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Abstract. Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement
disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex.
Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before
the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and
metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with
slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor
features are present early in the disease and that they show an association to disease progression suggest that unravelling
the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic
treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep
and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal
models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings
include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and
VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results
obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
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NON-MOTOR FEATURES OF a large number of clinical studies have demonstrated

HUNTINGTON’S DISEASE

Huntington’s disease (HD) is more than a move-
ment disorder. It is always caused by an expanded
CAG repeat in the huntingtin (HTT) gene. A positive
gene test in combination with unequivocal signs of
motor disturbances are required for the clinical diag-
nosis of HD today (i.e., manifest HD) [1]. However,
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the presence of non-motor features decades before
the manifestation of the movement disorder and alter-
ations using neuroimaging techniques in individuals
who carry the mutant HTT gene (i.e., premanifest HD
[1-4]. The motor disturbances in HD have been asso-
ciated with progressive and pronounced dysfunction
and pathology in the striatum of the basal ganglia
and the cerebral cortex, the most affected areas in
HD. Cognitive changes are common and constitute
deficits in executive function with reduced capac-
ity for concentration, attention, mental flexibility and
organization. These cognitive changes have also been
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associated with pathology in the striatum and the
cerebral cortex. Other non-motor features of HD
include a wide range of psychiatric symptoms such
as apathy, depression, anxiety, irritability and altered
social cognition [5, 6]. Reduced recognition of facial
expression of emotions has also been detected in pre-
manifest HD [7-10]. Reduced emotional recognition
has recently been found to be associated with apathy,
which is the psychiatric symptom that most clearly
increases with disease progression [11, 12]. Sleep
problems and an altered circadian rhythm occur in
many individuals with HD [13—18]. Metabolic alter-
ations include increased appetite with a higher caloric
intake being necessary to counterbalance weight loss
in HD [19, 20]. A high body mass index (BMI)
at motor onset has been associated with a slower
disease progression [21]. The underlying neurobio-
logical mechanisms for these non-motor features are
not known. As their occurrence is common early in
the disease process and have associations to disease
progression, further understanding of how they arise
and develop may lead to important insight into early
disease mechanisms and uncover new targets for dis-
ease modification.

The regulation of emotion, sleep and metabolism
is governed by the hypothalamus and the limbic sys-
tem. The hypothalamus is made up of interconnected
nuclei that receive inputs both from the periphery,
e.g., thyroid hormones, leptin, ghrelin and insulin,
and the central nervous system (CNS). Besides reg-
ulating the endocrine axes of the body, its many
different neuropeptide-expressing neuronal popula-
tions project within the region and to other areas of
the brain to regulate emotion, sleep and metabolism.
The hypothalamus is part of the larger limbic system
that includes the hippocampus, gyrus cinguli, pre-
frontal cortex, insula, septal nuclei, amygdala, ventral
striatum, ventral tegmental area and raphe nucleus
[22, 23]. In light of the presence of non-motor fea-
tures in HD, this system has gained increasing interest
for investigations of changes in clinical material and
experimental models of HD (previously reviewed in
[24-27]). These authors reviewed the state of knowl-
edge of this areain HD in 2012 in this journal [28] and
provides here an updated overview of the major find-
ings made in the hypothalamus and the limbic system
in HD. The review is based on a literature search on
the PubMed database up to 2019 with the search terms
‘Huntington disease’ ‘huntingtin’, ‘hypothalamus’,
‘limbic system’, ‘orexin’, ‘hypocretin’, ‘oxytocin’,
and ‘vasopressin’.

HYPOTHALAMIC CHANGES IN CLINICAL
HD DETECTED BY NEUROIMAGING
STUDIES

A combination of neuroimaging studies and post-
mortem analyses of human hypothalamic tissue have
identified alterations in the hypothalamic region in
HD (Fig. 1, Table 1). Studies of the hypothalamic
region in general are challenged by practical factors
such as the scarcity of such tissue in brain banks and
by intrinsic factors such as the difficulties to define the
whole structure or specific nuclei within the hypotha-
lamus due to the lack of clear anatomical borders.
Nevertheless, structural analyses using voxel-based
morphometry and mathematical modelling based on
grey matter signals in the hypothalamic region have
detected significant differences between premanifest
HD and age- and sex-matched controls in several
studies [18, 29-31]. Studies using positron emission
tomography (PET) have found increased microglia
activation and reductions in dopamine D2 receptors
also in premanifest HD [32, 33]. Attempts to estimate
the hypothalamic volume have not revealed any sig-
nificant differences between HD and controls [34].
Nevertheless, these studies indicate that the hypotha-
lamic region is affected early in clinical HD.

