion simultaneously but sequentially, ie if there are four
substrates a single MutL will load onto each
prior to a second MutL loading onto the substrates.
If insufficient MutS or MutL bind the lesion disappears without expanding

Variables
trialNum, each lesion value is tested trialNum times to smooth out the effects of random choice
numPms2, numPms1, numMlh3 indicate how many molecules of each there are in the pot

numLes, incLes, finLes indicate the starting number of lesions, how the number of lesions is
incremented and what the final number of lesions tested will be
Note that large values of lesions will take a very long time to process.

Running the script
In the Terminal cd to the directory where this file is located
Enter "python expansion_modeller_MutS.py"
Each lesion value is tested trialNum times and the number of expansion events reported is
cumulative not the value per trial
Output is displayed in the Terminal and comprises Number of Lesions, Expansions in WT and
Expansions in Pms2-null
At completion a new text file is created containing the output data.

import random
import copy

Variables
trialNum = 1000
numPms2 = 10
numPms1 = 5
numMlh3 = 2
numLes = 0
incLes = 1
finLes = 11

Make the MutS molecules
MutS = ["Msh6" for i in range(10000)]
MutS = [] # uncomment this for Msh6 null
numMsh3 = 1000
Msh3 = ["Msh3" for i in range(numMsh3)]
MutS.extend(Msh3)

Make the MutL molecules
MutL = ["Pms2" for i in range(numPms2)]
Pms1 = ["Pms1" for i in range(numPms1)]
MutL.extend(Pms1)
Mlh3 = ["Mlh3" for i in range(numMlh3)]
MutL.extend(Mlh3)
make the Pms2 null
noPms2 = []
noPms2.extend(Pms1)
noPms2.extend(Mlh3)

Final output
expnOutput = {}
Begin

while numLes < finLes:
 # populate the output counter
 expnOutput[numLes] = [0, 0]
 # Start trialNum trials of each lesion value
 for trial in range(trialNum):
 # reset the available MutS and MutL complexes
 muts = copy.deepcopy(MutS)
 mutl = copy.deepcopy(MutL)
 nop2 = copy.deepcopy(noPms2)
 # holders for assembled MutS and MutL complexes, one WT the other with no Pms2
 mutDict = {}
 mutDictnoP = {}
 for lesion in range(numLes):
 mutDict[lesion] = []
 mutDictnoP[lesion] = []
 # put MutS on each lesion such that all lesions get the first MutS and then get the second
MutS
 for protS in range(2):
 for lesion in range(numLes):
 if len(muts) > 0:
 chosIdx = random.randint(0, (len(muts) -1))
 addMutS = muts.pop(chosIdx)
 mutDict[lesion].append(addMutS)
 mutDictnoP[lesion].append(addMutS)
 else: pass
 # put MutL on each lesion that has two MutS present.
 for protL in range(3):
 for lesion in range(numLes):
 # first the WT
 if len(mutDict[lesion]) >= 2 and len(mutl) > 0:
 chosIdx = random.randint(0, (len(mutl) -1))
 mutDict[lesion].append(mutl.pop(chosIdx))
 else: pass
 # then the Pms2 null
 if len(mutDictnoP[lesion]) >= 2 and len(nop2) > 0:
 chosIdx = random.randint(0, (len(nop2) -1))
 mutDictnoP[lesion].append(nop2.pop(chosIdx))
 else: pass
 # count succesful expansions
 for lesion in range(numLes):
 if len(mutDict[lesion]) == 5 and "Mlh3" in mutDict[lesion]:
 expnOutput[numLes][0] +=1
 else: pass
 if len(mutDictnoP[lesion]) == 5 and "Mlh3" in mutDictnoP[lesion]:
 expnOutput[numLes][1] +=1
 else: pass

 print(numLes, expnOutput[numLes])
 # increment the number of lesions
 numLes += incLes
outfile = open("Expansion_results_WT_and_Pms2KO_MutS.txt", 'w')
print("NumLesions\tWTExpns\tPms2Expns", file=outfile)
for lesion in sorted(expnOutput):
 print(str(lesion) + "\t" + str(expnOutput[lesion][0]) + "\t" + str(expnOutput[lesion][1]),
file=outfile)
outfile.close()

B) Examples of script output obtained using the indicated ratios of MutL�/PMS1,
MutLα/PMS2 and MutLγ/MLH3.

REFERENCES

[1] Cannavo E, Marra G, Sabates-Bellver J, Menigatti M, Lipkin SM, Fischer F, et al.
Expression of the MutL homologue hMLH3 in human cells and its role in DNA
mismatch repair. Cancer Res. 2005;65(23):10759-66.