NEUROPATHOLOGICAL CHANGES IN
THE HYPOTHALAMUS IN CLINICAL HD

Postmortem analyses of hypothalami from indi-
viduals with HD have revealed a number of
changes in different nuclei of this region (Fig. 1,
Table 1). The hypothalamus constitutes several
nuclei such as the paraventricular nucleus (PVN),
supraoptic nucleus (SON), infundibular nucleus, ven-
tromedial nucleus of the hypothalamus (VMH),
suprachiasmatic nucleus (SCN), nucleus tuberalis lat-
eralis (NTL), lateral hypothalamic area (LHA) and
mammillary bodies. The frequency of huntingtin
inclusions as assessed using the EM48 antibody has
been estimated to be between 0.5-2.8% in the dif-
ferent nuclei [35]. Although stereological estimation
for the total number of neurons and cells in the
whole hypothalamus in sections stained for the Nissl
stain cresyl violet did not reveal any significant dif-
ferences between HD and control cases, a specific
loss of neurons has been detected in the PVN by
23% and in the NTL by 32% in HD tissue [35, 36].
Early analyses have also indicated a reduced number
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Fig. 1. Overview of main hypothalamic changes in Huntington’s disease. Altered immunoreactivity and gene expression levels of cell
populations detected in specific hypothalamic nuclei. Changes that result in upregulation and downregulation are indicated by the arrows.
The location of specific hypothalamic nuclei is indicated by the dashed arrows on the cross-sectional human hypothalamic section stained
for Cresyl violet and Luxol fast blue. Hypothalamic changes are also detected in the blood and cerebrospinal fluid as well as from different
imaging paradigms. These changes are thought to be a key contributor to the clinical features in Huntington’s disease. CART, cocaine
and amphetamine regulated transcript; CREB-1, cyclic AMP-responsive element-binding protein 1; D2R, dopamine D2 receptor; FOXO3,
Forkhead box O3; HPA, hypothalamic—pituitary—adrenal; LHA, lateral hypothalamic area; MCH, melanin-concentrating hormone; NTL,
nucleus tuberalis lateralis; NKX2-1, NK2 homeobox 1; OX2R, Orexin 2 receptor; PVN, paraventricular nucleus; PDYN, prodynorphin,
SIRT1, sirtuin 1; VIP, vasoactive intestinal peptide; VMH, ventromedial hypothalamus.

of somatostatin neurons in the NTL [37-39]. The
function of this nucleus is still not well understood.
Another study found a reduced number of neurons
expressing oxytocin by 45% and vasopressin by
24% in HD cases compared to controls [35]. The
number of oxytocin and vasopressin immunoposi-
tive neurons were reduced in a case of premanifest
HD with Vonsattel grade 0, suggesting that loss of
oxytocin and vasopressin may occur early in HD
[40]. Oxytocin has been implicated in the ability to
recognize facial expression of emotion, which has
been found to be reduced already in premanifest HD
[41, 42]. Acute intranasal administration of oxytocin
to HD gene carriers normalized their altered brain
activation pattern in response to recognizing facial

expression of emotional disgust, indicating a role for
oxytocin in altered emotion recognition in HD [43].
As for vasopressin, it is not known whether vaso-
pressin levels or their activity are altered in HD. The
vasopressin system has been linked to aggression in
animals where aggressive behavior can be inhibited
by vasopressin Vla receptor antagonists [44, 45].
There is an ongoing Phase 2 clinical trial with Azevan
Pharmaceuticals using a vasopressin receptor antag-
onist (SRX246) against irritability in manifest HD
(https://clinicaltrials.gov/ct2/show/NCT02507284).
Several studies have investigated the LHA in HD.
The LHA controls several functions that are disturbed
in HD and pathology in this area could therefore
be a contributing if not causative factor for part
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Table 1
Summary of main findings in the hypothalamus in clinical HD

Pathology HD stage References
Atrophy 0 Premanifest and manifest (VBM) [29, 31, 121]
Grey matter volume 1 Premanifest and manifest (VBM) [30, 31, 122]

= Premanifest and manifest [34]
White matter volume J Premanifest and manifest (DTI) [122, 123]
Fornix demyelination 0 Premanifest and manifest (DTI,VBM) [124]
NTL volume/neurons N Cell counts and volume (HD grade 2—4) [35-38]
PVN neurons N Cell counts (HD grade 2—4) [35]
Microglial activation 1 Premanifest and manifest (PET) [32, 33]
Functioning of HPA axis 4 Premanifest and manifest [107, 109, 125, 126]
Circadian rhythm dysfunction 0 Premanifest and manifest [127]
AgRP = Immunoreactivity (HD grade 1-4) [128]
BDNF N mRNA levels (HD grade 1-4) [52]
CART 0 Immunoreactivity (HD grade 2-4) [35]

= Immunoreactivity, mRNA levels (HD grade 0, HD grade 1-4) [40, 52, 128, 129]
CREB-1 0 mRNA (HD grade 1-4) [52]
CRH = Immunoreactivity (HD grade 1-4) [129]

0 mRNA (HD grade 1-4) [129]
Dopamine D2 receptor 1 Premanifest and manifest (PET), mRNA levels (HD grade 1-4) [32, 52]
FOXO03 0 mRNA (HD grade 1-4) [52]
MCH = Immunoreactivity (HD grade 2—4) [51,52]

N mRNA levels (HD grade 1-4) [52]
NPY = Immunoreactivity (HD grade 2—4) [35]

J Immunoreactivity (HD grade 1-4) [128]

0 mRNA (HD grade 1-4) [128]
Orexin = Immunoreactivity (HD grade 0) [40]

N Immunoreactivity, mRNA levels (HD grade 1-4) [35, 51, 52, 130]
Orexin 2 receptor J mRNA levels (HD grade 1-4) [52]
Oxytocin N Immunoreactivity (HD grade 0) [40]

N Immunoreactivity (HD grade 2—4) [35]

= Immunoreactivity (HD grade 1-4) [129]
Prodynorphin 1 mRNA levels (HD grade 1-4) [52]
SIRT1 4 mRNA (HD grade 1-4) [52]
Somatostatin N Immunoreactivity (mid-late HD) [39]
TRH = mRNA levels (HD grade 1-4) [52, 129]
Tyrosine hydroxylase 1 mRNA levels (HD grade 1-4) [52]
Vasopressin J Immunoreactivity (HD grade 0) [40]

N Immunoreactivity (HD grade 1-4) [35, 57]

= Immunoreactivity (HD grade 1-4) [129]

= mRNA levels (HD grade 1-4) [57]
VIP U Immunoreactivity (HD grade 1-4) [57]

=  mRNA (HD grade 1-4) [57]

AgRP, agouti-related protein; BDNF, brain-derived neurotrophic factor; CART, cocaine and amphetamine regulated transcript; CREB-
1, cyclic AMP-responsive element-binding protein 1; CRH, corticotrophin releasing hormone; DTI, diffusion tensor imaging; FOXO3,
forkhead box O3; MCH, melanin-concentrating hormone; NPY, neuropeptide Y; PET, positron emission tomography; SIRT, sirtuin
1; TRH, thyrotropin-releasing hormone; VBM, voxel based morphometry; VIP, vasoactive intestinal peptide.

of the clinical manifestation of the disease. Exper-
imental lesions of the LHA established the “lateral
hypothalamic syndrome” characterized by hypopha-
gia, adipsia, hypoactivity and weight loss [46—48].
Later studies established an important role for the
LHA in the regulation of sleep, energy balance,
reward and motivated behaviors [49]. In HD, there is
a 38% reduction in the number of orexin (hypocretin)
immunopositive-neurons in HD and mRNA lev-
els are also diminished compared to control cases
[35, 50-52]. Orexin is a neuropeptide that is only

expressed in the LHA and it plays an important role
in the regulation of sleep, emotion and metabolism
[53, 54]. Melanin-concentrating hormone (MCH)
is another emotion-regulating neuropeptide that is
expressed in neighboring neurons within the LHA
[55]. A recent study showed significant reduction of
MCH mRNA levels in HD cases compared to con-
trols although the number of MCH-immunopositive
neurons is not affected [52]. Analyses of mRNA lev-
els of other factors in the LHA in HD cases indicated
that the dopamine D2-receptor (D2R) levels are also
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reduced [52]. mRNA levels of D2R are not reduced
in other hypothalamic areas suggesting that the sig-
nal of D2R reductions detected using PET may arise
from the LHA specifically.

Sleep problems and altered circadian rhythm are
common in patients with HD [13-18, 56]. The SCN
is the key brain region for regulating sleep and cir-
cadian rhythm. Postmortem analyses of the SCN
from patients with HD have shown that numbers of
vasoactive intestinal peptide (VIP)- and vasopressin-
immunoreactive neurons were reduced by 85% and
33% respectively in HD cases compared to controls
[57]. This occurred in the presence of normal mRNA
levels of these genes as well as unaffected number of
neurons expressing melatonin receptors in this area
[57]. Hence, there is specific pathology in the SCN
in HD that may contribute to alterations in sleep and
circadian rhythm.

HYPOTHALAMIC GENE EXPRESSION
CHANGES IN CLINICAL HD

Alterations in specific hypothalamic genes have
also been reported in HD (Fig. 1, Table 1). A recent
study showed reduced expression of mRNA levels
of brain-derived neurotrophic factor (BDNF) in the
VMH but not in the LHA, PVN or SON of HD cases
compared to controls [52]. The VMH constitutes a
group of cells involved in the regulation of energy
homeostasis as well as aggression [58—64]. BDNF is
expressed in the VMH [65] and reduced expression
of BDNF in mice has been associated with aggres-
siveness, hyperphagia and obesity [66, 67]. BDNF is
well known to be reduced in the cerebral cortex in
clinical HD and has been implicated in the pathogen-
esis in HD [52, 68]. Hence, the effects of the BDNF
system specifically in the VMH may also play a role
in HD.

The metabolic regulators and energy sensors
sirtuins (SIRT) have been implicated in HD. Neu-
roprotective effects of SIRT1 inhibitors have been
shown in drosophila, mammalian cells and mouse
models of HD [69]. One initial clinical trial to eval-
vate safety has been conducted using the SIRT1
inhibitor, selisistat, in HD patients [70]. SIRT1 acts
in the hypothalamus to control metabolism and
longevity partly through the regulation of matura-
tion of hypothalamic peptide hormones [71-74]. A
recent study showed an increase in mRNA levels
and immunoreactivity of SIRT1 in both the LHA
and VMH apart from other affected brain regions in

HD such as the striatum and cerebral cortex [52].
No changes were found in the less affected cerebel-
lum. Analyses of mRNA levels of downstream targets
of SIRT1 such as FOXO3 indicated increased lev-
els in the LHA and VMH in HD. FOXO3 has also
been shown to be upregulated in the striatum in HD
[75,76]. This data indicate that the SIRT1 system is
affected in sensitive brain regions in HD and that the
hypothalamic effects of these factors need to be con-
sidered in future studies targeting this system in HD.

OTHER LIMBIC SYSTEM CHANGES IN
CLINICAL HD

Although it is beyond the scope of this review
to discuss in detail the alterations of the limbic
system in HD, it is important to consider the inter-
actions with other limbic structures which form
widely distributed networks for a proper perspec-
tive. While the definition of the limbic system is
not always clear, the anatomical structures gener-
ally accepted today and included in this review
comprises of the hippocampus, amygdala, ventral
striatum, nucleus accumbens, raphe nucleus, ventral
tegmental area, cingulate cortex and prefrontal cor-
tex [22, 23]. Table 2 summarizes the main alterations
detected to date in the limbic system in clinical HD
and in rodent models. Imaging studies using voxel
based morphometry (VBM) in magnetic resonance
images (MRI) have indicated increased atrophy and
grey matter loss in these limbic structures already in
premanifest HD [77-86]. Whereas histopathological
studies on the limbic structures in HD are scarce,
there is evidence for cell loss in the dorsal raphe
nucleus, anterior cingulate cortex and prefrontal cor-
tex in symptomatic HD cases with Vonsattel grade
1-4 [83, 87, 88]. Functional MRI (fMRI) studies
have reinforced our understanding of limbic system
dysfunction in HD. Reduced functional connectiv-
ity, network integrity and activity was found in the
HD hippocampus, amygdala, ventral striatum, cingu-
late cortex and prefrontal cortex using different fMRI
paradigms assessing verbal working memory, emo-
tional processing, interference/conflict resolution and
attention/alertness [89-99]. Such alterations in activ-
ity patterns produce multidimensional maps that to
some extent reflect internal states of brain process-
ing in response to a task. These changes are already
present in the premanifest stage suggesting that early
changes in the limbic structures might contribute
in part to disease pathogenesis. As cognition and
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Table 2

Summary of main findings in the limbic system in clinical HD and rodent HD models
Region/pathology HD stage HD rodent models References
Hippocampus
Atrophy 4 Premanifest Not assessed [81]
Network integrity J  Manifest Not assessed [99]
Volume = Premanifest = VBM (R6/2) [82, 131, 132]

J Premanifest and manifest [78-80]
Cerebral blood flow 4 Premanifest Not assessed [91]
Neurogenesis Not assessed J  R6/2,R6/1,N171-82Q, YAC128 [133-138]
Androgen receptor Not assessed J Protein levels (R6/1) [139]
BDNF Not assessed J  mRNA and protein levels (R6/1), [140-143]

HdhQ'1/Q11 7175

Dendritic spine density Not assessed I R612 [144]
Ferritin Not assessed 4 Immunoreactive neurons (R6/2) [145]
PSA-NCAM Not assessed 1 RO6/1,R6/2 [146]
Serotonin Not assessed J  R6/2 [147]
Serotonin receptors Not assessed RO/ [148]
Amygdala
Atrophy 4 Premanifest tgHDrat [81, 149]
‘Volume = Premanifest = VBM (R6/2) [82, 132]

J Premanifest and manifest [77]
Functional connectivity J  Premanifest Not assessed [98]
Dopamine D2 receptor J  Manifest Not assessed [150]
TRH 1 Peptide levels (manifest) Not assessed [151]
Ventral striatum/nucleus accumbens
‘Volume J Premanifest and manifest (HD stage 1-2) Not assessed [78, 80, 82, 152]
Functional connectivity Not assessed J  BACHD rats [153]
Activity J  fMRI (premanifest) Not assessed [96, 97]
BDNF Not assessed J  mRNA levels (BACHD rats) [154]
Serotonin Not assessed J Immunoreactivity (tgHD rat) [155]
Somatostatin 1 Peptide levels, immunoreactivity (manifest) Not assessed [151, 156]
Tyrosine hydroxylase Not assessed 4 Immunoreactivity (tgHD rat) [155]
Raphe nucleus
Volume |} Manifest Not assessed [83]
Neuronal counts J Manifest Not assessed [83]
Serotonin Not assessed J Immunoreactivity (tgHD rat) [155]
Tyrosine hydroxylase Not assessed 4 Immunoreactivity (tgHD rat) [155]
Ventral tegmental area
Dopaminergic cell fate Not assessed 1 Gene expression (tgHD rat) [157]
Tyrosine hydroxylase Not assessed 4 Immunoreactivity (tgHD rat) [158]
Cingulate cortex
Volume J} Premanifest and manifest (VBM) l  R6/1 [80, 84, 85, 159]
Functional connectivity }  Premanifest and manifest (fMRI) Not assessed [92]
Activity |} Premanifest and manifest (fMRI) Not assessed [93-95, 160, 161]

1 Premanifest and manifest (fMRI) [162-164]
Neuronal count J  Immunoreactivity (manifest) (HD grade 1-3) Not assessed [87]
Prefrontal cortex
Volume J}  Premanifest (VBM) J HdhQ250 [86, 165]

= Manifest (VBM) [166]
White matter degeneration 1 Premanifest (DWI) Not assessed [167, 168]
Functional connectivity J}  Premanifest (fMRI) J  BACHD rats [89, 90, 153]
Activity }  Premanifest (fMRI) J  R6/2, tgHDrat [91, 93, 169-171]
Neuronal size J  Immunoreactivity (manifest) Not assessed [88]
Glial expression 4 Immunoreactivity (manifest) Not assessed [88]
Synaptic integrity J Immunoreactivity (premanifest and manifest) Not assessed [172]
Axonal transport Not assessed 4 Immunoreactivity (Q175KI) [173]
Glutamate uptake J}  Manifest Not assessed [174]
BDNF Not assessed J mRNA levels (R6/2, R6/1) [142, 175]
Orexin J Immunoreactivity (HD grade 1-4) Not assessed [51]
Serotonin Not assessed J  Immunoreactivity (tgHD rat) [155]

BDNF, brain-derived neurotrophic factor; PSA-NCAM, polysialylated neural cell adhesion molecule; TRH, thyrotropin-releasing hormone;

VBM, voxel-based morphometry; fMRI, functional magnetic resonance imaging; DWI, diffusion weighted imaging.
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emotional functions are derived from multiple cir-
cuit connections involving cortical and subcortical
regions of the limbic system, it seems indisputable
that limbic system dysfunction can be ascribed to
non-motor features of HD. Indeed, volumetric abnor-
malities in the amygdala have been found to be related
to the clinical profile of HD with high level of anx-
iety and cognitive symptoms occurring before the
onset of motor symptoms [77]. This prevailing view
of limbic system involvement in HD is also supported
by findings from rodent HD models with alterations
in volume, reduction in BDNF and serotonin lev-
els reported in several rat and mouse models (see
Table 2 for details). The full extent of limbic system
pathology in HD is not well understood and more
systematic neuropathological postmortem analyses
of these structures are warranted.

EFFECTS ON CIRCULATING FACTORS
RELATED TO THE HYPOTHALAMUS IN
CLINICAL HD

As the hypothalamus is targeted by and regulates
circulating (neuro-)endocrine factors in the blood
and cerebrospinal fluid (CSF), it became interest-
ing to investigate whether measurements of such
circulating factors would be altered in HD as an
indication of hypothalamic dysfunction and poten-
tially disease progression. Several studies have been
performed using both CSF and blood to measure
neuroendocrine factors with often contradicting or
negative results [16, 100-104]. The major results
are summarized in Table 3. Out of the published
results, the increase of cocaine and amphetamine
regulated transcript (CART) levels in the CSF is
interesting as it may reflect the increased number
of CART-immunopositive neurons in the hypothala-
mus in HD [35, 105]. Also, a subtle change in the
hypothalamic-pituitary-adrenal (HPA) axis may be
present [106—-109]. With the development of more
sensitive assays and a better standardization of col-
lected material, it is possible that future studies will
reveal other hypothalamic-related factors with rele-
vance for the non-motor features of HD.

LESSONS LEARNT FROM
EXPERIMENTAL STUDIES IN HD

There are several animal models expressing differ-
ent variants of the human mutant huntingtin gene.
Several of these transgenic mice display hypotha-
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Fig. 2. Limbic system changes in Huntington’s disease. Schematic
representation of the structures of the limbic system and overview
of the main upregulated and downregulated changes (indicated
by the arrows). A, amygdala; CC, cingulate cortex; F, fornix;
fMRI, functional magnetic resonance imaging; HIPP, hippocam-
pus; HYP, hypothalamus; PFC, prefrontal cortex; R, raphe nucleus;
V, ventral tegmental area; VS, ventral striatum.

lamic pathology (Table 4). The R6/2 mouse model
shows the highest degree of hypothalamic pathol-
ogy with reduced number of neurons expressing
orexin, oxytocin, vasopressin and VIP [50, 106,
110-113]. Experimental studies provide a comple-
mentary approach to the analyses of clinical material
as they provide the possibility to study and estab-
lish causative relationships. As the hypothalamus
receives major input both from the periphery and
the rest of the CNS, the question arises as to what
extent are the changes detected in this region a direct
consequence to the expression of mutant huntingtin
in hypothalamic cells. Experiments using recombi-
nant adeno-associated viral (rAAV) vector mediated
delivery of different fragments of mutant huntingtin
specifically to the hypothalamus have been conducted
to address this point. These studies have shown
a direct and early effect on the neuronal popula-
tions expressing orexin, oxytocin, vasopressin, MCH
and BDNF in the hypothalamus, suggesting that
the findings made in human postmortem hypotha-
lamic tissue may be directly related to the effects
of mutant huntingtin in this area [52, 114, 115].
Other studies have been performed in order to inves-
tigate whether the inactivation of mutant huntingtin
in the floxed BACHD mouse model using delivery
of Cre-recombinase by rAAV vectors or different
breeding strategies. rAAV-vector mediated delivery
of Cre-recombinase into the hypothalamus has shown
a causative link between hypothalamic dysfunction
and non-motor phenotypes such as metabolic dys-
function and depressive-like behavior [114, 116].
However, experiments to inactivate mutant huntingtin
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Table 3

Summary of main neuropeptide levels in the circulation in both clinical HD and rodent HD models

Neuropeptide

HD stage

HD rodent models

References

Output from the hypothalamus

ACTH

AgRP

CART
Cortisol/corticosterone

Estradiol
FSH
GHRF

Growth hormone

IGF-1
LH

NPY

Orexin
Prolactin

Testosterone

TSH

Vasopressin

e

I < —

—

<«

Serum, plasma levels
(premanifest, HD stage 2-3)

Plasma levels (HD stage 1-4)

Plasma levels (premanifest)

Plasma levels (manifest)

CSF levels (early-mid stage HD)

Plasma, serum levels (HD stage
1-4)

Serum levels (premanifest, HD
stage 2-3)

Serum levels (premanifest, HD
stage 2-3)

Serum, plasma levels
(premanifest, HD stage 2-3)

Serum levels (premanifest, HD
stage 2-3)

Serum and plasma levels (early
HD, manifest)

Plasma levels (manifest)

Plasma levels (manifest)

Plasma levels (manifest)

Serum, plasma levels
(premanifest, HD stage 2-3)

CSF levels (early-mid stage HD)

Ventricular CSF (HD grade 1-4)

Serum, plasma levels
(premanifest, HD stage 2-3)

Plasma (premanifest and
manifest)

Serum, plasma levels
(premanifest, HD stage 2-3)

Plasma levels (manifest)

Serum, plasma levels
(premanifest, HD stage 2-3)

Serum levels (premanifest, HD
stage 2-3)

4 Serum levels (R6/2)

Not assessed

Not assessed
1 Serum levels (R6/2)

= Serum levels (BACHD)
= Serum levels (R6/1)
Not assessed
Not assessed

Not assessed

1 Plasma levels (BACHD, YAC128)
Not assessed

Not assessed

= CSF levels (YAC128)
Not assessed

}  Serum levels (R6/1, R6/2)

1 Serum levels (tgHD rat)
Not assessed

= Serum (BACHD)

[104, 106, 176]
[126]
[177]
[177]
[105]

[106, 107, 126, 176, 178-180]
[104, 116]
[104, 181]
[104, 176]
[104]
[182, 183]
[176]
[177]
[183, 184]
[104, 176]
[185]

[51, 100, 101, 103, 130]
[104, 176, 186, 187]
[177]

[104, 139, 176, 181, 188, 189]

[190, 191]
[104, 176, 186]

[104, 116]

Input to the hypothalamus

Adiponectin
Amylin

Ghrelin
GIP
Glucagon
Glucose
Insulin
Leptin
PP

PYY

Resistin

1l =1

<1

Plasma levels (early HD)

Plasma (premanifest and
manifest)

Plasma levels (early HD)

Plasma (manifest)

Plasma (premanifest and
manifest)

Plasma (manifest)

Plasma levels (manifest)

Plasma levels (HD grade 1-2,
manifest)

Plasma levels (early HD)

Plasma (manifest)

Plasma (premanifest and
manifest)

Plasma (premanifest and
manifest)

Plasma levels (early HD)

J}  Serum levels (R6/2,N171-82Q)
Not assessed

J  Serum levels (R6/2,N171-82Q)
Not assessed

Not assessed

Serum levels (R6/2)

Serum levels (R6/2, N171-82Q)
BACHD, BAC-225Q, YAC128

Serum levels (R6/2,N171-82Q)
Not assessed

- o

Not assessed

Not assessed

Serum levels (R6/2, R6/1, N171-82Q)

[177, 182, 192]
[177]

[110, 182, 192]
[177,183]
[177]

[177]
[106, 183, 192-195]
[106, 177, 183, 193, 194, 196]

[192]

[114, 116, 197-199]
[177, 183, 192, 200]
[177]

[177]

[197]

ACTH, adrenocorticotropic hormone; AgRP, agouti-related protein; CART, cocaine and amphetamine regulated transcript; FSH, follicle-
stimulating hormone; GHRF, growth hormone-releasing factor; IGF-1, insulin-like growth factor 1; LH, luteinizing hormone; NPY,
neuropeptide Y; TSH, thyroid-stimulating hormone; GIP, gastric inhibitory polypeptide; PP, pancreatic polypeptide; PYY, peptide YY.
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Table 4
Summary of main hypothalamic findings in HD rodent models

Pathology HD rodent models References
Atrophy 0 R6/2 [110, 131, 201]
Neuronal count ¥ R6/2, N171-82Q [50, 202]
Upregulation of HPA axis 1 R6/2 [106]
Circadian rhythm dysfunction 1 R6/2 (CAG250, CAG 140), BACHD, Q175 [203-207]
Androgen receptor N protein (R6/1) [139]
Brn2 1 R6/2 [112]
CART ¥ peptide, immunoreactivity, mRNA (R6/2, HD190QG) [110, 208]

1 mRNA (BACHD) [116]
Clock genes (mPer2, ¥ R6/2 [13, 209, 210]

mBmall, Cryl, Dbp)

CRH 1 peptide (R6/2) [106, 110, 112]

= mRNA (BACHD) [116]
GnRH N3 immunoreactivity (BACHD, R6/2) [119, 189]

1 mRNA (R6/1) [181]
HAPI levels 1 N171-82Q [202]
MCH J peptide, immunoreactivity, mRNA (R6/2, AAV-hypo) [52, 110]

= mRNA (BACHD) [116]
NPY J mRNA (R6/2, HD190QG, BACHD) [116, 208]
Orexin N protein, immunoreactivity, mRNA (R6/2, YAC128, AAV-hypo) [50, 52, 100, 111, 114, 211]

0 immunoreactivity (BACHD) [116]
Orexin 2 receptor N mRNA (BACHD) [116]
Oxytocin N immunoreactivity, mRNA (R6/2, HD190QG, AAV-hypo) [112, 114, 208]

= immunoreactivity, nRNA (BACHD) [116]
Preprosomatostatin N mRNA (R6/2, HD190QG) [208]
POMC ¥ peptide, immunoreactivity (R6/2) [110]
Prodynorphin 1 mRNA (AAV-hypo) [52]
Tachykinin receptor 3 N mRNA (BACHD) [116]
TSH releasing hormone N mRNA (R6/2, HD190QG) [208]
Tyrosine hydroxylase N mRNA (AAV-hypo) [52]
Vasopressin 1 mRNA, immunoreactivity (R6/2, HD190QG, AAV-hypo) [111, 112, 114, 208]

= immunoreactivity, nRNA (BACHD) [116]
VIP N5 Immunoreactivity, mRNA (R6/2) [113]
VIP receptor N mRNA (R6/2) [113]

HPA, hypothalamic—pituitary—adrenal; CART, cocaine and amphetamine regulated transcript; CRH, corticotrophin releasing hormone;
GnRH, gonadotropin-releasing hormone; HAP1, huntingtin-associated protein 1; MCH, melanin-concentrating hormone; NPY, neuropep-
tide Y; POMC, proopiomelanocortin; TSH, thyroid stimulating hormone, VIP, vasoactive intestinal peptide.

in specific nuclei or cell populations in the hypotha-
lamus using breeding of the BACHD mice with mice
expressing Cre-recombinase under the VMH-specific
promoter SF-1, under the PVN-specific promoter
Sim-1, or the leptin receptor promoter, did not
show any beneficial effects on the psychiatric or
metabolic phenotype [117-119]. It would be useful to
investigate the involvement of specific hypothalamic
circuitries in the development of the early HD pheno-
type. Further studies using cell specific expression or
inactivation of mutant huntingtin in combination with
modulating the activity of specific circuitries using
chemo- or opto-genetic techniques with analyses of
behavioral outputs are likely to give further insight
into the causal links between huntingtin-mediated
hypothalamic dysfunction and non-motor features
of HD.

CLINICAL TRIALS IN HD: FROM A
HYPOTHALAMIC PATHOLOGY
PERSPECTIVE

According to the clinical trials database (https://
clinicaltrials.gov/), a total of 124 HD clinical tri-
als have been completed to date worldwide with an
additional 46 currently active or in the process of
recruiting. These trials have largely focused on restor-
ing motor or cognitive function and very few studies
have focused on the non-motor disturbances. Gene
therapy approaches to silence the disease-causing
mutant HTT protein are currently at the forefront of
treatment strategies for HD with the successful com-
pletion of the Phase 1/2a IONIS-HTTRXx clinical trial
(Ionis Pharmaceuticals) using intrathecal administra-
tion of antisense oligonucleotides (ASOs) to reduce
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both wild-type and mutant HTT [120]. A Phase 3
trial in adult patients with manifest HD (RG6042,
Roche Pharmaceuticals) began in April 2019. The
hypothalamus is located in a prime position anatom-
ically, surrounding the third ventricle. Although it
is likely that intrathecally-delivered ASOs can also
target the hypothalamus, preclinical studies using dif-
ferent intrathecally-delivered HTT-lowering agents
have not focused on whether there is target engage-
ment in the hypothalamus. With the results of the
ongoing HTT-lowering clinical trials, it will be imper-
ative to determine whether intrathecally delivered
ASOs reach the hypothalamus and if so, the extent
to which this improves the non-motor symptoms and
signs. In preparation for future preclinical and clinical
trials with HTT-lowering agents, it is worth consider-
ing that hypothalamic pathology exists alongside or
perhaps even before striatal and cortical pathology.
It will be important to further investigate what brain
regions need to be targeted to impact upon non-motor
features of HD and to pinpoint a treatment timeframe
during the life of an affected individual where it is
still possible to prevent or reverse symptoms and
eventually halt disease progression.

CONCLUSION

The hypothalamus and other areas of the limbic
system are part of the brain regions affected in HD.
The changes detected mainly in the hypothalamus
include effects on factors that regulate motivated
behavior, emotions, social cognition, sleep and/or
metabolism with reduced levels of orexin, oxytocin,
vasopressin, VIP and somatostatin and increased
levels of SIRT1 in specific hypothalamic nuclei.
Experimental studies in mice have begun to establish
causative relationships between expression of mutant
huntingtin in the hypothalamus and its effects on neu-
ropeptide expression as well as in the development of
depressive-like behavior and metabolic disturbances.
Hence, pathology in the hypothalamus may have rel-
evance for the development of non-motor features in
HD. Further studies are still needed to investigate the
overall extent of these changes in the limbic system
and the potential of modulating affected targets for
symptomatic effects and/or disease modification in
HD.
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